Bayesian analysis of hypotheses

- Hypotheses:
- H could be about a parameter: " $\theta<0$ "
- Compute $\mathrm{P}\left(\mathrm{H}_{0} \mid \mathrm{X}\right)=\mathrm{P}(\theta<0 \mid \mathrm{X})$, the cumulative posterior density at 0 . Alternative hypothesis $H_{1}=" \theta>=0 "$
- $\mathrm{P}\left(\mathrm{H}_{0} \mid \mathrm{X}\right)$ and $\mathrm{P}\left(\mathrm{H}_{1} \mid \mathrm{X}\right)$ possible to compute if " $\mathrm{H}^{\prime \prime}$ is a region of parameter space.
- Can use indicator variables in BUGS to compute these probabilities.
- In contrast to classical hypothesis testing: this does not reject or accept a H . Just calculate the probability of H, given evidence.

Two sample problems

- Comparison of two populations:
- Prevalence comparisons in population studies. (Binomial proportions)
- Also e.g. gallup studies (Multinomial proportions)
- Compare treatment group vs control group in medical problems, case-control studies in epidemiology, for example:
- Effect of new medicine? - treatment vs control.
- Does vaccine cause autism? - case-control study.
- Compare measurements between groups (normal models)

Two sample problems

- Two binomial proportions
- $X_{1} \sim \operatorname{Bin}\left(p_{1}, n_{1}\right)$
- $X_{2} \sim \operatorname{Bin}\left(p_{2}, n_{2}\right)$
- Question: $p_{1}>p_{2}$? $=$ This is hypothesis
- Compute: $\pi\left(p_{1}, p_{2} \mid X_{1}, X_{2}, n_{1}, n_{2}\right)$
- Populations assumed to be separate.
- Samples assumed to be independent conditionally, given p_{1}, p_{2}.
- Independent priors assumed: $\pi\left(p_{1}, p_{2}\right)=\pi\left(p_{1}\right) \pi\left(p_{2}\right)$.

Two sample problems

- Two binomial proportions.
- It's enough to compute two posterior distributions:
$\pi\left(\mathrm{p}_{1}, \mathrm{p}_{2} \mid \mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{n}_{1}, \mathrm{n}_{2}\right)=\pi\left(\mathrm{X}_{1}, \mathrm{X}_{2} \mid \mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{p}_{1}, \mathrm{p}_{2}\right) \pi\left(\mathrm{p}_{1}\right) \pi\left(\mathrm{p}_{2}\right) / \mathrm{c}$
$=\pi\left(X_{1} \mid n_{1}, p_{1}\right) \pi\left(p_{1}\right) \pi\left(X_{2} \mid n_{2}, p_{2}\right) \pi\left(p_{2}\right) / c$
- Draw Monte Carlo sample from the two posteriors (if conjugate priors, these are beta-densities)
- Compute approximately $\mathrm{P}\left(\mathrm{p}_{1}>\mathrm{p}_{2}\right)$ from the sample.
- Could also compute posterior of :
- 'risk ratio' r r $=p_{1} / p_{2}$
- 'risk difference' $r d=p_{1}-p_{2}$
- 'odds ratio' or $=\left[p_{1} /\left(1-p_{1}\right)\right] /\left[p_{2} /\left(1-p_{2}\right)\right]$

Two sample problems

- In BUGS:

model\{

for(i in 1:2)\{
$\mathrm{x}[\mathrm{i}] \sim \mathrm{dbin}(\mathrm{p}[\mathrm{i}], \mathrm{n}[\mathrm{i}])$
$\mathrm{p}[\mathrm{i}] \sim \operatorname{dbeta}(1,1)$
\}
$P<-\operatorname{step}(p[1]-p[2])$
$r r<-\mathrm{p}[1] / \mathrm{p}[2] ; \quad r d<-\mathrm{p}[1]-\mathrm{p}[2]$

\}
list $(x=c(),, n=c()$,

Bayes factors

- Sometimes used: posterior odds = $P\left(H_{0} \mid X\right) / P\left(H_{1} \mid X\right)$.
- If " >1 ", shows support for H_{0}.
- Bayes factor: a ratio of posterior and prior odds
- $B F=\left[P\left(H_{0} \mid X\right) / P\left(H_{1} \mid X\right)\right] /\left[P\left(H_{0}\right) / P\left(H_{1}\right)\right]$

$$
=\left[P\left(H_{0} \mid X\right) P\left(H_{1}\right)\right] /\left[P\left(H_{1} \mid X\right) P\left(H_{0}\right)\right]
$$

Posterior odds = Prior odds x BF

This is a different way of expressing Bayes theorem: BF expresses how much data change the prior odds.

Simple point hypothesis

- A point hypothesis $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$
- We must have positive probability $\mathrm{P}\left(\mathrm{H}_{0}\right)=1-\mathrm{P}\left(\mathrm{H}_{1}\right)$
- BF then becomes the same as 'likelihood ratio' (uskottavuusosamäärä)

$$
\frac{\pi\left(\theta=\theta_{0} \mid X\right)}{\pi\left(\theta=\theta_{1} \mid X\right)}=\frac{\pi\left(\theta=\theta_{0}\right)}{\pi\left(\theta=\theta_{1}\right)} \frac{\pi\left(X \mid \theta=\theta_{0}\right)}{\pi\left(X \mid \theta=\theta_{1}\right)}
$$

Because constant $\pi(\mathrm{X})$ cancels out.

- But: how big (small) BF is big (small) enough ?
- Composite hypothesis, one-sided, two-sided...

Point hypothesis example

- Assume X^{\sim} N($\theta, 1$), data: $X=1.5$
- A point hypothesis $\mathrm{H}_{0}: \theta=0$ against $\mathrm{H}_{1}: \theta=2$.
- Assume prior $\pi(\theta=0)=\pi(\theta=2)=0.5$
- Then, posterior odds = likelihood ratio.
- Conversion to probability :
p = odds/(1+odds)

$$
\frac{\pi\left(\theta=\theta_{0} \mid X\right)}{\pi\left(\theta=\theta_{1} \mid X\right)}=\frac{\pi\left(\theta=\theta_{0}\right)}{\pi\left(\theta=\theta_{1}\right)} \frac{\pi\left(X \mid \theta=\theta_{0}\right)}{\pi\left(X \mid \theta=\theta_{1}\right)}
$$

Composite hypothesis

- Composite hypothesis, one-sided: $\mathrm{H}_{0}: \theta<\theta_{0}$ against $\mathrm{H}_{1}: \theta \geq \theta_{0}$
- Bayes-factor is

$$
B F=\frac{\int_{\Theta_{0}} \pi(\theta \mid X) d \theta \int_{\Theta_{1}} \pi(\theta) d \theta}{\int_{\Theta_{1}} \pi(\theta \mid X) d \theta \int_{\Theta_{0}} \pi(\theta) d \theta}=\frac{\int_{\Theta_{0}} \pi(X \mid \theta) \pi(\theta) d \theta \int_{\Theta_{1}} \pi(\theta) d \theta}{\int_{\Theta_{1}} \pi(X \mid \theta) \pi(\theta) d \theta \int_{\Theta_{0}} \pi(\theta) d \theta}
$$

which now depends also on prior.

- Two-sided hypothesis $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta \neq \theta_{0}$ does not make sense unless we set positive prior probability for H_{0}.

Composite hypothesis

- Example: $\mathrm{H}_{0}: \theta=\theta_{0}$ against $\mathrm{H}_{1}: \theta \neq \theta_{0}$
- Assume a coin is either fair so that
P (heads) $=P$ (tails) $=0.5=\theta_{0}$, or the coin is biased so that $P($ heads $)=\theta, P($ tails $)=1-\theta$.
- Parameter θ is unknown. Without much prior information, we choose the prior $\pi(\theta)=U(0,1)$.
- The model for observed data is $\mathbf{x}^{\sim} \operatorname{Bin}(\theta, n)$
- The hypothesis is about two possible models:
- M_{0} with $\theta=\theta_{0}=0.5$ describing fair coin
- M_{1} with $\theta \sim U(0,1)$ describing unknown bias

M_{0} or M_{1} ?

- Bayes factor is comparing the two models
- $\mathrm{BF}=$ posterior odds / prior odds

$$
\begin{aligned}
& B F=\frac{P\left(M_{0} \mid X\right) / P\left(M_{1} \mid X\right)}{P\left(M_{0}\right) / P\left(M_{1}\right)} \\
& =\frac{P\left(M_{0}\right) P\left(X \mid M_{0}\right) /\left(P\left(M_{1}\right) P(\right.}{P\left(M_{0}\right) / P\left(M_{1}\right)} \\
& B F=\frac{P(X \mid \theta=0.5)}{\int_{0}^{1} P(X \mid \theta) \pi\left(\theta \mid M_{1}\right) d \theta}
\end{aligned}
$$

$$
=\frac{P\left(M_{0}\right) P\left(X \mid M_{0}\right) /\left(P\left(M_{1}\right) P\left(X \mid M_{1}\right)\right)}{P\left(M_{0}\right) / P\left(M_{1}\right)}=\frac{P\left(X \mid M_{0}\right)}{P\left(X \mid M_{1}\right)}
$$

M_{0} or M_{1} ?

- Assume $X=115, \mathrm{~N}=200$
$P\left(X=115 \mid M_{0}\right)=\binom{200}{115} 0.5^{200}=0.005956$
$P\left(X=115 \mid M_{1}\right)=\int_{0}^{1}\binom{200}{115} \theta^{115}(1-\theta)^{85} d \theta=\frac{1}{201}=0.004975$
- $\quad B F=1.197$, slightly supporting M_{0}.
- If priors $P\left(M_{0}\right)=P\left(M_{1}\right)$, then posterior odds $=B F$, and $\mathrm{P}\left(\mathrm{M}_{0} \mid \mathrm{X}\right)=$ odds $/(1+$ odds $) \approx 1 /(1+1.197) \approx 0.54$

