From Monte Carlo to MCMC

(BUGS is based on MCMC()

Monte Carlo methods providing i.i.d
samples (independent identically
distributed)

 In practice: with standard distributions, random
number generators available in statistical software,
e.g. in R: rbinom, rbeta, rgamma...

 If non-standard, do-it-yourself:

* Inverting cumulative distribution function
 Rejection sampling

e Importance sampling

 In Bayesian inference: posterior distribution is our
target distribution in all cases below.



Inverting cumulative distribution
function

e |f target density ©(0) has a cumulative
distribution function F (kertymafunktio)

F(0) = P(0<0’) = jiﬂ(é’)d@ = u(0’)

which can be inverted for solving 0’ = F1(u),
then we can generate u~ U(0,1) and
evaluate 0’=F*(u).

Resulting variables will be distributed as the
target density.



Rejection sampling

e Target density is some 7(0).

e Choose instrumental density g(0), and some
constant M so that =(0)/(Mg(0)) <=1

 |nstrumental density should be easy to sample,
and have the same support as 1t(0).
e Algorithm:
e Step 1. Generate random value from density g.
e Step 2. Accept this with probability (0)/(Mg(0)).
e Repeat until enough large sample was obtained.

Mg(G)% Sample uniformly in 2D under Mg(0)
m(0) Accept points falling under 7(6)




Importance sampling

Target density is 7(0).

Choose instrumental density g(0), easy to
sample, same support as (0).

Use weighted sample in calculations, e.g.
for mean:

E,(0) = [0z(0)do j{ ”Eﬂg(e)de_

7z(6?) 7(6,)
O 50) K+ Z “9(6,)



Rejection sampling from mt(0,X),
ABC-method

Target density is (0| X), for some data X.

Use method of composition to sample 0
from m(0), then X from wt(X|0).

Accept only those samples of X & 0, where X
equals the observed data X.

This produces exactly the conditional
probability according to Bayes theorem

ABC = Approximate Bayesian Computation:

e When data X have continuous variables, use [X-g,X+¢]

e ABC useful when likelihood function cannot be written in
analytically closed from, but if we can only simulate X.



Multidimensional posteriors

Practical problems nearly always have
many unknown parameters 9,, 0,,..., 0,

Targetis: n( 0,4, O,,..., O, |data)

Multivariate distributions can be handled in a
sequence of univariate distributions, e.g.:

7(0,, 0,, 0,) = n(6,] 0., 0,) ©(0, | 0,) n(6,)

Useful method for simulating n-dimensional
posteriors: Markov chain Monte Carlo (BUGS is
based on this)



Monte Carlo Markov chain

Innovation:

e Construct a sampler that works as a Markov
chain, for which stationary distribution
exists, and this stationary distribution is the
same as our target distribution.

 This can be done even without knowing
normalizing constant of the posterior — so
we only need to be able to evaluate:

Posterior oc prior x likelihood

e Mathematical proofs left for advanced
courses...



Special case: Gibbs sampler

e Gibbs sampling in 2D

e Example: uniform distribition in a triangle.

1
Y k 7Z'(X, y) =2 1{y<1—x,0<x<1, O<y<1}(X’ y)

0 y 1

e Sample this using Gibbs



Gibbs sampler visually

start

L

end




Gibbs sampling in 2D

Remember product rule:

n(xy) = nx|y)nly) = nly|x)n(x)
e Solve the marginal density m(x):

7(x) = [ 7(x, y)dy

1-x
2 X 1{y<1—x,0<x<1, O<y<1}(X’ y)dy — _[2 dy — 2(1_ X)
0

O'-—-.H

e Then solve: wt(y|x)=m(x,y)/m(x)



Gibbs sampling in 2D

* Solve the conditional density:

7Z'(X, y) _ 2 X 1{y<1—x,0<x<1, O<y<1}(X’ y)

T == ) 2(1— )

1
— ml{y<l—x,0<y<l}(y) = U (O’l_ X)

 Note: above it would suffice to recognize wt(y|x) up
to a constant term, so that solving mt(x) is not
necessary.

e Similarly, get m(x]|y) = U(0,1-y).



Gibbs sampling in 2D

Starting from the joint density m(x,y), we have

obtained two important conditional densities:

n(x|y) and m(y|x) (aka full conditionals’)

Gibbs algorithm is then:

(1) start from x%,y°. Set k=1.

(2) sample xk from (x| y*1)

(3) sample y* from m(y|x¥). Set k=k+1.

(4) go to (2) until sufficiently large sample.

These samples are no longer i.i.d.
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Gibbs sampler

* |InR, you could type:
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Gibbs sampler

 Jumping around? Possible problems.
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Gibbs sampling Binomial model

“conditional on N”

e Joint distribution 1(0,X|N) can be expressed either
as m(X|0,N)m(O|N) or (0| X,N)mt(X|N).

 From the first, we recognize (X |0,N)=Bin(N,0)

e With e.g. uniform prior (6| N)=mr(0)=U(0,1), we
would know 1(0|X,N) = Beta(X+1,N-X+1).

e This gives (0] X) and (X |0) needed for Gibbs.

e Gibbs will produce the same joint distribution for
0,X as with the method of composition.

 Note: for this one-parameter inference (when Xis
fixed data) Gibbs is not needed, but could be used
to obtain predictive distribution of X.

15



Gibbs sampler

e Binomial model,”

conditional on N”, in R:

n<-20; p <- numeric(); x<- numeric()
p[1] <- 0.5; x[1] <- 10 # initial values

for(i in 2:1000){

p[i] <- rbeta(1,x[i-1]+1,n-x[i-1]+1)

X[i] <- rbinom(1,n,p[i])

}
plot(x,p)
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Gibbs and 2D-normal density
2D normal density:

el 2

e Marg. densities m(x) and m(y) are both N(0,1)
* Joint density function is:

1 1 2 2
7Z'(X, y): Zﬂmexp(_ 2(1—,02) (X —2,0Xy+y ))




Gibbs and 2D-normal density

)

e Conditional density mt(y|x)=m(x,y)/®(x) is:

1 1 - e
(Y |X) = o exp(-— 20 o) (ox=y)") =N(px1-p°)



Gibbs and 2D-normal density

Gibbs would then be sampling repeatedly from:

ni(y|x) = N(px,1-p?)
* 7(x|y) = N(py,1-p?)

e This can mix slowly if X & Y heavily correlated.

 General remark about Gibbs: full conditionals need to
be solved from the correct joint distribution. Not any
n(y|x) and m(x|y) will constitute a proper joint
distribution m(y,x). E.g. sampling fromy ~ N(x,1) and x ™
N(y,1) does not converge anywhere.



Metropolis-Hastings

This is a very general purpose sampler

The core is: ‘proposal distribution” and
‘acceptance probability’.

At each iteration:

Random draw is obtained from proposal density
Q(6*| 6-1), which can depend on previous
iteration.

Simply, it could be U(6™! - L/2, 1 + L/2).
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Metropolis-Hastings

e At each iteration:
 Proposal is accepted with probability

(0] data)Q(et6%)
(6™ | data)Q(6*| 9'-1)

 Note how little we need to solve about (0| data)!
e  Normalizing constant cancels out from the ratio.

*  Enough to be able to evaluate prior and likelihood terms.

*  Proposals too far 2 accepted rarely 2 slow sampler
Proposals too near 2 small moves = slow sampler
e Acceptance probability ideally about 20%-40%

e Gibbs sampler is a special case of MH-sampler
 In Gibbs, the acceptance probability is 1.
 Block sampling also possible.

21



Metropolis-Hastings

e Sampling from N(0,1), using MH-algorithm:

N(0,1)~jakauman MCMC-simulointi, n=100, x, =4 N(0,1)-jakauman MCMC-simulointi, n=5000, x,=4
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MCMC convergence

Remember to monitor for convergence!

e Chainis only approaching the target density, when
iterating a long time, k> oo,

e Convergence can be very slow in some cases.

 Autocorrelations between iterations are then large
- makes sense to take a thinned sample.

e Systematic patterns, trends, sticking, indicate
problems.

e Pay attention to starting values! Try different values
in different MCMC chains. (discard burn-in period).



MCMC convergence

 Canonly diagnose poor convergence, but
cannot fully prove a good one! (e.g. multimodal
densities).

p[1] chains 1:4
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