
Applications 
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• Linear regression 

• Nonlinear regression 

• Generalized linear regression 

• Poisson 

• Binomial 

• Hierarchical models 

• These can contain lots of parameters, so the 
posterior distribution is always 
multidimensional. 

 

 
 

 

 
 

 

 

 

 
 

 

 

 

 

 

 



Linear regression models 
• York rainfall data: x= in November, y= in December 

 

model{ 
for(i in 1:10){ 
y[i] ~ dnorm(mu[i],tau) 
mu[i] <- beta[1] + beta[2]*x[i]                           # unstandardized x 
# mu[i] <- beta[1]+ beta[2]*(x[i]-mean(x[]))    # standardized x 
} 
for(i in 1:2){ 
beta[i] ~ dnorm(0,0.001) 
} 
tau ~ dgamma(0.01,0.01) 
# prediction with given fixed value xnew: 
ynew ~ dnorm(munew,tau); munew <- beta[1] + beta[2]*xnew 
# munew <-beta[1] + beta[2]*(xnew-mean(x[])) # standardized covariates  
} 
Interpretation of beta[1] in both cases?  E(y | x=0)  vs  E(y|x=mean(x)) 
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list(y = c(41,52,18.7,55,40,29.2,51,17.6,46.6,57), 
x = c(23.9,43.3,36.3,40.6,57,52.5,46.1,142,112.6,23.7)) 



Linear regression models 
• Priors:     
• Uninformative, independent: p(b1) p(b2)  typically 

’flat distributions’. 
• Also possible: joint prior p(b1,b2) could be 

multinormal distribution. 
• Informative priors? Difficult to think directly 

regression parameters. Could think the observable 
outcome y* for a given explanatory variable x* and 
set a prior for this y*  solve regression 
parameters from this.  ’Induced prior for b’.  
Needs as many priors as there are parameters. 

• Partially informative priors: set standard 
uninformative priors for some parameters, but 
informative for others.  

• Also:  Can define functional constraints between 
parameters, and hierarchical structures.    
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Linear regression models 

• Standardization of explanatory 
variables X:     

• Can standardize as  
• (x-mean(x)) 
• (x-mean(x))/sd(x) 

• This can make Gibbs sampling more 
efficient, because it affects the posterior 
correlations of the regression 
parameters.  
 

• See the effect in BUGS simulations… 
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Linear regression models 
• With prior p(b,t)  1/t  the conditional posterior 

p(b | t,X,Y) of regression parameters b is: 
     
Normal(  (XTX)-1 XT Y ,  (XTX)-1 s2 ) 
 
• Here X is the design matrix, and b*= (XTX)-1 XT Y  is 

also the same as least squares estimate of 
regression parameters b. 
 

• Posterior p(t | X,Y) of precision parameter t  is 
 

Gamma( (n-r)/2, (Y-Xb*)T(Y-Xb*) /2 )   
• This looks similar to the earlier shown posterior of 

m,t, based on normally distributed data X. 

5 



Linear regression models 

• Sampling from the posterior could be 
done ’manually’ by simple Monte Carlo, 
in which t is first sampled from this 
Gamma-density, and then b from the 
multivariate normal density, conditional 
on t. 
• This could be done in R 
 

• In BUGS, we can also try other priors 
which do not lead to the previous 
analytically solvable posterior… 
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Linear regression models 

• Missing values occur in many application 
data sets! 

 

• Missing values of Y are easy to handle. (’NA’) 

• Missing values of X would require an 
additional model structure, to give a well-
defined conditional distribution for them.  

• Bayesian ”imputation technique” of missing 
values is to sample the missing values from 
the joint posterior distribution, together with 
all other unknowns. 
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Nonlinear regression models 

• An example with seasonal fluctuations: 
atmospheric CO2, monthly, Mauna Loa, Hawaii 
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list(N=120,x=c(368.18,366.87,366.94,368.27,369.62,370.47, 
371.44,372.39,373.32,373.77,373.13,371.51,369.59,368.12, 
368.38,369.64,371.11,372.38,373.08,373.87,374.93,375.58, 
375.44,373.91,371.77,370.72,370.5,372.19,373.71,374.92, 
375.63,376.51,377.75,378.54,378.21,376.65,374.28,373.12, 
373.1,374.67,375.97,377.03,377.87,378.88,380.42,380.62, 
379.66,377.48,376.07,374.1,374.47,376.15,377.51,378.43, 
379.7,380.91,382.2,382.45,382.14,380.6,378.6,376.72, 
376.98,378.29,380.07,381.36,382.19,382.65,384.65, 
384.94,384.01,382.15,380.33,378.81,379.06,380.17, 
381.85,382.88,383.77,384.42,386.36,386.53,386.01, 
384.45,381.96,342, 
385.72,385.96,387.18,388.5,387.88,386.38,384.15, 
383.07,382.98,384.11,385.54,386.93,387.42,388.77, 
389.46,390.18,389.43,387.81) 



Some analyses with BUGS 

 

 

 

 

 

 
 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

9 



Nonlinear regression models 

• Linear and nonlinear terms: trend + 
seasonality 

 

model{ 

tau ~ dgamma(0.01,0.01); 

for(i in 1:5){a[i] ~ dnorm(0,0.001)} 

for(i in 1:N){ 

month[i] <- i 

x[i] ~ dnorm(mu[i],tau) 

mu[i]<- a[1]+a[2]*i+a[3]*sin(2*pi*i/12)+a[4]*cos(2*pi*i/12) 

} 

pi <- 3.1415926 

} 
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Generalized linear regression 

• Example of generalized linear Poisson 
modeling 

• Data: 
• Number of lung cancer cases Xage,city  

• Population counts popage,city  

• In age groups, in different cities, in 1968-1971.  

• Model:  (log-linear for li,j  link function) 

• Use the first age group in the first city as a 
reference, to define age effects and city effects 

• log(lage,city) = m0 + aage + acity      , with aage=1 = acity=1 =0 

• Xage,city ~ Poisson(4lage,city popage,city ) 
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cases[] pop[] age[] city[] 
11 3059 1 1 
11 800 2 1 
11 710 3 1 
10 581 4 1 
11 509 5 1 
10 605 6 1 
13 2879 1 2 
6 1083 2 2 
15 923 3 2  
10 834 4 2 
12 634 5 2 
2 782 6 2 
4 3142 1 3 
8 1050 2 3 
7 895 3 3 
11 702 4 3 
9 535 5 3 
12 659 6 3 
5 2520 1 4 
7 878 2 4 
10 839 3 4 
14 631 4 4 
8 539 5 4 
7 619 6 4 
END 

  Case count (15) and population (923) in 3rd age group, in 2nd city 



design matrix X: 

 

The first 10 rows of 
design matrix X 
would look like this.  

Age1 and City1 are  
reference categories 
(baseline) against 
which Age2,… and 
City2,… are ’effects’.  

 

 

log-incidence in the 
group ”City2,Age3” 
would be  

a0 +a2+ a6   
Therefore,  incidence in 
this group is the 
baseline multiplied by 
effects: 
Exp(a0 )Exp(a2) Exp(a6 ) 13 

a0 a1 a2 a3 a4 a5 a6 a7 a8 

Base age2 age3 age4 Age5 age6 city2 city3 city4 

1 0 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 0 

1 0 1 0 0 0 0 0 0 

1 0 0 1 0 0 0 0 0 

1 0 0 0 1 0 0 0 0 

1 0 0 0 0 1 0 0 0 

1 0 0 0 0 0 1 0 0 

1 1 0 0 0 0 1 0 0 

1 0 1 0 0 0 1 0 0 

1 0 0 1 0 0 1 0 0 

Linear predictor for any group is found by multiplying  the 
parameter vector and the corresponding row of X. 
 

Parameter vector   

Baseline Parameters for age effects    ..and for city effects 



BUGS ’tricks’ using design matrix 
 
model{  # design matrix X could also be written beforehand in data  

             # but it is here constructed from ’age’ and ’city’. 

             # The linear predictor can then be computed using inprod. 

for(i in 1:24){ 

cases[i] ~ dpois(mu[i]); group[i] <- i 

mu[i] <- pop[i]*4*lambda[i]       # lambda = incidence per year 

LA[i] <- lambda[i]/100000        # LA = inc. per 10^5 per year 

log(lambda[i]) <- inprod(alpha[],X[i,])    # link function 

X[i,1] <- 1 

for(k in 2:6){X[i,k] <- equals(age[i],k) } 

for(k in 2:4){X[i,k+5] <- equals(city[i],k) } 

} 

for(k in 1:9){  alpha[k] ~ dnorm(0,0.001)  # priors for all effect-parameters 

                     A[k] <- exp(alpha[k])  # multiplicative effects 

                   } 

} 
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Generalized linear: Binomial 

• Explanatory variables X for p 
• Yi ~  Bin(pi,ni) 

• For each group i, there are variables X which are thought 
to explain p.  

• This needs some link function between p and effects a, 
for example logit: 

  logit(pi) = log(pi/(1-pi)) = a0 + a1 Xi1 + a2 Xi2 + a3 Xi3. 

• Or probit: 

 probit(pi) = F-1(pi) = a0 + a1 Xi1 + a2 Xi2 + a3 Xi3.  

 F-1 is the inverse of cumulative probability for N(0,1) 

• X could be categorical or continuous or both. 

• Priors are set for parameters a.  
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Generalized linear: Binomial 

• With these link functions, the data model 
(likelihood) is either 

 

 

 or 

 

 
Here hi  is the linear expression (real number)                    
= a0 + a1 Xi1 + a2 Xi2 + a3 Xi3.  
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Generalized linear: Binomial 

• Linear term could be extended by 
random effects  

 a0 + a1 Xi1 + a2 Xi2 + a3 Xi3 + bj 

 bj  ~ N(0,s2)   

• With a prior on s2. This could describe 
group specific ’random’ differences that 
are not well explained by the 
’systematic’ effects X.  

• This makes already a hierarchical model.  
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Example: O-rings 

• Model the space shuttle O-ring 
failures as a function of 
temperature at launch. 

 Logit(pi) = a0 + a1 Xi 

• Here X is temperature. 

• The observations are interpreted as 
binary indicators (failure=yes/no) to 
describe if any of the O-rings failed, 
for each flight. 
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Failure Temp (F) 
1 53 
1 57 
1 58 
1 63 
0 66 
0 67 
0 67 
0 67 
0 68 
0 69 
0 70 
0 70 
1 70 
1 70 
0 72 
0 73 
0 75 
1 75 
0 76 
0 76 
0 78 
0 79 
0 81 

O-ring data 
 
BUGS: 
model{ 
for(i in 1:23){ 
Fail[i] ~ dbern(p[i]) 
logit(p[i]) <- a[1]+a[2]*T[i] 
} 
for(i in 1:2){a[i]~dnorm(0,0.001)} 
} 
 
Standardized T:  
Ts[i] <- (T[i]-mean(T[]))/sd(T[]) 
 



Example: O-rings 

• Freezing point is at F=32. 

• Make prediction of the proportion of 
failures under F=31. (Temperature 
when Challenger exploded).  
logit(p31) <- a[1]+a[2]*31 

• Lowest observed Temp was F=53, so 
prediction should be uncertain 
because we are extrapolating long 
way down. 
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Example: O-rings 
• Informative prior approach: 
• Expert assessment on p, considering two 

temperatures 55F and 75F 
• The chosen temperatures should be ’enough’ apart 

from each other, so we could have independent 
opinion on both situations. 

• The chosen temperatures should be meaningful to the 
expert, so that there is an opinion about p at those 
temps.  

• The resulting matrix X should be nonsingular, so it can 
be inverted. 

• logit(p55)=a[1]+a[2]*55 
• logit(p75)=a[1]+a[2]*75 
 solve a[1] and a[2] from this…  
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Example: O-rings 

• Solving the equations leads to  

 a[1]=(75/20)*logit(p55)-(55/20)*logit(p75) 

 a[2]=(-1/20)*logit(p55)+(1/20)*logit(p75) 

• In matrix notation:  a = X’-1 F-1 (p’), where 
X’ is the design matrix with chosen X-
values, and p’ is the corresponding vector 
of p, for which expert opinion is obtained, 
and F is the link function.  

• Setting a prior on those p’, induces a prior 
on paramerers a. 

 
 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

22 



Example: O-rings 

• As a result: we might have expert 
opinion which gives priors  

• p55 ~  Beta(1.6,1)  

• p75 ~  Beta(1,1.6) 

• In BUGS, just write these priors for 
p55 and p75, and the parameters a[] 
are then simply a function of these 

  a[1] … and   a[2] …  
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Example: O-rings 

• With the original x values, we solve 
a[] from 

 

• With standardized values           
Z=(x-mean(x))/sd(x)                        
we solve b[] from 

 
Because now the model is written with parameters b 
corresponding to the standardized values.   
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Default priors? 

• Uninformative priors?  

• When no substantial prior knowledge available 

• Could use vague priors for probabilities  p, 
corresponding to selected value combinations of 
explanatory variables, which induces prior for the 
regression parameters a. 

• For all k regression parameters, need k equations to 
be solved!   (transform from p1,…,pk to a1 ,…, ak) 

• Could use vague prior for regression parameters a  

• With small sample and/or true p near 0 or 1, 
different priors could cause bigger difference in 
posterior. 
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Small data & true p near 0 or 1? 
-See effect with basic model- 

model{ 

x ~ dbin(p[1],n[1]);     p[1] ~ dbeta(1,1) 

y ~ dbin(p[2],n[2]) 

logit(p[2]) <- theta;   

                      theta ~ dnorm(0,tau); tau <-1/2.71  

z ~ dbin(p[3],n[3]) 

logit(p[3]) <- eta;  

                       eta ~ dnorm(0,0.001) 

} 

list(x=4,y=4,z=4,n=c(10,10,10))      

list(x=0,y=0,z=0,n=c(10,10,10))    

 

 

 

 
 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

26 

See the effect of priors  
with different data 



Usual Prior choices for a  

• Improper flat priors  p(ai)  1  for all i. 

• Vague normal priors p(ai) =N(0,0.001) for all i.  (t0.001) 

• Vague multinormal priors p(ai,…,ak) = MN(0,T) 

 

• As a result, with logit(p) transformation these priors put 
most of the prior probability near 0 and near 1.  

• Usually not much effect on posterior, but check this with 
sensitivity analysis.  

• Possible recommendation: Normal priors for a with such 
variance that the induced prior on p will be closely 
uniform.   
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Hierarchical models 
• Example: hierarchical binomial model 
• Could be constructed in different ways: 
• Basic model for observations is  Xi ~ bin(ni,pi)  in groups i=1,…,n 

 
• With prior for p: 
• pi ~ beta(a,b)  # variation between groups 
• p(a), p(b) are some hyper prior densities. 

 
• Or with prior for logit(p):  
• logit(pi) ~ N(m,s2)  # variation between groups 
• p(m), p(t) are some hyper prior densities.  

 
• The parameters for the hyper prior distribution are also 

unknown and to be estimated with all other parameters.     
 
 
 
 

 
 
 

 
 

 
 

 

 
 

 
 

 
 
 

 

 
 

 

28 



Hierarchical models 
• Example: hierarchical normal model 
• Xi ~ N(mi, s

2
i)  

• mi ~ N(m, s2
0) 

• p(m), p(s2
0) are some hyper prior densities. 

 
• Here, m is the global (grand) mean, and mi is the mean 

of group i. 
• Variance parameters describe between group variation 

and within group variation.   
• Can make predictions for new groups, or new 

individuals within groups.   
• By integrating over mi  with respect to N(m, s2

0) we get  
Xi ~ N(m,s2

i+ s2
0)   so that  s2

i+ s2
0 = total variance. 
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Hierarchical models 
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m 

m1 
m2 

 

m3 

 

m4 

 

x11 x12 x13 

If not much data for m3, its estimate  
is driven by the global information.  
If plenty of ’local’ data for m3,   
it is driven by that. 
≈ balancing between local data,  
and global ’prior’. 



Hierarchical models 

• If not hierarchical model for hierarchical 
data, then what? 
• Could analyze each group separately 
• Could analyze all groups as pooled 
• Either way we lose information. 

• Hierarchical model accounts for group 
specific differences, but borrows strength 
from all data.   

  e.g. evidence synthesis from 
 multiple sources, meta-analyses, 
 spatial smoothing, etc. 
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Hierarchical normal 

• Assuming s2
i=s2, within all groups, so 

that mean(xi) ~ N(mi, s
2/ni) and using new 

notation s2/ni  = s2
i , the structure is: 

 

 

• For simplicity, assume first that within 
group variance s2 is known. 

• Posterior is then of the form: 
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Hierarchical normal 
• Note: although prior is hierarchical, this follows from Bayes 

theorem again. 

• With these assumptions, some analytic results can be found:  

• The conditional distribution: 

 p(mi | s2, s2
0, m, x) = N(m*i , Vi) 

 

 

 
• It shows that the conditional expectation of group mean 

is a weighted average of m and sample mean of the 
group (conditionally on s2, s2

0, m, x). 
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Hierarchical normal 
• Furthermore:  

• Level 2 -parameters  m and  s0 have posterior of the form 

      p(m,s0|x) = p(m,s0)p(x| m ,s0)/c 

  

• Here the likelihood term can be difficult in general, 
(because it involves integration over unknown group 
means mi),   but with Normal-models the following 
result applies: p(mean(xi))=N(m, s2

i+s2
0), so we can 

write p(x| m ,s0) as a product of these group specific 
likelihoods. 

• Using that form, and exploiting product rule which says 
p(m,s0|x) = p(m |s0,x) p(s0|x), and with some 
manipulations, we find a solution for  p(m |s0,x)  
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Hierarchical normal 
• The solution is:   p(m |s0,x) = N(m*,V) where 

 
 
 
 
 
 

• It shows the conditional expectation of grand mean m is a 
weighted average of group specific sample means. 
 

• Finally: the marginal density of between group variance s0
2

 
does not come out as a standard density. As an uninformative 
prior we could use p(s0) = const, but the prior 
p(log(s0))=const leads to improper posterior.   A prior t0 ~ 
Gamma(0.001,0.001) is nearly the same but (barely) proper. 
Some problems could occur if number of groups is small or if 
between group variance is small. Then: recommended to use 
e.g. flat prior for s0.  
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Hierarchical binomial 

• For the hierarchical binomial model, with beta-
prior for pi, similar issues:  

• Joint distribution of hyper parameters a,b is 
of the form p(a,b|x) = p(a,b)p(x|a,b)/c 

• The 2nd term (likelihood) can even be 
expressed as 

  

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

36 


++

-++



+

)(

)()(

)()(

)(

i

iii

n

xnx

ba

ba

ba

ba



Hierarchical binomial 
• A possible prior (by Gelman et al.) would be to set prior 

for logit(a/(a+b))=log(a/b) and log(a+b). 

 

• But an improper uniform prior on these yields an 
improper posterior. 

 

• Practical approach: check numerically by plotting the 
contours of the joint posterior, or by trying to simulate 
from it. If improper, this should be noticed  countour 
lines drift to infinity, simulations do not converge….   
(note that also a proper distribution can be almost 
improper if the tails of the distribution go to zero very 
slowly, …too slowly)  
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Hierarchical normal example 

• log-bacteria counts in 7 samples from each of the 
15 batches:  

      (simulated data based on real data) 

 
# batch specific observations (7 per batch, from 15 batches): 
 x[,1]  x[,2]  x[,3]  x[,4]  x[,5]  x[,6]  x[,7]  x[,8]  x[,9]  x[,10]  x[,11]  x[,12]  x[,13]  x[,14]  x[,15]  

1.9  2.1  1.1  2.5  3.2  3.2  2.9  2.8  3.4   2.3   2.3   2.5   2.1   2.4   1.4 

2.6  2.9  1.3  3.1  1.8  2.6  3.6  2.7  3.5   2.7   3.0   3.1   2.7   3.5   2.0 

2.9  1.8  1.6  2.4  3.3  3.6  2.1  2.0  2.7   3.0   2.5   2.1   2.6   3.3   1.5 

1.8  1.4  1.8  2.8  3.6  2.9  2.5  2.6  3.5   2.4   3.1   2.4   3.2   2.7   1.5 

2.8  2.0  0.8  2.7  3.3  2.8  2.0  2.5  3.9   2.8   2.5   2.5   2.7   2.4   1.6 

2.2  2.6  2.3  3.2  3.5  3.0  3.1  2.7  2.7   2.5   2.8   2.9   2.6   2.4   0.2 

1.1  1.3  2.4  3.4  1.3  2.5  3.5  2.7  3.3   2.2   2.4   1.9   2.7   2.6   1.3  

NA   NA  NA  NA   NA  NA  NA  NA  NA   NA   NA   NA    NA   NA   NA 

END 
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(NAs added for prediction) 



Hierarchical normal example 
model{ 
for(i in 1:15){ 
mu[i] ~ dnorm(mu0,tau0) 
for(j in 1:8){ 
x[j,i] ~ dnorm(mu[i],tau) 
} 
} 
mu0 ~  dunif(-10,10) 
tau0 ~ dgamma(0.01,0.01); var0 <- 1/tau0; sigma0 <- sqrt(var0)  
tau ~ dgamma(0.01,0.01); var <- 1/tau; sigma <- sqrt(var)  
 
# percentage of between variance from total variance: 
r <- 100*var0/(var0+var)   
} 
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batch means fitted

1.0 2.0 3.0 4.0

1
.0

2
.0

3
.0
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Hierarchical normal example 

• Comparison of observed batch means (’dots’) and 
estimated batch means mi (95% CIs)  

 

 

 

 

 

 

 

 

• Note: shrinkage to the overall mean m0. 

• The more data in a group, the less shrinkage to m0.  
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Hierarchical normal example 
• Comparison of observed overall mean (2.509) and 

estimated overall mean m0  

 

 

 

 

 

 

 

 

• In this case: all groups had same number of observations. 
If different, the group with most observations would have 
more weight.  
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  mean sd val2.5pc median val97.5pc  
 mu0 2.508 0.1447 2.222 2.508 2.801  
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Hierarchical normal example 

• Could make predictions for new group means. 

•   mk  ~ N(m0, s0
2 ) 

 

 

 

 

• Could make predictions for new units within groups 

• xjk  ~ N(mk, s
2 ) 
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  mean sd   
 xpred 2.51 0.7471   

  mean sd  
 mupred 2.518 0.5308     



Hierarchical normal example 

• Could estimate variance components to study between 
group variance  versus within group variance. 

• Could combine several data sources for evidence 
synthesis. 
• Some data could represent better samples within group 

• Some data could represent better samples between groups. 

 

• Combining different data formats with different coarsity: 
e.g. individual unit samples and summary data 

• Meta-analysis of several studies each with different 
strengths and weaknesses. 
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Hierarchical normal example 
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• Results for variance components from two data sources: 
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