Bayesian probability: P

State of the World: X

$P(X \mid$ your information I)

First example: bag of balls

- Every probability is conditional on your background knowledge " 1 ": P(A | I)
- What is the (your) probability that there are r red balls in a bag? (Assuming N balls which can be red/white)

First example: bag of balls

- Before any data, you might select your prior probability as $\mathrm{P}(\mathrm{r})=1 /(\mathrm{N}+1)$ for all possible r. (0,1,2,...,N).
- Here r is the 'unknown parameter', and your data will be the observed balls that will be drawn.

First example: bag of balls

- Given that there are i / N red balls, you might say: the probability of picking 'blindly' one red ball is $\mathrm{P}(\mathrm{X}=$ red | $\mathrm{i} / \mathrm{N})=\mathrm{i} / \mathrm{N}$
- This is your (subjective) model choice.
- Calculate posterior probability: $\mathrm{P}(\mathrm{r}=\mathrm{i} / \mathrm{N} \mid \mathrm{X}=\mathrm{red})$

First example: bag of balls

- Remember some probability calculus:
- $P(A, B)=P(A \mid B) P(B)=P(B \mid A) P(A)=P(B, A)$
- Joint probability in this example:
- $P(X=r e d, r=i / N)=(i / N)^{*}(1 /(N+1))$
- Calculate (Bayes theorem):

$$
P(r=i / N \mid X=r e d)=(i / N)^{*}(1 /(N+1)) / P(X=r e d)
$$

- $P(X=r e d)$ is just normalizing constant, i.e.
$P(X=r e d)=\sum_{i=0}^{N} P(X=r e d \mid r=i / N) P(r=i / N)=1 / 2$

First example: bag of balls

- Posterior probability is therefore:

$$
\mathrm{P}(\mathrm{r}=\mathrm{i} / \mathrm{N} \mid \mathrm{X}=\mathrm{red})=2 \mathrm{i} /\left(\mathrm{N}^{*}(\mathrm{~N}+1)\right)
$$

- What have we learned from the observation "X=re
Compare with the prior probability.

First example: bag of balls

- Our new prior is: $P(r=i / N)=2 i /\left(N^{*}(N+1)\right)$
- After observing two red balls " $X=2$. red": $^{\prime}$
- Now: P(r=i/N|X=2.red)

$$
\begin{aligned}
& =(i / N) * 2 i /(N(N+1)) / c \\
& =2 i^{2} /\left(N^{2}(N+1)\right) / c
\end{aligned}
$$

- Normalizing constant

$$
c=(2 N+1) / 3 N
$$

- So: $P(r=i / N \mid X=2 . r e d)$

$$
=6 \mathrm{i}^{2} /(\mathrm{N}(\mathrm{~N}+1)(2 \mathrm{~N}+1))
$$

First example: bag of balls

- The result is the same if:
- Start with original prior, + use the probability of observing two red balls
- Start with the posterior we got after observing one red ball, + use the probability of observing one red ball (again)
- And it does not matter in which order we add new data, if all are included eventually.
- The model would be different if we assume that balls are not replaced in the bag after each draw.

First example: bag of balls

- The prior (and posterior) probability P(r) can be said to describe epistemic uncertainty.
- The conditional probability $\mathrm{P}(\mathrm{X} \mid \mathrm{r})$ can be said to describe aleatoric uncertainty.
- Where do these come from?
- Background information.
- Model choice.

First example: bag of balls

- Together $P(r)$ and $P(X \mid r)$ define a joint probability $P(X, r)$ and usually X will be observed (therefore fixed value) and r will be unknown to us (to be inferred from X)
- Example:
$Y=$ number of red balls among $\mathrm{N}=20$ draws:

From the visible we
infer the invisible !

Elicitation of a prior from an expert

- $P(A)$ should describe the expert's beliefs.
- Consider two options:
- You'll get $€ 300$ if " A is true"
- You'll get a lottery ticket knowing n out of 100 wins $€ 300$.

Which option do you choose?
$\mathrm{n}_{\text {small }} / \mathbf{1 0 0}<\mathrm{P}(\mathrm{A} \mid$ your $)<\mathrm{n}_{\text {large }} / 100$
Can find out: $n / 100 \approx P(A \mid y o u r)$

Elicitation of a prior from an expert

- Also, in terms of odds $w=P(A) /(1-P(A))$, a fair bet is such that

$$
\begin{aligned}
& P(A) w R+(1-P(A))(-R)=0 \\
& \text { Find out } P(A)=1 /(1+w)
\end{aligned}
$$

- Probability densities more difficult to elicit.
- Multivariate densities even more difficult.
- Psychological biases.

Elicitation of a prior from an expert

- Assume we have elicited densities $\pi_{i}(x)$ from experts $\mathrm{i}=1, \ldots, \mathrm{~N}$.
- Combination?

Mixture density $\pi(x)=\sum_{i=1}^{N} \pi(x) \times \frac{1}{N}$

Product of densities: $\pi(x)=\prod_{i=1}^{N} \pi_{i}(x)^{1 / N} / c$ (needs normalizing constant c)

The height of Eiffel?

- What's your minimum and maximum?
$\rightarrow \pi_{\mathrm{i}}=\mathrm{U}\left(\mathrm{min}_{\mathrm{i}}, \mathrm{max}_{\mathrm{i}}\right)$

Choice of prior

- Subjective expert knowledge can be important
- When we have little data.
- When it is the only source of information.
- When data would be too expensive.
- Difficult problems never have sufficient data...
- Alternatively: uninformative, 'flat' priors.
- 'Objective Bayes' \& 'Subjective Bayes'

An example from school book genetics

- Assume parents with unknown genotypes:
- Aa, aa or AA.
- Assume a child is observed to be of type AA.
- Question1: now what is the probability for the genotypes of the parents?
- Question2: what is the probability that the next child will also be of type AA?
- Graphically: there is a conditional probability for the genotype of each child, given the type of parents:

- Now, given the prior AND the observed child, we calculate the probability of the 2nd child:

The posterior probability is $\mathbf{1 / 4}$ for each of the parental combinations:

$$
[A A, A A],[A a, A a],[A A, A a],[A a, A A]
$$

This Results to: P(AA|1st AA)=9/16 for the 2nd child.
Compare this with prior probability: $\mathrm{P}(\mathrm{AA})=1 / 4$. New evidence changed this.

- Using Bayes: $P(A \mid B)=\frac{P(B \mid A) P(A)}{\sum_{A} P(B \mid A) P(A)}$
- the posterior probability for the parents can be calculated as:

$$
P\left(\mathrm{X}_{\mathrm{mom}}, \mathrm{X}_{\mathrm{dad}} \mid \mathrm{X}_{1}=A A\right)=\frac{P\left(\mathrm{X}_{1}=A A \mid \mathrm{X}_{\mathrm{mom}}, \mathrm{X}_{\mathrm{dad}}\right) P\left(\mathrm{X}_{\mathrm{mom}}, \mathrm{X}_{\mathrm{dad}}\right)}{\sum_{\mathrm{X}_{\mathrm{mom}}} \sum_{\mathrm{X}_{\mathrm{dad}}} P\left(\mathrm{X}_{1}=A A \mid \mathrm{X}_{\mathrm{mom}}, \mathrm{X}_{\mathrm{dad}}\right) P\left(\mathrm{X}_{\mathrm{mom}}, \mathrm{X}_{\mathrm{dad}}\right)}
$$

- This describes our degree of uncertainty, after the observation $X_{1}=A A$.
- The posterior probability is $\mathbf{1 / 4}$ for each of the parental combinations:

$$
[A A, A A],[A a, A a],[A A, A a],[A a, A A]
$$

- Notice, "aa" is no longer a possible type for either parent. The prediction for the next child is thus:

$$
\begin{aligned}
& P\left(\mathrm{X}_{2}=A A \mid \mathrm{X}_{1}=A A\right)=\sum_{\mathrm{X}_{\text {mom }} \mathrm{X}_{\text {dad }}} \mathrm{P}\left(\mathrm{X}_{2}=A A \mid \mathrm{X}_{\text {mom }} \mathrm{X}_{\text {dad }}\right) P(\underbrace{\mathrm{X}_{\text {mom }} \mathrm{X}_{\text {dad }} \mid \mathrm{X}_{1}=A A}_{\text {Posterior }}) \\
& \quad \begin{array}{l}
\text { - Resulting to: } 9 / 16 \\
\text { - Compare this with prior probability: } P(\mathrm{AA})=1 / 4
\end{array}
\end{aligned}
$$

- The previous examples had all the elements that are essential for bayesian inference in general.
- The same idea is just repeated in various forms.

