Simulations: method of composition

- Model $\pi(X|\theta)$ & uncertain θ :
 - Usually easy to simulate distribution of X based on given parameters θ and the model π(X|θ). And likewise for any transformation g(X).
 - Assuming you can generate samples from $\pi(X|\theta)$.
 - This would not take into account the uncertainty in parameters θ .
 - Assume $\pi(\theta)$ is prior.
 - Method of composition: simulate a compound distribution: $\pi(X) = \int \pi(X|\theta) \pi(\theta) d\theta$ which is same as $\int \pi(X,\theta) d\theta$ giving the marginal distribution $\pi(X)$.
 - Step 1: simulate θ from $\pi(\theta)$.
 - Step 2: simulate X from $\pi(X|\theta)$ & Go to Step 1.

Method of composition: example

- Model Bin(X $|\theta$,N) & uncertain θ :
 - Step 1: Simulate from prior distribution π(θ) = U(0,1) (for example)
 - Step 2: Simulate X from $Bin(X|\theta)$.
 - Repeat 1&2, until large sample of X.
 - Plot histogram of X.
 - The resulting distribution shows predictive distribution of X, but not based on any single parameter estimate θ.
 - It is based on uncertain parameter, described as $\pi(\theta)$.
 - Next: replace $\pi(\theta)$ by $\pi(\theta \mid data) \rightarrow data based predictions, accounting for parameter uncertainty!$

Posterior predictive distributions

- Bayesian predictions from data:
 - Aim: to compute posterior predictive distribution P(X_{new} | X_{obs})
 - This gives prediction based on the past data, not based on assumed parameter estimates.

 Consider series of observations: X₁,...,X_n and a model π(X_i |θ) so that X_i are conditionally independent, given θ.
Posterior predictive distribution of X_{n+1}:

$$\pi(X_{n+1} | X_1, \dots, X_n) = \int \pi(X_{n+1}, \theta | X_1, \dots, X_n) d\theta$$

=
$$\int \pi(X_{n+1} | \theta, X_1, \dots, X_n) \pi(\theta | X_1, \dots, X_n) d\theta$$

=
$$\int \pi(X_{n+1} | \theta) \pi(\theta | X_1, \dots, X_n) d\theta$$

Our model Posterior of θ

 Likewise: Prior predictive distribution of X_{n+1}:

$$\pi(X_{n+1}) = \int \pi(X_{n+1}, \theta) d\theta = \int \pi(X_{n+1} | \theta) \pi(\theta) d\theta$$

Our model Prior of θ

• "With the predictive approach parameters diminish in importance, especially those that have no physical meaning. From the Bayesian viewpoint, such parameters can be regarded as just place holders for a particular kind of uncertainty on your way to making good predictions". (Draper 1997, Lindley 1972).

• Note also, directly from Bayes, we get:

$$\pi(X) = \frac{\pi(X \mid \theta)\pi(\theta)}{\pi(\theta \mid X)}$$

- by inserting *prior*, *posterior*, *model of X*, we find prior predictive density of X.
- Similarly,

$$\pi(X_{n+1} | X_1, \dots, X_n) = \frac{\pi(X_{n+1} | \theta, X_1, \dots, X_n) \pi(\theta | X_1, \dots, X_n)}{\pi(\theta | X_1, \dots, X_{n+1})}$$

• Try exact solving with binomial model.

- Assume we have a posterior which is beta(α , β).
- 'Old data' is then included in α , β .

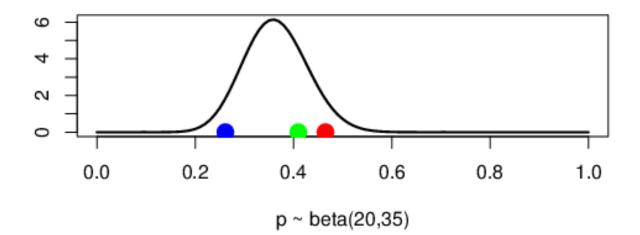
$$\pi(X \mid \alpha, \beta) = \int \pi(X, \theta \mid \alpha, \beta) d\theta = \int \pi(X \mid \theta) \pi(\theta \mid \alpha, \beta) d\theta$$

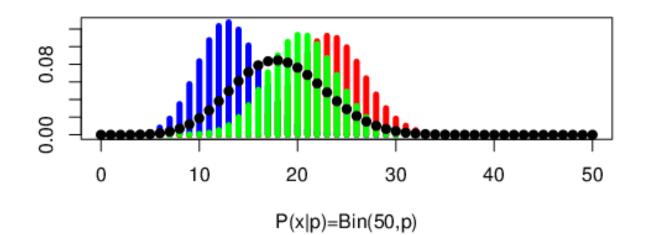
Binomial(N, θ) Beta(α , β)

• This can be solved as:

$$\pi(X \mid \alpha, \beta) = \binom{N}{X} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(A)\Gamma(B)}{\Gamma(A + B)} \quad \mathbf{A} = \mathbf{X} + \alpha, \mathbf{B} = \mathbf{N} - \mathbf{X} + \beta$$

A BETA-BINOMIAL distribution.





- To solve predictive means, variances:
 - Use E(X) = E(E(X | θ))
 - Use $V(X) = E(V(X|\theta)) + V(E(X|\theta))$
 - For example, with Beta & Binomial:
 - $E(X) = E(n\theta) = n \alpha/(\alpha+\beta)$
 - $V(X) = E(n\theta (1-\theta)) + V(n\theta) =$ $n\alpha/(\alpha+\beta) - nE(\theta^2) + n^2\alpha\beta / [(\alpha+\beta)^2(\alpha+\beta+1)]$ where $E(\theta^2)=V(\theta)+E^2(\theta)$, which leads to $= n\alpha\beta (\alpha+\beta+n) / [(\alpha+\beta)^2(\alpha+\beta+1)]$
 - By including parameter uncertainty $\pi(\theta)$ to a model $\pi(X|\theta)$ we get models $\pi(X) = \int \pi(X|\theta)\pi(\theta)d\theta$, suitable for e.g. overdispersed data.