
From Monte Carlo to MCMC 
(BUGS is based on MCMC) 

• Monte Carlo methods providing i.i.d 
samples (independent identically 
distributed)  
• In practice: with standard distributions, random 

number generators available in statistical software, 
e.g. in R: rbinom, rbeta, rgamma… 

• If non-standard, do-it-yourself:   
• Inverting cumulative distribution function  
• Rejection sampling 
• Importance sampling 
• In Bayesian inference: posterior distribution is our 

target distribution in all cases below.  
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Inverting cumulative distribution 
function 

• If target density π(θ) has a cumulative 
distribution function F (kertymäfunktio) 
 

 F(θ’) = P(θ<θ’) =               =  u(θ’) 
 
 which can be inverted for solving  θ’ = F-1(u), 
 then we can generate  u ~ U(0,1) and 
 evaluate θ’=F-1(u).  
 Resulting variables will be distributed as the 
 target  density.  
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Rejection sampling 
• Target density is some π(θ). 
• Choose instrumental density g(θ), and some 

constant M so that  π(θ)/(Mg(θ))  <= 1 
• Instrumental density should be easy to sample, 

and have the same support as π(θ). 
• Algorithm: 

• Step 1. Generate random value from density g. 
• Step 2. Accept this with probability π(θ)/(Mg(θ)).   
• Repeat until enough large sample was obtained. 
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Sample uniformly in 2D under Mg(θ)  
Accept points falling under π(θ)  π(θ)  

Mg(θ) 



Importance sampling 
• Target density is π(θ). 
• Choose instrumental density g(θ), easy to 

sample, same support as π(θ).  
• Use weighted sample in calculations, e.g. 

for mean:  
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Rejection sampling from π(θ,X), 
ABC-method  

• Target density is π(θ|X), for some data X. 
• Use method of composition to sample θ 

from π(θ), then X from π(X|θ).  
• Accept only those samples of X & θ, where X 

equals the observed data X. 
• This produces exactly the conditional 

probability according to Bayes theorem 
• ABC = Approximate Bayesian Computation:  

• When data X have continuous variables, use [X-ε,X+ε] 
• ABC useful when likelihood function cannot be written in 

analytically closed from, but if we can only simulate X. 
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Multidimensional posteriors  
• Practical problems nearly always have 

many unknown parameters θ1, θ2,…, θn 

• Target is:  π( θ1, θ2,…, θn |data) 
• Multivariate distributions can be handled in a 

sequence of univariate distributions, e.g.: 
 π(θ1, θ2, θ3) = π(θ3| θ1, θ2) π(θ2 | θ1) π(θ1) 
 
• Useful method for simulating n-dimensional 

posteriors: Markov chain Monte Carlo (BUGS is 
based on this)  
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Monte Carlo Markov chain 
 Innovation: 
• Construct a sampler that works as a Markov 

chain, for which stationary distribution 
exists, and this stationary distribution is the 
same as our target distribution. 

• This can be done even without knowing 
normalizing constant of the posterior  –  so 
we only need to be able to evaluate:  

 Posterior ∝ prior × likelihood 
• Mathematical proofs left for advanced 

courses... 
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Special case: Gibbs sampler 

• Gibbs sampling in 2D 
• Example: uniform distribition in a triangle. 

 
 
 
 
 
 

• Sample this using Gibbs  
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Gibbs sampler visually 
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Gibbs sampling in 2D 
• Remember product rule: 

 π(x,y)  =  π(x|y)π(y)  =  π(y|x)π(x) 
• Solve the marginal density π(x): 

 
 
 
 
 
 

• Then solve: π(y|x)=π(x,y)/π(x)  
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Gibbs sampling in 2D 
• Solve the conditional density: 

 
 
 
 
 
 

• Note: above it would suffice to recognize π(y|x) up 
to a constant term, so that solving π(x) is not 
necessary. 

• Similarly, get π(x|y) = U(0,1-y). 
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Gibbs sampling in 2D 
• Starting from the joint density π(x,y), we have 

obtained two important conditional densities: 
π(x|y) and π(y|x)      (aka ’full conditionals’) 
• Gibbs algorithm is then:  
• (1) start from x0,y0.  Set k=1. 
• (2) sample xk from π(x|yk-1) 
• (3) sample yk  from π(y|xk). Set k=k+1. 
• (4) go to (2) until sufficiently large sample. 

 
• These samples are no longer i.i.d. 
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Gibbs sampler 
• In R, you could type: 
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Gibbs sampler 
• Jumping around? Possible problems. 
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Gibbs sampling Binomial model 
• ”conditional on N” 

• Joint distribution π(θ,X|N) can be expressed either 
as π(X|θ,N)π(θ|N) or π(θ|X,N)π(X|N). 

• From the first, we recognize π(X|θ,N)=Bin(N,θ)  
• With e.g. uniform prior π(θ|N)=π(θ)=U(0,1), we 

would know π(θ|X,N) = Beta(X+1,N-X+1). 
 

• This gives π(θ|X) and π(X|θ) needed for Gibbs. 
• Gibbs will produce the same joint distribution for 

θ,X as with the method of composition.  
• Note: for this one-parameter inference (when X is 

fixed data) Gibbs is not needed, but could be used 
to obtain predictive distribution of X. 
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Gibbs sampler  
• Binomial model, ”conditional on N”, in R: 
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n<-20; p <- numeric(); x<- numeric() 
p[1] <- 0.5; x[1] <- 10   # initial values 
for(i in 2:1000){ 
p[i] <- rbeta(1,x[i-1]+1,n-x[i-1]+1) 
x[i] <- rbinom(1,n,p[i]) 
} 
plot(x,p) 



Gibbs and 2D-normal density 
• 2D normal density: 

 
 

• Marg. densities π(x) and π(y) are both N(0,1) 
• Joint density function is: 
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Gibbs and 2D-normal density 
• 2D normal density: 

 
 
 
• Conditional density π(y|x)=π(x,y)/π(x) is: 
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Gibbs and 2D-normal density 
• Gibbs would then be sampling repeatedly from: 

 
• π(y|x) = N(ρx,1-ρ2) 
• π(x|y) = N(ρy,1-ρ2 ) 
  
• This can mix slowly if X & Y heavily correlated. 

 
 

• General remark about Gibbs:  full conditionals need to 
be solved from the correct joint distribution. Not any 
π(y|x)  and π(x|y)  will constitute a proper joint 
distribution π(y,x). E.g. sampling from y ~ N(x,1) and x ~ 
N(y,1) does not converge anywhere. 
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Metropolis-Hastings 
• This is a very general purpose sampler 

 
• The core is: ’proposal distribution’ and 

’acceptance probability’. 
 

• At each iteration: 
• Random draw is obtained from proposal density    

Q( θ*| θi-1 ), which can depend on previous 
iteration. 

• Simply, it could be U(θi-1  - L/2 , θi-1  + L/2). 
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Metropolis-Hastings 
• At each iteration: 

• Proposal is accepted with probability 
 
 
 

• Note how little we need to solve about π(θ|data)! 
• Normalizing constant cancels out from the ratio. 
• Enough to be able to evaluate prior and likelihood terms. 
• Proposals too far  accepted rarely  slow sampler 
• Proposals too near  small moves  slow sampler 
• Acceptance probability ideally about 20%-40% 

• Gibbs sampler is a special case of MH-sampler 
• In Gibbs, the acceptance probability is 1.  
• Block sampling also possible. 
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Metropolis-Hastings 
• Sampling from N(0,1), using MH-algorithm: 
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MCMC convergence 
• Remember to monitor for convergence! 

• Chain is only approaching the target density, when 
iterating a long time, k∞. 

• Convergence can be very slow in some cases. 
• Autocorrelations between iterations are then large 
 makes sense to take a thinned sample. 

• Systematic patterns, trends, sticking, indicate 
problems. 
 

• Pay attention to starting values! Try different values 
in different MCMC chains. (discard burn-in period). 
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MCMC convergence 
• Can only diagnose poor convergence, but 

cannot fully prove a good one! (e.g. multimodal 
densities). 
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