
Bayesian analysis of hypotheses 
• Hypotheses: 

• H could be about a parameter:  ”θ<0”  
• Compute P(H0|X)=P(θ < 0 |X), the cumulative posterior 

density at 0.  Alternative hypothesis H1 = ”θ>=0” 
 
• P(H0 | X) and P(H1 | X) possible to compute if ”H” is a 

region of parameter space. 
• Can use indicator variables in BUGS to compute these 

probabilities.   
 

• In contrast to classical hypothesis testing:  this does not 
reject or accept a H. Just calculate the probability of H, 
given evidence. 
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Two sample problems 

• Comparison of two populations: 
• Prevalence comparisons in population studies. 

(Binomial proportions) 
• Also e.g. gallup studies  (Multinomial proportions) 

• Compare treatment group vs control group in 
medical problems, case-control studies in 
epidemiology, for example: 
• Effect of new medicine?   - treatment vs control. 
• Does vaccine cause autism?  - case-control study. 

• Compare measurements between groups (normal 
models) 
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Two sample problems 

• Two binomial proportions 
• X1 ~  Bin(p1,n1) 
• X2 ~  Bin(p2,n2) 

• Question: p1 > p2 ?  = This is hypothesis  

• Compute:  π(p1 , p2 | X1, X2 , n1 , n2 ) 
• Populations assumed to be separate. 
• Samples assumed to be independent conditionally, given 

p1, p2. 
• Independent priors assumed:  π(p1 , p2) = π(p1) π(p2).   
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Two sample problems 

• Two binomial proportions.  
• It’s enough to compute two posterior distributions: 
π(p1,p2 | X1,X2,n1 ,n2) = π(X1,X2|n1 ,n2,p1 ,p2)π(p1)π(p2)/c 
=  π(X1|n1,p1)π(p1) π(X2|n2,p2)π(p2)/c 
• Draw  Monte Carlo sample from the two posteriors 

(if conjugate priors, these are beta-densities) 
• Compute approximately P(p1> p2) from the sample.  
• Could also compute posterior of : 

• ’risk ratio’ rr = p1/p2 

• ’risk difference’  rd = p1 - p2  

• ’odds ratio’  or = [ p1/(1-p1) ]  /  [ p2/(1-p2) ]      
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Two sample problems 

• In BUGS:  
model{ 
for(i in 1:2){ 
x[i]  ~ dbin(p[i],n[i]) 
p[i] ~  dbeta(1,1) 
} 
P <-  step(p[1]-p[2]) 
rr <- p[1]/p[2];   rd <- p[1]-p[2]  
}  
list(x=c(,),n=c(,)) 
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Bayes factors 
• Sometimes used: posterior odds =   

 P(H0 | X)/P(H1 | X). 
• If  ”>1”, shows support for H0. 
• Bayes factor: a ratio of posterior and prior odds 

 
• BF = [ P(H0 | X)/P(H1 | X)  ]    /    [ P(H0)/P(H1)  ] 
 
            = [P(H0 | X) P(H1) ]  /  [P(H1 | X) P(H0)] 
 
Posterior odds  = Prior odds  x  BF 
 
This is a different way of expressing Bayes theorem:  
BF expresses how much data change the prior odds.  
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Simple point hypothesis 
• A point hypothesis H0 : θ = θ0  against H1 : θ = θ1  

• We must have positive probability P(H0)=1-P(H1) 
 

• BF then becomes the same as ’likelihood ratio’ 
(uskottavuusosamäärä) 
 
 
 
 

 Because constant π(X) cancels out. 
• But: how big (small) BF is big (small) enough ? 
• Composite hypothesis, one-sided, two-sided… 
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Point hypothesis example 
• Assume X ~  N(θ,1), data: X=1.5 

• A point hypothesis H0 : θ = 0  against H1 : θ = 2.  
• Assume prior  π(θ=0)=π(θ=2)=0.5  
• Then, posterior odds = likelihood ratio.  
• Conversion to probability : 
 p = odds/(1+odds) 
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Composite hypothesis 
• Composite hypothesis, one-sided: H0 : θ < θ0  

against H1 : θ ≥ θ0  
• Bayes-factor is 

 
 
 
 

 which now depends also on prior. 
• Two-sided hypothesis H0 : θ = θ0  against H1 : θ ≠ θ0 

does not make sense unless we set positive prior 
probability for H0. 
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Composite hypothesis 
• Example: H0 : θ = θ0  against H1 : θ ≠ θ0   

• Assume a coin is either fair so that 
P(heads)=P(tails)=0.5= θ0, or the coin is biased so 
that P(heads) = θ, P(tails)=1-θ.  

• Parameter θ is unknown. Without much prior 
information, we choose the prior π(θ)=U(0,1). 

• The model for observed data is x~Bin(θ,n) 
• The hypothesis is about two possible models: 
• M0 with θ = θ0 = 0.5 describing fair coin 
• M1 with θ ~ U(0,1)  describing unknown bias 
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M0 or M1? 
• Bayes factor is comparing the two models 
• BF = posterior odds / prior odds 
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M0 or M1? 
• Assume X=115, N=200 

 
 
 
 
 

• BF=1.197, slightly supporting M0. 
• If priors P(M0)=P(M1), then posterior odds = BF, 

and P(M0|X)= odds/(1+odds)≈1/(1+1.197)≈0.54 
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