
Model assessment 
• After you have chosen the model 

for data π(x|θ) and the prior π(θ), 
and computed the posterior 
distribution π(θ|x)… 
• Ok, we know it contains the 

complete information about the 
unknown parameter(s), and/or 
predicted variable(s). 

• But how good is it? 
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Model assessment 

• BUGS-book: 
 ”Model criticism and comparison inevitably 
involve a degree of judgement and cannot  

be reduced to a set of formal rules” 
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Model assessment 
• If the posterior probabilities concern unique 

events, e.g. ’mass of jupiter’, it is not possible to 
assess how often the model predicts this well. 
 

• If  possible to later find out the exact value for that, we 
will eventually see how close the posterior was…  

• This may not help us with modeling the next 
completely unique event!    

• Yet Bayesian inference is internally coherent approach  
– obeys the logic of probability calculus. 
– transparently shows the priors and conditional 
probabilities  – open for anyone to see, criticise, and 
recompute with different choices. (Document your DAG 
well!   gives structure for your assessment)  
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Model assessment 
• A ’unique event’  may never become 

observable... 
• Then cannot check if the posterior 

probability pointed at the right answer or 
not.  
• E.g. population size of extinct animals in 

some geographical area, long time ago.   
• Maybe the best we can do, is to make sure 

all the evidence and uncertainties are used 
at least internally coherently in the analysis 
– if it is a probabilitistic analysis at all.  

• Transparency of the inference, the DAG.  
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Model assessment 
• If the posterior probabilities concern 

repeatable events, e.g. ’daily 
temperatures’, we can repeatedly 
compare predictions with observable 
outcomes.  
• Frequentist properties of the predictions 

could be examined.  
• The predictive approach emphasizes 

observable variables instead of model 
parameters (which cannot be observed 
and therefore cannot be proven right or 
wrong). 
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Model assessment 
• In all model assessments: both the prior and 

the conditional probability model of data 
(likelihood) are subject to model criticism. 

• Sensitivity analysis: compute with 
different priors, different model choices. 
Could also check sensitivity to some data 
values (’outliers’?). 

• ”All models are wrong, but some of them 
are useful” – George Box. 
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Model assessment 
• Model fit also usually depends on the number of 

parameters in it (model complexity). 
• A parsimonious model that fits nearly as well as a more 

complex model, is thought to be better.  
• With too many parameters, overfitting can occur, and the 

model becomes less robust. (e.g. higher order regression 
terms) 

• Need to balance between model fit and model complexity.  
• The most accurate and complex description of the world is 

the world itself – but the purpose of a model is not to 
repeat all that – it should encapsulate the information, not 
inflate it.   
 

• Bayesian models combined with tools such as BUGS are so 
flexible that we can create and extend lots of models with 
slightly different structures. 
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Model assessment 
• Residual plots 

• In regression models where y = response, x = 
explanatory variables, classical residual plots are 
made of the residuals  yi – E(y|xi,θ*) calculated for 
the fitted parameter θ*. This ignores the 
uncertainty about θ. 
 
 

• Bayesian residual plots could be made using              
yi – E(y|xi,θ) where the parameter(s) θ is sampled 
from the posterior.   
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Residual plot 
 

 
 

 
 
 

 
 
• Should be evenly distributed around 0, large deviation 

indicates either outlier in data -  or badly fitting model 
• Remove outliers? 
• Extension of model to better fit all data points? 
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Box-plots 
plotted here 
as ranked. 
 
Should be  
mostly 
between 
-2 and 2. 
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Model assessment 
• Predictive model assessment 

• First: check if the model can predict similar data 
points as those observed. 

• In regression model: produce predictive 
distributions for yi and compare if actual yi fall 
within 95% CI of posterior predictive distributions.   
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Model assessment 
• Predictive model assessment 

• Classical p-value 
• The value of θ is typically determined by a ’null hypothesis’. 

• Bayesian generalization of this: 
 
 

• With fixed θ, the classical p-value is a special case.  
• Values close to 0 or close to 1 indicate lack of fit. 
• Graphically, can compare T(Xpred,θ) with T(Xobs,θ) by plotting 

a scatter plot from MCMC sample. This should be 
symmetric about the 45◦ line. 

• Ideally, T should be chosen to reflect aspects that are 
relevant to the scientific purposes of the model. 

• Note: Bayesian predictive checks are not used to ’accept’ or 
’reject’ a model, but rather to understand the limits of its 
applicability. 
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Model assessment 
• E.g. ’Omnibus’ discrepancies: 

 
 
 
 

• E.g. Checking the lower tail: 
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Example: linear model  
& max abs residual 

 
• Checking the max absolute residual: 
 (Yi = 2nd pulse, Xi =1st pulse) 

 
 
 

 which is near 0, indicating some model fit 
 problem in this respect. 
• Easily computed from BUGS simulations 
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Model assessment 
• DIC = Deviance Information Criteria  

• Available in BUGS 
• Can be used for some model comparisons: better 

model has smaller DIC.  
• Deviance: D(x,θ)=-2log(π(x|θ)) 

• If e.g. N-model with fixed variance, and mean θ 
as a parameter, then D is the same as the 
statistics 
 
 

• This is mean squared error.  Deviance can be 
thought as a generalization of this. Smaller 
deviance means a better fit. 
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Model assessment 
• Posterior mean deviance can be computed from 

MCMC sample of the parameter θ: 
 
 

• Likewise, we may compute deviance by using an 
estimate of θ, namely its posterior mean E(θ|x). 
Using this we get  
 
 

• Mean deviance describes better the errors of the 
model: it computes the average error over all 
possible values of θ, not just with the fitted estimate 
of θ.  
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Model assessment 
• The difference between these can be seen as 

the gain that can be achieved by fitting the 
model by  .  This gives the ’effective number of 
parameters’: 
 

• Also: ’the number of unconstrained parameters 
in the model’ 
• A parameter does not count if it is 

completely constrained, or if all information 
about it comes from the prior. 
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Model assessment 
• As an example: consider multinomial model  

 x1,…,xk ~  Multinom(p1,…,pk,N) 
• This has k parameters, but only k-1 are free, 

because of the constraint that the sum needs 
to be one.  

• What is the effective number of parameters in 
a Bayesian model?  This depends on prior.  

• Try computing pD with Dirichlet(1,…,1)-prior versus 
a more informative Dirichlet(100,…,100)-prior. In 
the latter case, the ’freedom’ of parameters is 
smaller because prior is more concentrated (has 
smaller variance).   
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Model assessment 
• In comparing two models, better one has smaller 

DIC value: 
 

• This can be automatically obtained from BUGS for 
each model (when applicable…).   

• Small differences <5 are not meaningful. 
• DIC looks for a good fitting parsimonious model.  
• The model that would best predict a replicate 

dataset of the same structure as that currently 
observed. 

• Works if posterior mean is a good estimate of 
model parameters, not if very skewed distributions. 
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Model assessment 
• All the previous use the same data for 

computing the posterior and for the 
assessment of fit. 
• Could also divide the data in 3 parts: one 

for constructing a prior, another for 
computing posterior, and the third for 
model assessment. 

• Cross-validation techniques: leave one 
observation out, predict it using the rest. 
Repeat this for every observation. 

• Real prediction of new observations, 
conditionally on the past data. 
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Model assessment 
• Compute probabilities for different models? 

• Could define prior probabilities for each model, then compute 
posterior probabilities and choose the one with highest 
probability. 

• Does not necessarily make sense, unless each model corresponds 
to some statement of real world and one of them must be true. 
 

• Bayesian model averaging (BMA), a mixture of several models can 
perform better than a single model.  
• E.g. mixture densities with k components, k=1,…,K, define K 

different possible models.  
• Could also let K to be unknown parameter.  

 
• Nonparametric Bayesian modeling (NPB) 

• Priors are given for probability densities, in the space of probability 
density functions. 

• Could e.g. define a Poisson intensity with unknown number of 
change points in a piecewise constant function.  average of this is 
a nonparametric function. (or infinite parametric!) 

 
 

 
 

 
 

 
 
 

 
 

 
 
 

 

 
 

 

21 



Example: variable selection 
• Linear regression model for pulse2 

• Explanatory variables: height, weight, age, pulse1 

• Model choice problem: which variables to include? 
There are 24 possible models. 
 
 

• Simple approach: include all & investigate posterior 
distribution of regression coefficients.  
• If estimated to be ≈0,  if 95% CI includes 0, then the 

corresponding variable does not seem to have a significant 
effect.  
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Example: variable selection 
• From scatter plots of data, it can be seen that pulse1 is 

clearly correlated with pulse2. Other variables not 
much. 
• Although there appears to be 2 groups: in one group pulse 

remains nearly the same, in another it becomes higher (due to 
running exercise between measurements)  

• Also: in original data 2 heights were <100cm. Errors? These 
were removed from data below 
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Example: variable selection 
• Linear regression model for pulse2  
E(pulse2) = µ0 + α1 X1 γ1 + α2 X2 γ2 + α3 X3 γ3  + α4 X4 γ4 
• Each variable is included or excluded according to 

indicator variable γi.  
• Prior:  P(γi=1)=0.5 
• pulse2 ~  Normal(E(pulse2), τ) 
• Posterior distribution is now computed for all model 

parameters and indicators  γ  jointly. 
• Investigate which variables have high inclusion 

probability. 
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Example: variable selection 
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   mean sd val2.5pc median val97.5pc start sample 
 gamma[1] 0.01854 0.1349 0.0 0.0 0.0 1000 79001 
 gamma[2] 0.007607 0.08689 0.0 0.0 0.0 1000 79001 
 gamma[3] 0.03049 0.1719 0.0 0.0 1.0 1000 79001 
 gamma[4] 1.0 0.0 1.0 1.0 1.0 1000 79001 

Posterior inclusion probability for each variable 

Without going into detailed theory, some flavour of the  
technique is given in next slides.  



Example: variable selection 
• In MCMC, the simulation of γi is the same as jumping 

between models over simulations.  
• Each model has a model specific set of parameters. 
• What happens to model parameters during simulations 

when that model is not chosen? 
• Compare with the simple model choice: 
model{ 
x ~ dbin(p[gamma],n);  x <- 9; n <- 10 
p[1] <- 0.5            # M0: model for unbiased coin 
p[2] ~ dunif(0,1)  # M1: model for biased coin 
gamma <- gamma0+1;  gamma0 ~ dbern(0.5)  
} 
• Here: either the coin is ’unbiased’ so that p=0.5, or ’biased’ 

so that p is some value in [0,1] 
• gamma=1 is indicator for unbiased, gamma=2 for biased. 
• x=9 observed heads in n=10 coin tosses.  
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Example: variable selection 
• During iterations when gamma=1, parameter p[2] is simulated 

from its prior only (it’s not connected to likelihood then). 
• To get posterior of p, under model M2, we need to collect 

those iterations when M2 was actually chosen. 
• The values of p when M2 was not chosen have no meaning.  
• When M2 is not chosen p[2] can take values that are badly 

compatible with data  when jumping between models, 
MCMC is comparing the model with p=0.5 to a model with 
maybe p=0.01, and chooses with high probability the one with  
better p  MCMC can get jammed into one model.  

• Trick: pseudo priors.  A prior that depends on which model is 
currently chosen. When the model is not chosen, ’prior’ is 
artificially defined around ’good estimates’, but if model 
becomes chosen, the prior for its parameters is again the 
original prior.  
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Example: variable selection 
     model{ 

x ~ dbin(p[gamma],n);  x <- 9; n <- 10 
p[1] <- 0.5 
p[2] <- v*gamma0  +  u*(1-gamma0)  
u ~ dunif(0,1) 
v ~ distribution centered at x/n,   or  maybe  even constant  v <- x/n     
gamma <- gamma0+1;  gamma0 ~ dbern(0.5)  
} 
• Here U(0,1) is the real prior for p[2], under model M2, but it is 

effective only when that model is chosen. 
• Jumping between different models, each with different 

parameters is a complicated issue!  
• With categorical explanatory variables, similar but multivariate 

priors needed. 
• Below just one BUGS example for the Normal regression with 

variable choice… 
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Example: variable selection 
model{ 
for(i in 1:N){ 
pulse2[i] ~ dnorm(mu[i],tau)   # Normal model for observed 2nd pulse of ith person 
mu[i] <- mu0+sum(z[i,])            # linear mean for regression model 
for(p in 1:P){ 
z[i,p] <- alpha[p]*x[i,p]*gamma[p] 
}  
#  possible explanatory variables: height, weight, age, pulse1: 
x[i,1] <- height[i]    # height of the ith person  
x[i,2] <- weight[i]   # weight of the ith person 
x[i,3] <- age[i]         # age of the ith person 
x[i,4] <- pulse1[i]   # 1st pulse of the ith person 
} 
for(p in 1:P){  
gamma[p] ~ dbern(0.5)              # inclusion indicator 
alpha[p] ~ dnorm(m[p],t[p])      # pseudo priors  and actual N(0,0.001)-priors   
m[p] <- gamma[p]*0 + (1-gamma[p])*pseudom[p] 
t[p] <- gamma[p]*0.001 + (1-gamma[p])*pow(pseudos[p],-2) 
}  
mu0 ~ dnorm(0,0.001);  tau ~ dgamma(0.01,0.01) 
} 
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