Applications

- Linear regression
- Nonlinear regression
- Generalized linear regression
 - Poisson
 - Binomial
- Hierarchical models
- These can contain lots of parameters, so the posterior distribution is always multidimensional.

• York rainfall data: x= in November, y= in December

```
list(y = c(41,52,18.7,55,40,29.2,51,17.6,46.6,57),
model{
                                  x = c(23.9, 43.3, 36.3, 40.6, 57, 52.5, 46.1, 142, 112.6, 23.7))
for(i in 1:10){
y[i] ~ dnorm(mu[i],tau)
mu[i] <- beta[1] + beta[2]*x[i]
                                              # unstandardized x
# mu[i] <- beta[1]+ beta[2]*(x[i]-mean(x[])) # standardized x</pre>
for(i in 1:2){
beta[i] \sim dnorm(0,0.001)
}
tau ~ dgamma(0.01,0.01)
# prediction with given fixed value xnew:
ynew ~ dnorm(munew,tau); munew <- beta[1] + beta[2]*xnew
# munew <-beta[1] + beta[2]*(xnew-mean(x[])) # standardized covariates</pre>
```

Interpretation of beta[1] in both cases? E(y | x=0) vs E(y|x=mean(x))

• **Priors**:

- Uninformative, independent: $\pi(\beta_1) \pi(\beta_2)$ typically 'flat distributions'.
- Also possible: joint prior $\pi(\beta_1, \beta_2)$ could be multinormal distribution.
- Informative priors? Difficult to think directly regression parameters. Could think the observable outcome y* for a given explanatory variable x* and set a prior for this y* \rightarrow solve regression parameters from this. \rightarrow 'Induced prior for β '. Needs as many priors as there are parameters.
- *Partially informative priors:* set standard uninformative priors for some parameters, but informative for others.
- Also: Can define functional constraints between parameters, and hierarchical structures.

- Standardization of explanatory variables X:
- Can standardize as
 - (x-mean(x))
 - (x-mean(x))/sd(x)
- This can make Gibbs sampling more efficient, because it affects the posterior correlations of the regression parameters.
- See the effect in BUGS simulations...

• With prior $\pi(\beta,\tau) \propto 1/\tau$ the conditional posterior $\pi(\beta \mid \tau, X, Y)$ of regression parameters β is:

Normal((X^TX)⁻¹ X^TY , (X^TX)⁻¹ σ^2)

- Here X is the design matrix, and β*= (X^TX)⁻¹ X^T Y is also the same as **least squares estimate** of regression parameters β.
- Posterior $\pi(\tau \mid X,Y)$ of precision parameter τ is

Gamma((n-r)/2, (Y-X β^*)^T(Y-X β^*) /2)

• This looks similar to the earlier shown posterior of μ,τ , based on normally distributed data X.

- Sampling from the posterior could be done 'manually' by simple Monte Carlo, in which τ is first sampled from this Gamma-density, and then β from the multivariate normal density, conditional on τ.
 - This could be done in R
- In BUGS, we can also try other priors which do not lead to the previous analytically solvable posterior...

- Missing values occur in many application data sets!
- Missing values of Y are easy to handle. ('NA')
- Missing values of X would require an additional model structure, to give a welldefined conditional distribution for them.
- Bayesian "imputation technique" of missing values is to sample the missing values from the joint posterior distribution, together with all other unknowns.

 An example with seasonal fluctuations: atmospheric CO₂, monthly, Mauna Loa, Hawaii

list(N=120,x=c(368.18,366.87,366.94,368.27,369.62,370.47, 371.44,372.39,373.32,373.77,373.13,371.51,369.59,368.12, 368.38,369.64,371.11,372.38,373.08,373.87,374.93,375.58, 375.44,373.91,371.77,370.72,370.5,372.19,373.71,374.92, 375.63,376.51,377.75,378.54,378.21,376.65,374.28,373.12, 373.1,374.67,375.97,377.03,377.87,378.88,380.42,380.62, 379.66,377.48,376.07,374.1,374.47,376.15,377.51,378.43, 379.7,380.91,382.2,382.45,382.14,380.6,378.6,376.72, 376.98,378.29,380.07,381.36,382.19,382.65,384.65, 384.94,384.01,382.15,380.33,378.81,379.06,380.17, 381.85,382.88,383.77,384.42,386.36,386.53,386.01, 384.45,381.96,342,

385.72,385.96,387.18,388.5,387.88,386.38,384.15, 383.07,382.98,384.11,385.54,386.93,387.42,388.77, 389.46,390.18,389.43,387.81)

• Linear and nonlinear terms: trend + seasonality

```
model{
tau \sim dgamma(0.01, 0.01);
for(i in 1:5)\{a[i] \sim dnorm(0,0.001)\}
for(i in 1:N){
month[i] <- i
x[i] ~ dnorm(mu[i],tau)
mu[i] <- a[1] + a[2]^{i} + a[3]^{sin}(2^{pi^{i}}/12) + a[4]^{scos}(2^{pi^{i}}/12)
pi <- 3.1415926
```

Generalized linear regression

- Example of generalized linear Poisson modeling
- Data:
 - Number of lung cancer cases X_{age,city}
 - Population counts pop_{age,city}
 - In age groups, in different cities, in 1968-1971.
- Model: (log-linear for $\lambda_{i,j} \rightarrow \text{link function}$)
 - Use the first age group in the first city as a reference, to define age effects and city effects
 - $\log(\lambda_{age,city}) = \mu_0 + \alpha_{age} + \alpha_{city}$, with $\alpha_{age=1} = \alpha_{city=1} = 0$
 - $X_{age,city} \sim Poisson(4\lambda_{age,city} pop_{age,city})$

cases[] pop[] age[] city[]
11 3059 1 1
11 800 2 1
11 710 3 1
10 581 4 1
11 509 5 1
10 605 6 1
13 2879 1 2
6 1083 2 2
15 923 3 2 🗧 Case count (15) and population (923) in 3rd age group, in 2nd city
10 834 4 2
12 634 5 2
2 782 6 2
4 3142 1 3
8 1050 2 3
7 895 3 3
11 702 4 3
9 535 5 3
12 659 6 3
5 2520 1 4
7 878 2 4
10 839 3 4
14 631 4 4
8 539 5 4
7 619 6 4
END

design matrix X:

Ba	aseline Parameters for age effects					S	and for city effects		
Parameter vector \rightarrow	α ₀	α	α ₂	α3	α4	α ₅	α ₆	α,	α ₈
The first 10 rows of	Base	age2	age3	age4	Age5	age6	city2	city3	city4
design matrix X would look like this.	1	0	0	0	0	0	0	0	0
Age1 and City1 are reference categories (baseline) against which Age2, and City2, are 'effects'.	1	1	0	0	0	0	0	0	0
	1	0	1	0	0	0	0	0	0
	1	0	0	1	0	0	0	0	0
	1	0	0	0	1	0	0	0	0
	1	0	0	0	0	1	0	0	0
log-incidence in the group "City2,Age3"	1	0	0	0	0	0	1	0	0
would be	1	1	0	0	0	0	1	0	0
$\alpha_0 + \alpha_2 + \alpha_6$	(1)	0 (1	0	0	0	1	0	0
Therefore, incidence in this group is the	1	0	0	1	0	0	1	0	0
baseline multiplied by effects:	Linear predictor for any group is found by multiplying the parameter vector and the corresponding row of X.								

 $Exp(\alpha_0)Exp(\alpha_2)Exp(\alpha_6)$

parameter vector and the corresponding row of X.

BUGS 'tricks' using design matrix

```
model{ # design matrix X could also be written beforehand in data
        # but it is here constructed from 'age' and 'city'.
        # The linear predictor can then be computed using inprod.
for(i in 1:24){
cases[i] ~ dpois(mu[i]); group[i] <- i</pre>
mu[i] <- pop[i]*4*lambda[i]  # lambda = incidence per year</pre>
LA[i] <- lambda[i]/100000 # LA = inc. per 10^5 per year
log(lambda[i]) <- inprod(alpha[],X[i,]) # link function</pre>
X[i,1] <- 1
for(k in 2:6){X[i,k] <- equals(age[i],k) }
for(k in 2:4){X[i,k+5] <- equals(city[i],k) }</pre>
for(k in 1:9){ alpha[k] ~ dnorm(0,0.001) # priors for all effect-parameters
             A[k] <- exp(alpha[k]) # multiplicative effects
```

Generalized linear: Binomial

- Explanatory variables X for p
 - $Y_i \sim Bin(p_i, n_i)$
 - For each group i, there are variables X which are thought to explain p.
 - This needs some *link function* between p and effects α, for example logit:

 $logit(p_i) = log(p_i/(1-p_i)) = \alpha_0 + \alpha_1 X_{i1} + \alpha_2 X_{i2} + \alpha_3 X_{i3}.$

• Or probit:

probit(p_i) = $\Phi^{-1}(p_i) = \alpha_0 + \alpha_1 X_{i1} + \alpha_2 X_{i2} + \alpha_3 X_{i3}$.

 Φ^{-1} is the inverse of cumulative probability for N(0,1)

- X could be categorical or continuous or both.
- Priors are set for parameters α .

Generalized linear: Binomial

• With these link functions, the data model (likelihood) is either

$$\pi(y \mid \alpha) = \prod_{i=1}^{n} \binom{n_i}{y_i} \left(\frac{e^{\eta_i}}{1 + e^{\eta_i}}\right)^{y_i} \left(\frac{1}{1 + e^{\eta_i}}\right)^{n_i - y_i}$$

or

$$\pi(y \mid \alpha) = \prod_{i=1}^{n} \binom{n_i}{y_i} (\Phi(\eta_i))^{y_i} (1 - \Phi(\eta_i))^{n_i - y_i}$$

Here η_i is the linear expression (real number) = $\alpha_0 + \alpha_1 X_{i1} + \alpha_2 X_{i2} + \alpha_3 X_{i3}$.

Generalized linear: Binomial

• Linear term could be extended by random effects

$$\begin{aligned} &\alpha_0 + \alpha_1 X_{i1} + \alpha_2 X_{i2} + \alpha_3 X_{i3} + \beta_j \\ &\beta_j \sim \mathsf{N}(0, \sigma^2) \end{aligned}$$

- With a prior on σ². This could describe group specific 'random' differences that are not well explained by the 'systematic' effects X.
- This makes already a hierarchical model.

 Model the space shuttle O-ring failures as a function of temperature at launch.

 $Logit(p_i) = \alpha_0 + \alpha_1 X_i$

- Here X is temperature.
- The observations are interpreted as binary indicators (failure=yes/no) to describe if any of the O-rings failed, for each flight.

Failure	Temp (F)
1	53
1	57
1	58
1	63
0	66
0	67
0	67
0	67
0	68
0	69
0	70
0	70
1	70
1	70
0	72
0	73
0	75
1	75
0	76
0	76
0	78
0	79
0	81

O-ring data BUGS: model{ for(i in 1:23){ Fail[i] ~ dbern(p[i]) logit(p[i]) <- a[1]+a[2]*T[i] } for(i in 1:2){a[i]~dnorm(0,0.001)} }

Standardized T: Ts[i] <- (T[i]-mean(T[]))/sd(T[])

- Freezing point is at F=32.
- Make prediction of the proportion of failures under F=31. (Temperature when Challenger exploded).
 logit(p31) <- a[1]+a[2]*31
- Lowest observed Temp was F=53, so prediction should be uncertain because we are extrapolating long way down.

- Informative prior approach:
- Expert assessment on p, considering two temperatures 55F and 75F
 - The chosen temperatures should be 'enough' apart from each other, so we could have independent opinion on both situations.
 - The chosen temperatures should be meaningful to the expert, so that there is an opinion about p at those temps.
 - The resulting matrix X should be nonsingular, so it can be inverted.
- logit(p55)=a[1]+a[2]*55
- logit(p75)=a[1]+a[2]*75
- \rightarrow solve a[1] and a[2] from this...

• Solving the equations leads to

a[1]=(75/20)*logit(p55)-(55/20)*logit(p75) a[2]=(-1/20)*logit(p55)+(1/20)*logit(p75)

- In matrix notation: α = X'⁻¹ F⁻¹ (p'), where X' is the design matrix with chosen Xvalues, and p' is the corresponding vector of p, for which expert opinion is obtained, and F is the link function.
- Setting a prior on those p', induces a prior on parameters α.

- As a result: we might have expert opinion which gives priors
 - p55 ~ Beta(1.6,1)
 - p75 ~ Beta(1,1.6)
- In BUGS, just write these priors for p55 and p75, and the parameters a[] are then simply a function of these

 $a[1] \leftarrow \dots and a[2] \leftarrow \dots$

- With the original x values, we solve a[] from $\log\left(\frac{p55}{p75} \right) = \begin{bmatrix} 1 & 55\\ 1 & 75 \end{bmatrix} \alpha = X'\alpha$
- With standardized values Z=(x-mean(x))/sd(x)we solve b[] from $logit \begin{pmatrix} p55\\ p75 \end{pmatrix} = \begin{bmatrix} 1 & -2.06\\ 1 & 0.77 \end{bmatrix} \beta = Z'\beta$

Because now the model is written with parameters β corresponding to the standardized values.

Default priors?

- Uninformative priors?
 - When no substantial prior knowledge available
 - Could use vague priors for probabilities p, corresponding to selected value combinations of explanatory variables, which induces prior for the regression parameters α.
 - For all k regression parameters, need k equations to be solved! (transform from p₁,..., p_k to α₁,..., α_k)
 - Could use vague prior for regression parameters α
 - With small sample and/or true p near 0 or 1, different priors could cause bigger difference in posterior.

Small data & true p near 0 or 1? -See effect with basic model-

model{

}

```
x ~ dbin(p[1],n[1]); p[1] ~ dbeta(1,1)
```

```
y ~ dbin(p[2],n[2])
```

```
logit(p[2]) <- theta;</pre>
```

```
theta ~ dnorm(0,tau); tau <-1/2.71
```

```
z ~ dbin(p[3],n[3])
```

```
logit(p[3]) <- eta;</pre>
```

eta ~ dnorm(0,0.001)

```
list(x=4,y=4,z=4,n=c(10,10,10))
list(x=0,y=0,z=0,n=c(10,10,10))
```


Usual Prior choices for $\boldsymbol{\alpha}$

- Improper flat priors $\pi(\alpha_i) \propto 1$ for all i.
- Vague normal priors $\pi(\alpha_i) = N(0, 0.001)$ for all i. ($\tau = 0.001$)
- Vague multinormal priors $\pi(\alpha_i,...,\alpha_k) = MN(0,T)$
- As a result, with logit(p) transformation these priors put most of the prior probability near 0 and near 1.
- Usually not much effect on posterior, but check this with sensitivity analysis.
- Possible recommendation: Normal priors for α with such variance that the induced prior on p will be closely uniform.

Hierarchical models

- Example: hierarchical binomial model
- Could be constructed in different ways:
- Basic model for observations is $X_i \sim bin(n_i, p_i)$ in groups i=1,...,n
- With prior for p:
- p_i ~ beta(a,b) # variation between groups
- $\pi(a), \pi(b)$ are some hyper prior densities.
- Or with prior for logit(p):
- $logit(p_i) \sim N(\mu, \sigma^2)$ # variation between groups
- $\pi(\mu), \pi(\tau)$ are some hyper prior densities.
- The parameters for the hyper prior distribution are also unknown and to be estimated with all other parameters.

Hierarchical models

- Example: hierarchical normal model
- $X_i \sim N(\mu_i, \sigma_i^2)$
- $\mu_i \sim N(\mu, \sigma_0^2)$
- $\pi(\mu)$, $\pi(\sigma_0^2)$ are some hyper prior densities.
- Here, μ is the global (grand) mean, and μ_i is the mean of group i.
- Variance parameters describe between group variation and within group variation.
- Can make predictions for new groups, or new individuals within groups.
- By integrating over μ_i with respect to N(μ , σ_0^2) we get $X_i \sim N(\mu, \sigma_i^2 + \sigma_0^2)$ so that $\sigma_i^2 + \sigma_0^2 = total variance$.

Hierarchical models If not much data for μ_3 , its estimate is driven by the global information. If plenty of 'local' data for μ_3 , it is driven by that.

≈ balancing between local data, and global 'prior'.

Hierarchical models

- If not hierarchical model for hierarchical data, then what?
 - Could analyze each group *separately*
 - Could analyze all groups as *pooled*
 - Either way we lose information.
- Hierarchical model accounts for group specific differences, but borrows strength from all data.

 \rightarrow e.g. evidence synthesis from multiple sources, meta-analyses, spatial smoothing, etc.

• Assuming $\sigma_i^2 = \sigma^2$, within all groups, so that mean(x_i) ~ N(μ_i , σ^2/n_i) and using new notation $\sigma^2/n_i = \sigma_i^2$, the structure is:

level1: $N(x_{ij} | \mu_i, \sigma^2)$, that is: $N(\bar{x}_i | \mu_i, \sigma_i^2)$, where $\sigma_i^2 = \sigma^2 / n_i$ level 2: $N(\mu_i | \mu, \sigma_0^2)$

- For simplicity, assume first that within group variance σ^2 is <u>known</u>.
- Posterior is then of the form: $\pi(\mu_1,...,\mu_I,\mu,\sigma_0^2 \mid x) \propto \pi(\mu,\sigma_0^2) \prod_{i=1}^{I} N(\mu_i \mid \mu,\sigma_0^2) \prod_{i=1}^{I} N(\overline{x}_i \mid \mu_i,\sigma_i^2)$

- Note: although prior is hierarchical, this follows from Bayes theorem again.
- With these assumptions, some analytic results can be found:
 - The conditional distribution:

 $\pi(\mu_i \mid \sigma^2, \sigma^2_0, \mu, x) = N(\mu_i^*, V_i)$

$$\mu_{i}^{*} = \frac{\frac{1}{\sigma_{i}^{2}} \overline{x}_{i} + \frac{1}{\sigma_{0}^{2}} \mu}{\frac{1}{\sigma_{i}^{2}} + \frac{1}{\sigma_{0}^{2}}} \qquad V_{i} = \frac{1}{\frac{1}{\sigma_{i}^{2}} + \frac{1}{\sigma_{0}^{2}}}$$

• It shows that the conditional expectation of group mean is a weighted average of μ and sample mean of the group (conditionally on σ^2 , σ^2_0 , μ , x).

- Furthermore:
 - Level 2 -parameters μ and σ_0 have posterior of the form $\pi(\mu,\sigma_0|\mathbf{x}) = \pi(\mu,\sigma_0)\pi(\mathbf{x}|\mu,\sigma_0)/c$
 - Here the likelihood term can be difficult in general, (because it involves integration over unknown group means μ_i), but with Normal-models the following result applies: $\pi(\text{mean}(x_i))=N(\mu, \sigma_i^2+\sigma_0^2)$, so we can write $\pi(x \mid \mu, \sigma_0)$ as a product of these group specific likelihoods.
 - Using that form, and exploiting product rule which says $\pi(\mu,\sigma_0|\mathbf{x}) = \pi(\mu | \sigma_0,\mathbf{x}) \pi(\sigma_0|\mathbf{x})$, and with some manipulations, we find a solution for $\pi(\mu | \sigma_0,\mathbf{x})$

• The solution is: $\pi(\mu | \sigma_0, x) = N(\mu^*, V)$ where

$$\mu^{*} = \frac{\sum \frac{\overline{x_{i}}}{\sigma_{i}^{2} + \sigma_{0}^{2}}}{\sum \frac{1}{\sigma_{i}^{2} + \sigma_{0}^{2}}} \qquad V^{-1} = \sum \frac{1}{\sigma_{i}^{2} + \sigma_{0}^{2}}$$

- It shows the conditional expectation of grand mean μ is a weighted average of group specific sample means.
- Finally: the marginal density of between group variance σ_0^2 does not come out as a standard density. As an uninformative prior we could use $\pi(\sigma_0) = \text{const}$, but the prior $\pi(\log(\sigma_0))=\text{const}$ leads to improper posterior. \rightarrow A prior $\tau_0 \sim$ Gamma(0.001,0.001) is nearly the same but (barely) proper. Some problems could occur if number of groups is small or if between group variance is small. Then: recommended to use e.g. flat prior for σ_0 .

Hierarchical binomial

- For the **hierarchical binomial model**, with betaprior for p_i, similar issues:
 - Joint distribution of hyper parameters α,β is of the form $\pi(\alpha,\beta|x) = \pi(\alpha,\beta)\pi(x|\alpha,\beta)/c$
 - The 2nd term (likelihood) can even be expressed as

 $\prod \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha + x_i)\Gamma(\beta + n_i - x_i)}{\Gamma(\alpha + \beta + n_i)}$

Hierarchical binomial

- A possible prior (by Gelman et al.) would be to set prior for logit(α/(α+β))=log(α/β) and log(α+β).
- But an improper uniform prior on these yields an improper posterior.
- Practical approach: check numerically by plotting the contours of the joint posterior, or by trying to simulate from it. If improper, this should be noticed → countour lines drift to infinity, simulations do not converge.... (note that also a proper distribution can be almost improper if the tails of the distribution go to zero very slowly, ...too slowly)

 log-bacteria counts in 7 samples from each of the 15 batches:

(simulated data based on real data)

```
model{
for(i in 1:15){
  mu[i] ~ dnorm(mu0,tau0)
for(j in 1:8){
  x[j,i] ~ dnorm(mu[i],tau)
  }
  }
mu0 ~ dunif(-10,10)
tau0 ~ dgamma(0.01,0.01); var0 <- 1/tau0; sigma0 <- sqrt(var0)
tau ~ dgamma(0.01,0.01); var <- 1/tau; sigma <- sqrt(var)</pre>
```

percentage of between variance from total variance: r <- 100*var0/(var0+var) }

• Comparison of observed batch means ('dots') and estimated batch means μ_i (95% CIs)

- Note: shrinkage to the overall mean μ_0 .
- The more data in a group, the less shrinkage to μ_0 .

- Comparison of observed overall mean (2.509) and estimated overall mean μ_0

• In this case: all groups had same number of observations. If different, the group with most observations would have more weight. weight_i = $\frac{1}{\sigma^2 / n_i + \sigma_0^2}$

• Could make predictions for new group means.

• Could make predictions for new units within groups

•
$$x_{jk} \sim N(\mu_k, \sigma^2)$$

mean sd
xpred 2.51 0.7471

- Could estimate variance components to study between group variance versus within group variance.
- Could combine several data sources for evidence synthesis.
 - Some data could represent better samples within group
 - Some data could represent better samples between groups.
- Combining different data formats with different coarsity:
 e.g. individual unit samples and summary data
- Meta-analysis of several studies each with different strengths and weaknesses.

• Results for variance components from two data sources:

Posterior from Lindblad et al. data

Posterior from Hansson et al. data

Posterior from combined data

 σ_{b}