
Bayesian probability:  P State of the World:  X 

P(X | your information I) 
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First example: bag of balls 
• Every probability is conditional on your 

background knowledge ”I”:     P(A | I)  
 

• What is the (your) probability that there 
are r red balls in a bag?  (Assuming N 
balls which can be red/white)   
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First example: bag of balls 
• Before any data, you might select your 

prior probability as P(r)=1/(N+1) for all 
possible r.  (0,1,2,…,N).  
 
• Here r is the ’unknown parameter’, and your data will 

be the observed balls that will be drawn. 
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First example: bag of balls 
• Given that there are i/N red balls, you 

might say: the probability of picking 
’blindly’ one red ball is                                 
P( X=red | i/N) = i/N  

• This is your (subjective) model choice. 
 
 

• Calculate posterior probability:                    
P( r=i/N | X=red)   
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First example: bag of balls 
• Remember some probability calculus: 
• P(A,B)=P(A|B)P(B)=P(B|A)P(A)=P(B,A) 
• Joint probability in this example: 
• P(X=red,r=i/N) = (i/N)*(1/(N+1)) 
• Calculate (Bayes theorem):  
 P(r=i/N | X=red) = (i/N)*(1/(N+1)) / P(X=red) 

• P(X=red) is just normalizing constant, i.e.   
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First example: bag of balls 
• Posterior probability is therefore: 
     P(r=i/N | X=red) = 2i/(N*(N+1)) 
• What have we learned from the 

observation ”X=red”?  
• Compare with the                                   

prior probability.   
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First example: bag of balls 
• Our new prior is: P(r=i/N) = 2i/(N*(N+1)) 
• After observing two red balls ”X=2.red”: 
• Now: P(r=i/N | X=2.red)       
    = (i/N) * 2i/(N(N+1))/c  
    =  2i2/(N2(N+1))/c    
• Normalizing constant  
 c = (2N+1)/3N 
• So: P(r=i/N | X=2.red)  
    = 6i2/(N(N+1)(2N+1)) 
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First example: bag of balls 
• The result is the same if: 

• Start with original prior, + use the probability of 
observing two red balls 

• Start with the posterior we got after observing 
one red ball, + use the probability of observing 
one red ball (again) 

• And it does not matter in which order we add 
new data, if all are included eventually. 
 

• The model would be different if we assume 
that balls are not replaced in the bag after 
each draw. 
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First example: bag of balls 
• The prior (and posterior) probability P(r) 

can be said to describe epistemic 
uncertainty.  

• The conditional probability P(X|r) can be 
said to describe aleatoric uncertainty. 
 

• Where do these come from? 
• Background information. 
• Model choice. 
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First example: bag of balls 
• Together P(r) and P(X|r) define a joint probability P(X,r) 

and usually X will be observed (therefore fixed value) 
and r will be unknown to us (to be inferred from X)   
 

• Example:  
 Y=number of red balls  
 among N=20 draws: 
 
From the visible we 
 infer the invisible ! 
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Elicitation of a prior from an expert 
• P(A) should describe the expert’s beliefs. 
• Consider two options: 

• You’ll get €300  if ”A is true” 
• You’ll get a lottery ticket knowing n out of 

100 wins €300. 
 

Which option do you choose? 
nsmall/100  <   P(A | your)   <   nlarge/100  
Can find out:  n/100 ≈ P(A | your)  
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Elicitation of a prior from an expert 
• Also, in terms of odds  w = P(A)/(1-P(A)), a 

fair bet is such that  
 P(A)wR + (1-P(A))(-R) = 0  
 Find out P(A) = 1 /(1+w) 

 
• Probability densities more difficult to elicit. 
• Multivariate densities even more difficult. 
• Psychological biases. 
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Elicitation of a prior from an expert 
• Assume we have elicited densities πi(x) 

from experts i=1,…,N. 
• Combination? 
     Mixture density 

 
 

     Product of densities:                                     
(needs normalizing constant c) 
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The height of Eiffel? 
• What’s your minimum and maximum? 
 πi = U(mini,maxi) 
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Choice of prior 
• Subjective expert knowledge can be 

important 
• When we have little data. 
• When it is the only source of information. 
• When data would be too expensive. 
• Difficult problems never have sufficient 

data… 
• Alternatively: uninformative, ’flat’ priors. 

 
• ’Objective Bayes’ & ’Subjective Bayes’ 
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• Assume parents with unknown genotypes:  
–  Aa, aa or AA.   
 

• Assume a child is observed to be of type AA. 
• Question1: now what is the probability for the 

genotypes of the parents? 
• Question2: what is the probability that the next child 

will also be of type AA?  

An example from school book 
genetics 
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• Graphically: there is a conditional probability for the 
genotype of each child, given the type of parents: 

Xmom=? 
Ydad=? 

X1=AA X2=? 

This is the ”data model” 
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• Now, given the prior AND the observed child, we 
calculate the probability of the 2nd child: 

Xmom=? 
Ydad=? 

X1=AA X2=? 

Information about 1st child 
tells something about the 
parents, hence about the       
 2nd child. 
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The posterior probability is 1/4 for each of the 
parental combinations: 
 
 
 
 
 
This Results to: P(AA|1st AA)=9/16 for the 2nd 
child. 
Compare this with prior probability: P(AA)=1/4. 
New evidence changed this. 

[AA,AA] , [Aa,Aa] , [AA,Aa] , [Aa,AA] 



• Using Bayes:  
 
• the posterior probability for the parents can be 

calculated as: 
 
 

 
• This describes our degree of uncertainty, after 

the observation X1=AA. 
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• The posterior probability is 1/4 for each of the 
parental combinations: 

 
 
• Notice, ”aa” is no longer a possible type for 

either parent. The prediction for the next child is 
thus: 
 

 
• Resulting to: 9/16 
• Compare this with prior probability: P(AA)=1/4 
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[AA,AA] , [Aa,Aa] , [AA,Aa] , [Aa,AA] 
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• The previous examples had all the elements that 
are essential for bayesian inference in general.  
 
– The same idea is just repeated in various forms. 
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