Exercises II

1. Explain each step in the equations below (also p. 13 in lecture text) showing that posterior probability is the same either way: (1) with original prior $P(r) \&$ the whole data X_{1}, X_{2} taken at once, or (2) with original prior first applied to compute posterior probability using a part of the data X_{1}, and then using the obtained posterior as the next prior for r when computing final posterior using remaining data X_{2}. (Hint: use rules of probability calculus, and conditional independence, found in 'Preliminary material and notations' section, and focus on what is a function of r).

$$
\begin{gathered}
P\left(r \mid X_{1}, X_{2}\right)=\frac{P\left(X_{1}, X_{2} \mid r\right) P(r)}{P\left(X_{1}, X_{2}\right)}=\frac{P\left(X_{2} \mid X_{1}, r\right) P\left(X_{1} \mid r\right) P(r)}{P\left(X_{1}, X_{2}\right)}=\frac{P\left(X_{2} \mid r\right) P\left(X_{1} \mid r\right) P(r)}{P\left(X_{1}, X_{2}\right)} \\
=\frac{P\left(X_{2} \mid r\right) P\left(r \mid X_{1}\right) P\left(X_{1}\right)}{P\left(X_{2} \mid X_{1}\right) P\left(X_{1}\right)}=\frac{P\left(X_{2} \mid r\right) P\left(r \mid X_{1}\right)}{P\left(X_{2} \mid X_{1}\right)} \propto P\left(X_{2} \mid r\right) P\left(r \mid X_{1}\right)
\end{gathered}
$$

2. Solve (and plot in R) the posterior density of proportion r based on $x=3$ positives in a sample of $n=8$ assuming model $x \sim \operatorname{Binom}(n, r)$ and prior $\pi(r)=\operatorname{Uniform}(0,1)$. Compare posterior density with those obtained with different priors: $\pi(r)=\operatorname{Beta}(0.5,0.5), \pi(r)=\operatorname{Beta}(\alpha \approx 0, \beta \approx 0)$. Compare posterior modes, posterior means, and sample mean. What if the data had been different, for example $x=0, n=8$? For help and options with plot function, type help(plot) on command prompt. (Create a sequence of values $p<-\operatorname{seq}(0,1, b y=0.005)$ for plotting and use plot ($p, \operatorname{dbeta}(p, a, b)$, type="l")). You can find info about distributions from the file in Moodle pages ('Standard distributions'), or even in Wikipedia.
3. In estimating population prevalence (proportion) p of 'bad eggs', show that the posterior distribution of p becomes the same in the following cases: (1) we collect N eggs and observe x of them to be bad. (2) We keep collecting eggs until we find x bad eggs - and the total sample happens to become N. We assume the prior distribution $\pi(p)$ is the same - whatever it is - in both cases.
4. Let $Z \sim \mathrm{~N}(0,1)$ and $Y=(2 Z+1)^{3}$. Solve the density function of Y and plot in R. (Hint: transformation of variables, p. 4 in text, also p.25). Simulate the distribution of Y in R using $\mathrm{Z}<-$ rnorm ($10000,0,1$) and plot the density function of Y (approximated as a histogram) using simulated sample of Z for calculating Y. (This example also in BUGS Book p.24).
5. Life times of light bulbs are modeled as $X_{i} \sim \operatorname{Exp}(\theta)$, so $E(X \mid \theta)=1 / \theta$. One light bulb lasted 5 and one 7 months, and one was still shining after 9 months of use. Solve posterior distribution for parameter θ based on the two observed exact life times using $\operatorname{Gamma}(\alpha, \beta)$-prior when $\alpha \approx \beta \approx 0$, and compute the posterior probability $P(E(X \mid \theta)>10 \mid$ data) using R-function for computing the needed cumulative probability for this (hint: help(pgamma)). Use Monte Carlo simulation to compute the same (hint: help(rgamma)). Then solve the posterior using full data (i.e. with 'full likelihood' including all observations, not just the two exactly observed times). What if $T>9$ had been the only observed data? What results you would get then?
