From Monte Carlo to MCMC

(BUGS is based on MCMC)

- Monte Carlo methods providing i.i.d samples (independent identically distributed)
 - In practice: with standard distributions, random number generators available in statistical software, e.g. in R: rbinom, rbeta, rgamma...
 - If non-standard, do-it-yourself:
 - Inverting cumulative distribution function
 - Rejection sampling
 - Importance sampling
 - In Bayesian inference: posterior distribution is our target distribution in all cases below.

Inverting cumulative distribution function

 If target density π(θ) has a cumulative distribution function F (kertymäfunktio)

$$F(\theta') = P(\theta < \theta') = \int_{-\infty}^{\theta'} \pi(\theta) d\theta = u(\theta')$$

which can be inverted for solving $\theta' = F^{-1}(u)$, then we can generate $u \sim U(0,1)$ and evaluate $\theta' = F^{-1}(u)$.

Resulting variables will be distributed as the target density.

Rejection sampling

- Target density is some $\pi(\theta)$.
- Choose instrumental density $g(\theta)$, and some constant M so that $\pi(\theta)/(Mg(\theta)) <= 1$
- Instrumental density should be *easy to sample*, and have the same support as $\pi(\theta)$.
- Algorithm:

 $Mg(\theta)$

 $\pi(\theta)$

- Step 1. Generate random value from density g.
- Step 2. Accept this with probability $\pi(\theta)/(Mg(\theta))$.
- Repeat until enough large sample was obtained.

Sample uniformly in 2D under Mg(θ)

Accept points falling under $\pi(\theta)$

Importance sampling

- Target density is $\pi(\theta)$.
- Choose instrumental density $g(\theta)$, easy to sample, same support as $\pi(\theta)$.
- Use weighted sample in calculations, e.g. for mean:

$$E_{\pi}(\theta) = \int \theta \pi(\theta) d\theta = \int \left[\theta \frac{\pi(\theta)}{g(\theta)} \right] g(\theta) d\theta =$$
$$= E_{g}(\theta \frac{\pi(\theta)}{g(\theta)}) \approx \frac{1}{K} \sum_{k=1}^{K} \theta_{k} \frac{\pi(\theta_{k})}{g(\theta_{k})}$$

Rejection sampling from $\pi(\theta, X)$, ABC-method

- Target density is $\pi(\theta | X)$, for some data X.
- Use method of composition to sample θ from π(θ), then X from π(X|θ).
- Accept only those samples of X & θ , where X equals the observed data X.
- This produces exactly the conditional probability according to Bayes theorem
- ABC = Approximate Bayesian Computation:
 - When data X have continuous variables, use $[X-\varepsilon,X+\varepsilon]$
 - ABC useful when likelihood function cannot be written in analytically closed from, but if we can only simulate X.

Multidimensional posteriors

- Practical problems nearly always have many unknown parameters $\theta_1, \theta_2, ..., \theta_n$
- Target is: $\pi(\theta_1, \theta_2, ..., \theta_n | data)$
- Multivariate distributions can be handled in a sequence of univariate distributions, e.g.:
 π(θ₁, θ₂, θ₃) = π(θ₃ | θ₁, θ₂) π(θ₂ | θ₁) π(θ₁)
- Useful method for simulating n-dimensional posteriors: Markov chain Monte Carlo (BUGS is based on this)

Monte Carlo Markov chain

Innovation:

- Construct a sampler that works as a Markov chain, for which stationary distribution exists, and this stationary distribution is the same as our target distribution.
- This can be done even without knowing normalizing constant of the posterior – so we only need to be able to evaluate:

 $\textbf{Posterior} \propto \textbf{prior} \times \textbf{likelihood}$

Mathematical proofs left for advanced courses...

Special case: Gibbs sampler

- Gibbs sampling in 2D
 - Example: uniform distribition in a triangle.

• Sample this using Gibbs

Gibbs sampler visually

Gibbs sampling in 2D

• Remember product rule:

 $\pi(x,y) = \pi(x|y)\pi(y) = \pi(y|x)\pi(x)$

• Solve the marginal density $\pi(x)$:

$$\pi(x) = \int_{0}^{1} \pi(x, y) dy$$

= $\int_{0}^{1} 2 \times \mathbf{1}_{\{y < 1-x, 0 < x < 1, 0 < y < 1\}}(x, y) dy = \int_{0}^{1-x} 2 dy = 2(1-x)$

• Then solve: $\pi(y|x)=\pi(x,y)/\pi(x)$

Gibbs sampling in 2D

• Solve the conditional density:

$$\pi(y \mid x) = \frac{\pi(x, y)}{\pi(x)} = \frac{2 \times \mathbf{1}_{\{y < 1 - x, 0 < y < 1\}}(x, y)}{2(1 - x)}$$
$$= \frac{1}{1 - x} \mathbf{1}_{\{y < 1 - x, 0 < y < 1\}}(y) = U(0, 1 - x)$$

- Note: above it would suffice to recognize π(y|x) up to a constant term, so that solving π(x) is not necessary.
- Similarly, get $\pi(x | y) = U(0, 1-y)$.

Gibbs sampling in 2D

- Starting from the joint density π(x,y), we have obtained two important conditional densities:
 π(x|y) and π(y|x) (aka 'full conditionals')
 - Gibbs algorithm is then:
 - (1) start from x⁰,y⁰. Set k=1.
 - (2) sample x^k from $\pi(x | y^{k-1})$
 - (3) sample y^k from $\pi(y|x^k)$. Set k=k+1.
 - (4) go to (2) until sufficiently large sample.
 - These samples are no longer i.i.d.

Gibbs sampler

In R, you could type:

0.0

0.2

0.4

Х

0.6

0.8

Gibbs sampler

• Jumping around? Possible problems.

Gibbs sampling Binomial model

- "conditional on N"
 - Joint distribution π(θ,X|N) can be expressed either as π(X|θ,N)π(θ|N) or π(θ|X,N)π(X|N).
 - From the first, we recognize $\pi(X|\theta,N)=Bin(N,\theta)$
 - With e.g. uniform prior $\pi(\theta | \mathbf{N}) = \pi(\theta) = U(0,1)$, we would know $\pi(\theta | \mathbf{X}, \mathbf{N}) = \text{Beta}(\mathbf{X}+1, \mathbf{N}-\mathbf{X}+1)$.
 - This gives $\pi(\theta | X)$ and $\pi(X | \theta)$ needed for Gibbs.
 - Gibbs will produce the same joint distribution for θ,X as with the method of composition.
 - Note: for this one-parameter inference (when X is fixed data) Gibbs is not needed, but could be used to obtain predictive distribution of X.

Gibbs sampler

Binomial model, "conditional on N", in R:

х

Gibbs and 2D-normal density

• 2D normal density:

$$\begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} \sim N \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \end{pmatrix}$$

- Marg. densities $\pi(x)$ and $\pi(y)$ are both N(0,1)
- Joint density function is:

$$\pi(x, y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp(-\frac{1}{2(1-\rho^2)}(x^2 - 2\rho xy + y^2))$$

Gibbs and 2D-normal density

• 2D normal density:

$$\begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} \sim N \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \right)$$

• Conditional density $\pi(y|x) = \pi(x,y)/\pi(x)$ is:

$$\pi(y \mid x) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp(-\frac{1}{2(1-\rho^2)}(\rho x - y)^2) = N(\rho x, 1-\rho^2)$$

Gibbs and 2D-normal density

- Gibbs would then be sampling repeatedly from:
 - $\pi(y | x) = N(\rho x, 1 \rho^2)$
 - $\pi(x | y) = N(\rho y, 1 \rho^2)$
 - This can mix slowly if X & Y heavily correlated.

 General remark about Gibbs: full conditionals need to be solved from the correct joint distribution. Not any π(y|x) and π(x|y) will constitute a proper joint distribution π(y,x). E.g. sampling from y ~ N(x,1) and x ~ N(y,1) does not converge anywhere.

Metropolis-Hastings

- This is a very general purpose sampler
- The core is: 'proposal distribution' and 'acceptance probability'.
- At each iteration:
 - Random draw is obtained from proposal density Q(θ* | θⁱ⁻¹), which can depend on previous iteration.
 - Simply, it could be $U(\theta^{i-1} L/2, \theta^{i-1} + L/2)$.

Metropolis-Hastings

- At each iteration:
 - Proposal is accepted with probability

$$r = \min\left(\frac{\pi(\theta^* | \operatorname{data})Q(\theta^{i-1} | \theta^*)}{\pi(\theta^{i-1} | \operatorname{data})Q(\theta^* | \theta^{i-1})}, 1\right)$$

- Note how little we need to solve about $\pi(\theta | data)!$
 - Normalizing constant cancels out from the ratio.
 - Enough to be able to evaluate prior and likelihood terms.
 - Proposals too far \rightarrow accepted rarely \rightarrow slow sampler
 - Proposals too near \rightarrow small moves \rightarrow slow sampler
 - Acceptance probability ideally about 20%-40%
- Gibbs sampler is a special case of MH-sampler
 - In Gibbs, the acceptance probability is 1.
 - Block sampling also possible.

Metropolis-Hastings

• Sampling from N(0,1), using MH-algorithm:

MCMC convergence

- Remember to monitor for convergence!
 - Chain is only approaching the target density, when iterating a long time, k→∞.
 - Convergence **can be very slow** in some cases.
 - Autocorrelations between iterations are then large
 → makes sense to take a thinned sample.
 - Systematic patterns, trends, sticking, indicate problems.
 - Pay attention to starting values! Try different values in different MCMC chains. (discard burn-in period).

MCMC convergence

 Can only diagnose poor convergence, but cannot fully prove a good one! (e.g. multimodal densities).

24