Applications

- Linear regression
- Nonlinear regression
- Generalized linear regression
- Poisson
- Binomial
- Hierarchical models
- These can contain lots of parameters, so the posterior distribution is always multidimensional.

Linear regression models

- York rainfall data: $x=$ in November, $y=$ in December

```
model{
for(i in 1:10){
y[i] ~ dnorm(mu[i],tau)
mu[i] <- beta[1] + beta[2]*x[i] # unstandardized x
# mu[i] <- beta[1]+ beta[2]*(x[i]-mean(x[])) # standardized x
}
for(i in 1:2){
beta[i] ~ dnorm(0,0.001)
}
tau ~ dgamma(0.01,0.01)
# prediction with given fixed value xnew:
ynew ~ dnorm(munew,tau); munew <- beta[1] + beta[2]*xnew
# munew <-beta[1] + beta[2]*(xnew-mean(x[])) # standardized covariates
}
Interpretation of beta[1] in both cases? E(y | x=0) vs E(y|x=mean(x))
```


Linear regression models

- Priors:
- Uninformative, independent: $\pi\left(\beta_{1}\right) \pi\left(\beta_{2}\right)$ typically 'flat distributions'.
- Also possible: joint prior $\pi\left(\beta_{1}, \beta_{2}\right)$ could be multinormal distribution.
- Informative priors? Difficult to think directly regression parameters. Could think the observable outcome y^{*} for a given explanatory variable x^{*} and set a prior for this $\mathrm{y}^{*} \rightarrow$ solve regression parameters from this. \rightarrow 'Induced prior for β '. Needs as many priors as there are parameters.
- Partially informative priors: set standard uninformative priors for some parameters, but informative for others.
- Also: Can define functional constraints between parameters, and hierarchical structures.

Linear regression models

- Standardization of explanatory variables X:
- Can standardize as
- (x-mean(x))
- (x-mean $(x)) / s d(x)$
- This can make Gibbs sampling more efficient, because it affects the posterior correlations of the regression parameters.
- See the effect in BUGS simulations...

Linear regression models

- With prior $\pi(\beta, \tau) \propto 1 / \tau$ the conditional posterior $\pi(\beta \mid \tau, X, Y)$ of regression parameters β is:

Normal($\left.\left(X^{\top} X\right)^{-1} X^{\top} Y,\left(X^{\top} X\right)^{-1} \sigma^{2}\right)$

- Here X is the design matrix, and $\beta^{*}=\left(X^{\top} X\right)^{-1} X^{\top} Y$ is also the same as least squares estimate of regression parameters β.
- Posterior $\pi(\tau \mid X, Y)$ of precision parameter τ is

Gamma((n-r)/2, (Y-X $\left.\beta^{*}\right)^{\top}\left(Y-X \beta^{*}\right) / 2$)

- This looks similar to the earlier shown posterior of μ, τ, based on normally distributed data X.

Linear regression models

- Sampling from the posterior could be done 'manually' by simple Monte Carlo, in which τ is first sampled from this Gamma-density, and then β from the multivariate normal density, conditional on τ.
- This could be done in R
- In BUGS, we can also try other priors which do not lead to the previous analytically solvable posterior...

Linear regression models

- Missing values occur in many application data sets!
- Missing values of Y are easy to handle. ('NA')
- Missing values of X would require an additional model structure, to give a welldefined conditional distribution for them.
- Bayesian "imputation technique" of missing values is to sample the missing values from the joint posterior distribution, together with all other unknowns.

Nonlinear regression models

- An example with seasonal fluctuations: atmospheric CO_{2}, monthly, Mauna Loa, Hawaii
list($\mathrm{N}=120, \mathrm{x}=\mathrm{c}(368.18,366.87,366.94,368.27,369.62,370.47$, 371.44,372.39,373.32,373.77,373.13,371.51,369.59,368.12, 368.38,369.64,371.11,372.38,373.08,373.87,374.93,375.58, 375.44,373.91,371.77,370.72,370.5,372.19,373.71,374.92, 375.63,376.51,377.75,378.54,378.21,376.65,374.28,373.12, 373.1,374.67,375.97,377.03,377.87,378.88,380.42,380.62, 379.66,377.48,376.07,374.1,374.47,376.15,377.51,378.43, 379.7,380.91,382.2,382.45,382.14,380.6,378.6,376.72, 376.98,378.29,380.07,381.36,382.19,382.65,384.65, 384.94,384.01,382.15,380.33,378.81,379.06,380.17, 381.85,382.88,383.77,384.42,386.36,386.53,386.01, 384.45,381.96,342,
385.72,385.96,387.18,388.5,387.88,386.38,384.15, 383.07,382.98,384.11,385.54,386.93,387.42,388.77, 389.46,390.18,389.43,387.81)

Nonlinear regression models

- Linear and nonlinear terms: trend + seasonality

```
model{
tau ~ dgamma(0.01,0.01);
for(i in 1:5){a[i] ~ dnorm(0,0.001)}
for(i in 1:N){
month[i] <- i
x[i] ~ dnorm(mu[i],tau)
mu[i]<- a[1]+a[2]*i+a[3]*}\operatorname{sin}(\mp@subsup{2}{}{*}\textrm{pi*}//12)+a[4\mp@subsup{]}{}{*}\operatorname{cos}(\mp@subsup{2}{}{*}\textrm{pi*}//12
}
pi <- 3.1415926
}
```


Generalized linear regression

- Example of generalized linear Poisson modeling
- Data:
- Number of lung cancer cases $X_{\text {age,city }}$
- Population counts popage,city
- In age groups, in different cities, in 1968-1971.
- Model: (log-linear for $\lambda_{i, j} \rightarrow$ link function)
- Use the first age group in the first city as a reference, to define age effects and city effects
- $\log \left(\lambda_{\text {age,city }}\right)=\mu_{0}+\alpha_{\text {age }}+\alpha_{\text {city }} \quad$, with $\alpha_{\text {age }=1}=\alpha_{\text {city }=1}=0$
- $X_{\text {age,city }} \sim \operatorname{Poisson}\left(4 \lambda_{\text {age,city }}\right.$ pop $\left._{\text {age,city }}\right)$

```
cases[] pop[] age[] city[]
11305911
1180021
1171031
1058141
1150951
1060561
13287912
6108322
1592332 \leftarrow Case count (15) and population (923) in 3rd age group, in 2nd city
1083442
1263452
278262
4314213
8105023
789533
117024 3
953553
1265963
5252014
787824
1083934
1463144
853954
761964
END
```


design matrix X:

	Baseline		mete	for	effect		..and	city	ffects
Parameter vector \rightarrow	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}	α_{8}
The first 10 rows of	Base	age2	age ${ }^{1}$	age4	Age5	age6	city $\frac{1}{4}$	city3	city4
design matrix X would look like this.	1	0	0	0	0	0	0	0	0
Age1 and City 1 are	1	1	0	0	0	0	0	0	0
reference categories (baseline) against	1	0	1	0	0	0	0	0	0
which Age2,... and City2,... are 'effects'.	1	0	0	1	0	0	0	0	0
	1	0	0	0	1	0	0	0	0
	1	0	0	0	0	1	0	0	0
log-incidence in the group "City2,Age3"	1	0	0	0	0	0	1	0	0
would be	1	1	0	0	0	0	1	0	0
$\alpha_{0}+\alpha_{2}+\alpha_{6}$	1	0	D^{\prime}	0	0	0	(1)	0	0
this group is the	1	0	0	1	0	0	1	0	0
baseline multiplied by effects: $\operatorname{Exp}\left(\alpha_{0}\right) \operatorname{Exp}\left(\alpha_{2}\right) \operatorname{Exp}\left(\alpha_{6}\right)$	Linear predictor for any group is found by multiplying the parameter vector and the corresponding row of X.								

BUGS 'tricks' using design matrix

```
model{ # design matrix X could also be written beforehand in data
    # but it is here constructed from 'age' and 'city'.
    # The linear predictor can then be computed using inprod.
for(i in 1:24){
cases[i] ~ dpois(mu[i]); group[i] <- i
mu[i] <- pop[i]*4*lambda[i] # lambda = incidence per year
LA[i] <- lambda[i]/100000 # LA = inc. per 10^5 per year
log(lambda[i]) <- inprod(alpha[],X[i,]) # link function
X[i,1] <- 1
for(k in 2:6){X[i,k] <- equals(age[i],k)}
for(k in 2:4){X[i,k+5] <- equals(city[i],k) }
}
for(k in 1:9){ alpha[k] ~ dnorm(0,0.001) # priors for all effect-parameters
    A[k] <- exp(alpha[k]) # multiplicative effects
    }
}
```


Generalized linear: Binomial

- Explanatory variables X for p
- $Y_{i} \sim \operatorname{Bin}\left(p_{i}, n_{i}\right)$
- For each group i , there are variables X which are thought to explain p.
- This needs some link function between p and effects α, for example logit:
$\operatorname{logit}\left(p_{i}\right)=\log \left(p_{i} /\left(1-p_{i}\right)\right)=\alpha_{0}+\alpha_{1} X_{i 1}+\alpha_{2} X_{i 2}+\alpha_{3} X_{i 3}$.
- Or probit:
$\operatorname{probit}\left(p_{i}\right)=\Phi^{-1}\left(p_{i}\right)=\alpha_{0}+\alpha_{1} X_{i 1}+\alpha_{2} X_{i 2}+\alpha_{3} X_{i 3}$.
Φ^{-1} is the inverse of cumulative probability for $N(0,1)$
- X could be categorical or continuous or both.
- Priors are set for parameters α.

Generalized linear: Binomial

- With these link functions, the data model (likelihood) is either

$$
\pi(y \mid \alpha)=\prod_{i=1}^{n}\binom{n_{i}}{y_{i}}\left(\frac{e^{n_{i}}}{1+e^{n_{i}}}\right)^{y_{i}}\left(\frac{1}{1+e^{n_{i}}}\right)^{n_{i}-y_{i}}
$$

or

$$
\pi(y \mid \alpha)=\prod_{i=1}^{n}\binom{n_{i}}{y_{i}}\left(\Phi\left(\eta_{i}\right)\right)^{y_{i}}\left(1-\Phi\left(\eta_{i}\right)\right)^{n_{i}-y_{i}}
$$

Here η_{i} is the linear expression (real number)
$=\alpha_{0}+\alpha_{1} X_{i 1}+\alpha_{2} X_{i 2}+\alpha_{3} X_{i 3}$.

Generalized linear: Binomial

- Linear term could be extended by random effects

$$
\begin{aligned}
& \alpha_{0}+\alpha_{1} X_{i 1}+\alpha_{2} X_{i 2}+\alpha_{3} X_{i 3}+\beta_{j} \\
& \beta_{\mathrm{j}} \sim N\left(0, \sigma^{2}\right)
\end{aligned}
$$

- With a prior on σ^{2}. This could describe group specific 'random' differences that are not well explained by the 'systematic' effects X.
- This makes already a hierarchical model.

Example: O-rings

- Model the space shuttle O-ring failures as a function of temperature at launch.

$$
\operatorname{Logit}\left(p_{i}\right)=\alpha_{0}+\alpha_{1} X_{i}
$$

- Here X is temperature.
- The observations are interpreted as binary indicators (failure=yes/no) to describe if any of the O-rings failed, for each flight.

Failure	Temp (F)	
1	53	
1	57	O-ring data
1	58	
1	63	
0	66	BUGS:
0	67	
0	67	model\{
0	67	for(i in 1:23)
0	68	
0	69	Fail[i] ~ abern(p[i])
0	70	\|ogit(p[i]) <- a[1]+a[2]*T[i]
0	70	
1	70	\}
1	70	$\operatorname{for}(i \operatorname{in} 1: 2)\{a[i] \sim d n o r m(0,0.001)\}$
0	72	
0	73	$\text { \} }$
0	75	
1	75	
0	76	Standardized T:
0	76	$T \mathrm{~S}[i]<-(T[i]-\operatorname{mean}(T[])) / \operatorname{sd}(T[])$
0	78	
0	79	
0	81	

Example: O-rings

- Freezing point is at $\mathrm{F}=32$.
- Make prediction of the proportion of failures under $\mathrm{F}=31$. (Temperature when Challenger exploded). logit(p31) <- a[1]+a[2]*31
- Lowest observed Temp was F=53, so prediction should be uncertain because we are extrapolating long way down.

Example: O-rings

- Informative prior approach:
- Expert assessment on p, considering two temperatures 55 F and 75 F
- The chosen temperatures should be 'enough' apart from each other, so we could have independent opinion on both situations.
- The chosen temperatures should be meaningful to the expert, so that there is an opinion about p at those temps.
- The resulting matrix X should be nonsingular, so it can be inverted.
- logit(p55)=a[1]+a[2]*55
- logit(p75)=a[1]+a[2]*75
\rightarrow solve $\mathrm{a}[1]$ and $\mathrm{a}[2]$ from this...

Example: O-rings

- Solving the equations leads to

$$
\begin{aligned}
& \mathrm{a}[1]=(75 / 20) * \operatorname{logit}(\mathrm{p} 55)-(55 / 20) * \operatorname{logit}(\mathrm{p} 75) \\
& \mathrm{a}[2]=(-1 / 20) * \operatorname{logit}(\mathrm{p} 55)+(1 / 20) * \operatorname{logit}(\mathrm{p} 75)
\end{aligned}
$$

- In matrix notation: $\alpha=X^{\prime-1} \mathrm{~F}^{-1}\left(\mathrm{p}^{\prime}\right)$, where X^{\prime} is the design matrix with chosen X values, and p^{\prime} is the corresponding vector of p, for which expert opinion is obtained, and F is the link function.
- Setting a prior on those p’, induces a prior on paramerers α.

Example: O-rings

- As a result: we might have expert opinion which gives priors
- p55 ~ Beta(1.6,1)
- p75 ~ Beta(1,1.6)
- In BUGS, just write these priors for p55 and p75, and the parameters a[] are then simply a function of these $a[1] \leftarrow \ldots$ and $a[2] \leftarrow \ldots$

Example: O-rings

- With the original x values, we solve a[] from

$$
\operatorname{logit}\binom{p 55}{p 75}=\left[\begin{array}{cc}
1 & 55 \\
1 & 75
\end{array}\right] \alpha=X^{\prime} \alpha
$$

- With standardized values Z=(x-mean(x))/sd(x) we solve b[] from logit $\binom{p 55}{p 75}=\left[\begin{array}{cc}1 & -2.06 \\ 1 & 0.77\end{array}\right] \beta=Z^{\prime} \beta$

Because now the model is written with parameters β corresponding to the standardized values.

Default priors?

- Uninformative priors?
- When no substantial prior knowledge available
- Could use vague priors for probabilities p, corresponding to selected value combinations of explanatory variables, which induces prior for the regression parameters α.
- For all k regression parameters, need k equations to be solved! (transform from $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{k}}$ to $\alpha_{1}, \ldots, \alpha_{\mathrm{k}}$)
- Could use vague prior for regression parameters α
- With small sample and/or true p near 0 or 1 , different priors could cause bigger difference in posterior.

Small data \& true p near 0 or 1 ? -See effect with basic model-

model\{

x^{\sim} dbin($\left.p[1], n[1]\right) ; \quad p[1] \sim \operatorname{dbeta}(1,1)$
$y^{\sim} \operatorname{dbin}(p[2], n[2])$
$\operatorname{logit}(\mathrm{p}[2])<-$ theta; theta ~ dnorm(0,tau); tau <-1/2.71
$z^{\sim} \operatorname{dbin}(p[3], n[3])$
$\operatorname{logit}(\mathrm{p}[3])$ <- eta;
eta ~ dnorm(0,0.001)
\}
$\operatorname{list}(x=4, y=4, z=4, n=c(10,10,10))$
$\operatorname{list}(x=0, y=0, z=0, n=c(10,10,10))$

See the effect of priors with different data

Usual Prior choices for α

- Improper flat priors $\pi\left(\alpha_{i}\right) \propto 1$ for all i.
- Vague normal priors $\pi\left(\alpha_{\mathrm{i}}\right)=\mathrm{N}(0,0.001)$ for all i . $(\tau=0.001)$
- Vague multinormal priors $\pi\left(\alpha_{i}, \ldots, \alpha_{k}\right)=\operatorname{MN}(0, \mathrm{~T})$
- As a result, with logit(p) transformation these priors put most of the prior probability near 0 and near 1.
- Usually not much effect on posterior, but check this with sensitivity analysis.
- Possible recommendation: Normal priors for α with such variance that the induced prior on p will be closely uniform.

Hierarchical models

- Example: hierarchical binomial model
- Could be constructed in different ways:
- Basic model for observations is $X_{i} \sim \operatorname{bin}\left(n_{i}, p_{i}\right)$ in groups $i=1, \ldots, n$
- With prior for p :
- $\mathrm{p}_{\mathrm{i}} \sim \operatorname{beta}(\mathrm{a}, \mathrm{b})$ \# variation between groups
- $\pi(a), \pi(b)$ are some hyper prior densities.
- Or with prior for $\operatorname{logit}(p)$:
- logit $\left(p_{i}\right) \sim N\left(\mu, \sigma^{2}\right)$ \# variation between groups
- $\pi(\mu), \pi(\tau)$ are some hyper prior densities.
- The parameters for the hyper prior distribution are also unknown and to be estimated with all other parameters.

Hierarchical models

- Example: hierarchical normal model
- $\quad X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$
- $\mu_{\mathrm{i}} \sim N\left(\mu, \sigma^{2}{ }_{0}\right)$
- $\pi(\mu), \pi\left(\sigma^{2}{ }_{0}\right)$ are some hyper prior densities.
- Here, μ is the global (grand) mean, and μ_{i} is the mean of group i.
- Variance parameters describe between group variation and within group variation.
- Can make predictions for new groups, or new individuals within groups.
- By integrating over μ_{i} with respect to $\mathrm{N}\left(\mu, \sigma^{2}{ }_{0}\right)$ we get $X_{i} \sim N\left(\mu, \sigma_{i}^{2}+\sigma_{0}^{2}\right)$ so that $\sigma_{i}^{2}+\sigma_{0}^{2}=$ total variance.

Hierarchical models

If not much data for μ_{3}, its estimate is driven by the global information. If plenty of 'local' data for μ_{3}, it is driven by that.
₹ balancing between local data, and global 'prior'.

Hierarchical models

- If not hierarchical model for hierarchical data, then what?
- Could analyze each group separately
- Could analyze all groups as pooled
- Either way we lose information.
- Hierarchical model accounts for group specific differences, but borrows strength from all data.
\rightarrow e.g. evidence synthesis from multiple sources, meta-analyses, spatial smoothing, etc.

Hierarchical normal

- Assuming $\sigma_{i}^{2}=\sigma^{2}$, within all groups, so that mean $\left(x_{i}\right) \sim N\left(\mu_{i}, \sigma^{2} / n_{i}\right)$ and using new notation $\sigma^{2} / n_{i}=\sigma_{i}^{2}$, the structure is:
level1: $N\left(x_{i j} \mid \mu_{i}, \sigma^{2}\right)$, that is: $N\left(\bar{x}_{i} \mid \mu_{i}, \sigma_{i}^{2}\right)$, where $\sigma_{i}^{2}=\sigma^{2} / n_{i}$ level 2: $N\left(\mu_{i} \mid \mu, \sigma_{0}^{2}\right)$
- For simplicity, assume first that within group variance σ^{2} is known.
- Posterior is then of the form:

$$
\pi\left(\mu_{1}, \ldots, \mu_{I}, \mu, \sigma_{0}^{2} \mid x\right) \propto \pi\left(\mu, \sigma_{0}^{2}\right) \prod_{i=1}^{I} N\left(\mu_{i} \mid \mu, \sigma_{0}^{2}\right) \prod_{i=1}^{I} N\left(\bar{x}_{i} \mid \mu_{i}, \sigma_{i}^{2}\right)
$$

Hierarchical normal

- Note: although prior is hierarchical, this follows from Bayes theorem again.
- With these assumptions, some analytic results can be found:
- The conditional distribution:

$$
\begin{aligned}
\pi\left(\mu_{\mathrm{i}} \mid \sigma^{2}, \sigma^{2}, \mu, \mathrm{x}\right) & =\mathrm{N}\left(\mu^{*}{ }_{\mathrm{i}}, \mathrm{~V}_{\mathrm{i}}\right) \\
\mu_{\mathrm{i}}^{*}= & \frac{\frac{1}{\sigma_{i}^{2}} \bar{x}_{i}+\frac{1}{\sigma_{0}^{2}} \mu}{\frac{1}{\sigma_{i}^{2}}+\frac{1}{\sigma_{0}^{2}}} \quad V_{i}=\frac{1}{\frac{1}{\sigma_{i}^{2}}+\frac{1}{\sigma_{0}^{2}}}
\end{aligned}
$$

- It shows that the conditional expectation of group mean is a weighted average of μ and sample mean of the group (conditionally on $\sigma^{2}, \sigma^{2}, \mu, x$).

Hierarchical normal

- Furthermore:
- Level 2 -parameters μ and σ_{0} have posterior of the form $\pi\left(\mu, \sigma_{0} \mid x\right)=\pi\left(\mu, \sigma_{0}\right) \pi\left(x \mid \mu, \sigma_{0}\right) / c$
- Here the likelihood term can be difficult in general, (because it involves integration over unknown group means μ_{i}), but with Normal-models the following result applies: $\pi\left(\operatorname{mean}\left(x_{i}\right)\right)=N\left(\mu, \sigma^{2}+\sigma^{2}{ }_{0}\right)$, so we can write $\pi\left(x \mid \mu, \sigma_{0}\right)$ as a product of these group specific likelihoods.
- Using that form, and exploiting product rule which says $\pi\left(\mu, \sigma_{0} \mid x\right)=\pi\left(\mu \mid \sigma_{0}, x\right) \pi\left(\sigma_{0} \mid x\right)$, and with some manipulations, we find a solution for $\pi\left(\mu \mid \sigma_{0}, x\right)$

Hierarchical normal

- The solution is: $\pi\left(\mu \mid \sigma_{0}, x\right)=N\left(\mu^{*}, V\right)$ where

$$
\mu^{*}=\frac{\sum \frac{\bar{x}_{i}}{\sigma_{i}^{2}+\sigma_{0}^{2}}}{\sum \frac{1}{\sigma_{i}^{2}+\sigma_{0}^{2}}} \quad V^{-1}=\sum \frac{1}{\sigma_{i}^{2}+\sigma_{0}^{2}}
$$

- It shows the conditional expectation of grand mean μ is a weighted average of group specific sample means.
- Finally: the marginal density of between group variance $\sigma_{0}{ }^{2}$ does not come out as a standard density. As an uninformative prior we could use $\pi\left(\sigma_{0}\right)=$ const, but the prior $\pi\left(\log \left(\sigma_{0}\right)\right)=$ const leads to improper posterior. \rightarrow A prior $\tau_{0} \sim$ Gamma($0.001,0.001$) is nearly the same but (barely) proper. Some problems could occur if number of groups is small or if between group variance is small. Then: recommended to use e.g. flat prior for σ_{0}.

Hierarchical binomial

- For the hierarchical binomial model, with betaprior for p_{i}, similar issues:
- Joint distribution of hyper parameters α, β is of the form $\pi(\alpha, \beta \mid x)=\pi(\alpha, \beta) \pi(x \mid \alpha, \beta) / c$
- The 2nd term (likelihood) can even be expressed as

$$
\prod \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \frac{\Gamma\left(\alpha+x_{i}\right) \Gamma\left(\beta+n_{i}-x_{i}\right)}{\Gamma\left(\alpha+\beta+n_{i}\right)}
$$

Hierarchical binomial

- A possible prior (by Gelman et al.) would be to set prior for $\operatorname{logit}(\alpha /(\alpha+\beta))=\log (\alpha / \beta)$ and $\log (\alpha+\beta)$.
- But an improper uniform prior on these yields an improper posterior.
- Practical approach: check numerically by plotting the contours of the joint posterior, or by trying to simulate from it. If improper, this should be noticed \rightarrow countour lines drift to infinity, simulations do not converge.... (note that also a proper distribution can be almost improper if the tails of the distribution go to zero very slowly, ...too slowly)

Hierarchical normal example

- log-bacteria counts in 7 samples from each of the 15 batches:
(simulated data based on real data)
\# batch specific observations (7 per batch, from 15 batches):

```
x[,1] x[,2] x[,3] x[,4] x[,5] x[,6] x[,7] x[,8] x[,9] x[,10] x[,11] x[,12] x[,13] x[,14] x[,15]
```

$\begin{array}{lllllllllllllll}1.9 & 2.1 & 1.1 & 2.5 & 3.2 & 3.2 & 2.9 & 2.8 & 3.4 & 2.3 & 2.3 & 2.5 & 2.1 & 2.4 & 1.4\end{array}$
$\begin{array}{lllllllllllllll}2.6 & 2.9 & 1.3 & 3.1 & 1.8 & 2.6 & 3.6 & 2.7 & 3.5 & 2.7 & 3.0 & 3.1 & 2.7 & 3.5 & 2.0\end{array}$
$\begin{array}{llllllllllllll}2.9 & 1.8 & 1.6 & 2.4 & 3.3 & 3.6 & 2.1 & 2.0 & 2.7 & 3.0 & 2.5 & 2.1 & 2.6 & 3.3 \\ 1.5\end{array}$
$\begin{array}{lllllllllllllll}1.8 & 1.4 & 1.8 & 2.8 & 3.6 & 2.9 & 2.5 & 2.6 & 3.5 & 2.4 & 3.1 & 2.4 & 3.2 & 2.7 & 1.5\end{array}$
$\begin{array}{lllllllllllllll}2.8 & 2.0 & 0.8 & 2.7 & 3.3 & 2.8 & 2.0 & 2.5 & 3.9 & 2.8 & 2.5 & 2.5 & 2.7 & 2.4 & 1.6\end{array}$
$\begin{array}{lllllllllllllll}2.2 & 2.6 & 2.3 & 3.2 & 3.5 & 3.0 & 3.1 & 2.7 & 2.7 & 2.5 & 2.8 & 2.9 & 2.6 & 2.4 & 0.2\end{array}$
$\begin{array}{lllllllllllllll}1.1 & 1.3 & 2.4 & 3.4 & 1.3 & 2.5 & 3.5 & 2.7 & 3.3 & 2.2 & 2.4 & 1.9 & 2.7 & 2.6 & 1.3\end{array}$
NA (NAs added for prediction) END

Hierarchical normal example

```
model{
for(i in 1:15){
mu[i] ~ dnorm(mu0,tau0)
for(j in 1:8){
x[j,i] ~ dnorm(mu[i],tau)
}
}
mu0 ~ dunif(-10,10)
tau0 ~ dgamma(0.01,0.01); var0 <- 1/tau0; sigma0 <- sqrt(varO)
tau ~ dgamma(0.01,0.01); var <- 1/tau; sigma <- sqrt(var)
# percentage of between variance from total variance:
r<- 100*var0/(varO+var)
}
```


Hierarchical normal example

- Comparison of observed batch means ('dots') and estimated batch means μ_{i} (95\% Cls)

- Note: shrinkage to the overall mean μ_{0}.
- The more data in a group, the less shrinkage to μ_{0}.

Hierarchical normal example

- Comparison of observed overall mean (2.509) and estimated overall mean μ_{0}

	mean	sd	val2.5pc median	val97.5pc	
mu0	2.508	0.1447	2.222	2.508	2.801

- In this case: all groups had same number of observations. If different, the group with most observations would have more weight. weight $_{\mathrm{i}}=\frac{1}{\sigma^{2} / n_{i}+\sigma_{0}^{2}}$

Hierarchical normal example

- Could make predictions for new group means.
- $\mu_{\mathrm{k}} \sim \mathrm{N}\left(\mu_{0}, \sigma_{0}{ }^{2}\right)$ $\begin{array}{lll} & \text { mean } & \text { sd } \\ \text { mupred } & 2.518 & 0.5308\end{array}$

- Could make predictions for new units within groups
- $\mathrm{x}_{\mathrm{jk}} \sim \mathrm{N}\left(\mu_{\mathrm{k}}, \sigma^{2}\right)$

	mean	sd
xpred	2.51	0.7471

Hierarchical normal example

- Could estimate variance components to study between group variance versus within group variance.
- Could combine several data sources for evidence synthesis.
- Some data could represent better samples within group
- Some data could represent better samples between groups.
- Combining different data formats with different coarsity: e.g. individual unit samples and summary data
- Meta-analysis of several studies each with different strengths and weaknesses.

Hierarchical normal example

- Results for variance components from two data sources:

Posterior from Hansson et al. data

Posterior from combined data

