Conjugate priors

and one-parameter inference

- Exact analytical solutions for posterior distributions can be found in special cases.
- Occurs if prior $\pi(\theta)$ is of the same functional form as $\pi(X \mid \theta)$, when seen as function of θ.
- These are called conjugate priors.

Conjugate priors

and one-parameter inference

- First example is Binomial model:
$P(X \mid \theta)=\operatorname{Binomial}(N, \theta)$
Model for sample data X, N.
θ is e.g. population prevalence, etc.
- Conjugate prior is $\pi(\theta)=\operatorname{Beta}(\alpha, \beta)$
- Note: Beta(1,1)=Uniform(0,1)
- Find out $\pi(\theta \mid X)$ by simple algebra, starting from Bayes theorem.

Binomial model

- Posterior density: $\pi(\theta \mid X)=P(X \mid \theta) \pi(\theta) / c$
- Assuming uniform prior, this is:

$$
\pi(\theta \mid x)=\binom{N}{x} \theta^{x}(1-\theta)^{N-x} 1_{\{0<\theta \subset 1\}}(\theta) / c
$$

- Take a look at this as a function of θ, with N , x , and c as fixed constants.
- What probability density function can be seen? Hint: compare to beta-density.
$\pi(\theta \mid \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1}$

Binomial model

- The posterior density of θ can be written, up to a constant term as

$$
\pi(\theta \mid N, x) \propto \theta^{x+1-1}(1-\theta)^{N-x+1-1}
$$

- Same as beta($x+1, N-x+1$)-density.
- Generally, if the uniform prior is replaced by beta (α, β)-density, we get beta($x+\alpha, N-x+\beta)$.

Binomial model

- The uniform prior corresponds to having two 'pseudo observations': one red ball, one white ball, as if that was 'observed' before data.
- The posterior mean is $(1+\mathrm{X}) /(2+\mathrm{N})$
- Generally: $(\alpha+X) /(\alpha+\beta+N)$
- Can be expressed as: $w \frac{\alpha}{\alpha+\beta}+(1-w) \frac{X}{N}$

With $w=(\alpha+\beta) /(\alpha+\beta+N)$

- See what happens if $N \rightarrow \infty$, or if $N \rightarrow 0$.

Binomial model

- With any amount of data, we can make inference about θ.
- But, of course, with no data, we are left with the prior density! (which means we have learned nothing).
- But even one data point gives some additional piece of evidence...
- There is no requirement for size of data!

Binomial model

- Simulated sample from the joint distribution $\pi(\theta, X)=$ $\mathrm{P}(\mathrm{X} \mid \mathrm{N}, \theta) \pi(\theta)$
- Spot P(X|N, θ) and $\pi(\theta \mid \mathrm{X})$ in the Fig.

Why conjugate priors?

- Conjugate choice of prior leads to closed form solutions. (Posterior density is in the same family as prior density).
- Can also interpret conjugate prior as 'pseudo data' or 'prior data'. \rightarrow The amount of prior evidence easy to compare with amount of real data.
- Only a few conjugate solutions exist!

Likelihood principle

- Likelihood principle: all information provided by data is contained in the likelihood function (uskottavuusfunktio) L(θ; data) $=\mathrm{P}$ (data $\mid \theta)$.
- Then, if two data sets lead to the same likelihood function, the inference must be identical.
- Likelihood inference (uskottavuuspäättely) in classical statistics is based on $L(\theta$;data).
- Bayesian methods also obey likelihood principle:
- e.g. it does not matter if we decide to make n experiments to observe some $x^{\sim} \operatorname{Bin}(n, p)$, or if we decide to continue until x successes, so that $n \sim$ NegBin \rightarrow for p, the likelihood is same!

Bernoulli and Binomial model

- Think of a set of Bernoulli-variables B_{1}, \ldots, B_{n} for which $B_{i}=0$ or 1.
- $B_{i} \perp B_{j}$ are independent for all i \& j, conditionally, given $\theta=$ the success probability.
- For each B_{i}, the Bernoulli probability is thus

$$
P\left(B_{i} \mid \theta\right)=\theta^{B_{i}}(1-\theta)^{1-B_{i}}
$$

- Then, the probability for the whole data, conditionally on θ is
$P\left(B_{1}, \ldots, B_{n} \mid \theta\right)=\prod_{i=1}^{n} P\left(B_{i} \mid \theta\right)=\prod_{i=1}^{n} \theta^{B_{i}}(1-\theta)^{1-B_{i}}=\theta^{X}(1-\theta)^{n-X}$
- So that $X=\Sigma\left(B_{i}\right) \sim \operatorname{Bin}(n, \theta)$.

Bernoulli and Binomial model

- X is called sufficient statistics. (tyhjentävä tunnusluku).
- For a given value of X, the inference on θ should be the same because the likelihood function $L(\theta)=P($ data $\mid \theta)$ is the same, regardless of the permutation of the B_{i}.
- Then, also the posterior of θ is the same under Binomial or Bernoulli data, (as long as the prior remains the same too).

Binomial model \& priors

- Uniform prior $\mathrm{U}(0,1)$ for θ was 'uninformative'. In what sense?
- What if we study the density of θ^{2} or $\log (\theta)$, assuming $\theta \sim U(0,1)$?
- Jeffreys' prior is uninformative in the sense that it is transformation invariant:

$$
\pi(\theta) \propto J(\theta)^{1 / 2}
$$

$$
\text { with } J(\theta)=E\left[\left.\left(\frac{d \log (P(X \mid \theta))}{d \theta}\right)^{2} \right\rvert\, \theta\right]
$$

Binomial model \& priors

- $J(\theta)$ is known as 'Fisher information for θ^{\prime}
- With Jeffreys' prior for θ we get, for any one-to-one smooth transformation $\phi=h(\theta)$ that:

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\text { Transformation } \\
\text { of variables rule }
\end{array} \\
\pi(\phi)=\pi(\theta)\left|\frac{d \theta}{d \phi}\right| \propto \sqrt{E} \text { Jeffreys' } \\
=\sqrt{E\left[\left(\frac{d \log (L)}{d \theta}\right)^{2}\right]}=\sqrt{J(\phi)} \text { where } \mathrm{L}=\mathrm{P}(\mathrm{X} \mid \text { parameter })
\end{array} \\
& \left.=\sqrt{d \phi})^{2}\left(\frac{d \theta}{d \phi}\right)^{2}\right] \\
&
\end{aligned}
$$

Binomial model \& priors

- For the binomial model, Jeffreys' prior is

Beta(1/2,1/2).

- But in general:
- Jeffreys' prior can lead to improper densities (integral is infinite).
- Difficult to generalize into higher dimensions.
- Violates likelihood principle which states that inferences should be the same when the likelihood function is the same.

Binomial model \& priors

- Also: Haldane's prior $\pi(\theta) \propto \theta^{-1}(1-\theta)^{-1}$ is uninformative. (\approx "beta(0,0)")
- (How? Think of 'pseudo data'...)
- But is improper.
- Can a prior be improper density?
- Yes, but! - the likelihood needs to be such that the posterior still integrates to one.
- With Haldane's prior, this works only when the binomial data X is either >0 or $<\mathrm{N}$. (but we could not know X in advance...)

Binomial model \& priors

- For the binomial model $P(X \mid \theta)$, when computing the posterior $\pi(\theta \mid X)$, we have at least 3 different uninformative priors:
- $\pi(\theta)=\mathrm{U}(0,1)=\operatorname{Beta}(1,1)$ Bayes-Laplace
- $\pi(\theta)=\operatorname{Beta}(1 / 2,1 / 2)$ Jeffreys'
- $\pi(\theta) \propto \theta^{-1}(1-\theta)^{-1}$ Haldane's
- Each of them is uninformative in different ways!
- Unique definition for uninformative does not exist.

Binomial model \& priors

- example: estimate the mortality

THIRD DEATH

"The expanded warning came as Yosemite announced that a third person had died of the disease (Hantavirus) and the number of confirmed cases rose to eight, all of them among U.S. visitors to the park."
Ok, it's a small data,
but we try:
with uniform prior:
$\pi(r \mid$ data $)=$ beta $(3+1,8-3+1)$.
Try also other priors.
Posterior with Haldane's in red \rightarrow "Since 1993, when the virus first was identified, the average death rate is 36 percent, according to the CDC"

Binomial model \& N ?

- In previous slides, N was fixed (known). We can also think situations where θ is known, X is known, but N is unknown.
- Exercise: solve $P(N \mid \theta, X)=P(X \mid N, \theta) P(N) / c$ with suitable choice of prior.
- Try e.g. discrete uniform over a range of values.
- Try e.g. $P(N) \propto 1 / N$
- Bayes generally: compute probabilities of any unknowns, given the knowns \& prior \& likelihood (model).

Exponential model

- Applicable for event times, concentrations, positive measurements,...

$$
\pi(X \mid \theta)=\theta e^{-\theta X}
$$

- Mean $E(X)=1 / \theta$
- Aim to get $\pi(\theta \mid X)$, or $\pi\left(\theta \mid X_{1}, \ldots, X_{N}\right)$.
- Conjugate prior Gamma($\alpha, \beta)$
- Posterior: Gamma $(\alpha+1, \beta+X)$ or Gamma $\left(\alpha+N, \beta+X_{1}+\ldots+X_{N}\right)$.

Exponential model

- Posterior mean of θ is
$(\alpha+N) /\left(\beta+X_{1}+\ldots+X_{N}\right)$
- What happens if $N \rightarrow \infty$, or $N \rightarrow 0$?
- Uninformative prior $(\alpha, \beta) \rightarrow(0,0)$
- Subjective \& Objective Bayes approach:
- Prior could be based on existing knowledge $(\rightarrow$ expert knowledge elicitation or literature or previous data \rightarrow informative gamma-prior)
- Without using previous knowledge \rightarrow use uninformative gamma-prior
- As long as it's gamma-prior, exact solutions.

Exponential model

- Example: life times of 10 light bulbs were T = 4.1, 0.8, 2.0, 1.5, 5.0, 0.7, 0.1, 4.2, 0.4, 1.8 years. Estimate the failure rate? (true=0.5)
- $\mathrm{T}_{\mathrm{i}} \sim \exp (\theta)$
- Uninformative prior gives $\pi(\theta \mid \mathrm{T})=$ gamma(10,20.6).
- Could also parameterize with $1 / \theta$ and use inverse-gamma prior.

Exponential model

- Some observations may be censored, so we only know that $T_{i}<c_{i}$, or $T_{i}>c_{i}$
- The probability for the whole data is then of the form ('full likelihood'):
- $P($ data $\mid \theta)=$

$$
\Pi \pi\left(T_{i} \mid \theta\right) \Pi P\left(T_{i}<c_{i} \mid \theta\right) \Pi P\left(T_{i}>c_{i} \mid \theta\right)
$$

- For this we need cumulative probability functions, but Bayes theorem still applies, just more complicated.

Poisson model

- Widely applicable model for counts $x=0,1,2,3, \ldots$ For example: disease cases, accidents, faults, births, deaths over a time, or within an area, etc...
- $\lambda=\mathrm{E}(\mathrm{X}) \quad P(X \mid \lambda)=\frac{\lambda^{X}}{\lambda!} e^{-\lambda}$
- Also: constant intensity in a Poisson process: $E(X$ in time $T)=\lambda T$
- With single observation X, aim to get: $\pi(\lambda \mid X)$ $=P(X \mid \lambda) \pi(\lambda) / c$

Poisson model

- Conjugate prior? Gamma-density:

$$
\pi(\lambda \mid \alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta \lambda}
$$

- Then:

$$
\pi(\lambda \mid X)=\frac{\lambda^{X}}{X!} e^{-\lambda} \times \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta \lambda} / c
$$

- Simplify expression, what density you see? (up to a normalizing constant).

Poisson model

- Posterior density is Gamma $(X+\alpha, 1+\beta)$.
- Posterior mean is $(X+\alpha) /(1+\beta)$
- Can be written as weighted sum of 'data mean' X and 'prior mean' α / β.

$$
\frac{1}{1+\beta} X+\frac{\beta}{1+\beta} \frac{\alpha}{\beta}
$$

Poisson model

- With a set of observations: $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{N}}$:

$$
P\left(X_{1}, \ldots, X_{N} \mid \lambda\right)=\prod_{i=1}^{N} \frac{\lambda^{X_{i}}}{X_{i}!} e^{-\lambda}
$$

- And with the Gamma($\alpha, \beta)$-prior we get:

Gamma $\left(X_{1}+\ldots+X_{N}+\alpha, N+\beta\right)$.

- Posterior mean $\frac{1}{N+\beta} \sum_{i=1}^{N} X_{i}+\frac{\beta}{N+\beta} \frac{\alpha}{\beta}$
- What happens if $N \rightarrow \infty$, or $N \rightarrow 0$?

Poisson model

- Uninformative Gamma-prior: in the limit $(\alpha, \beta) \rightarrow(0,0)$, so posterior is then Gamma $\left(\mathrm{X}_{1}+\ldots+\mathrm{X}_{\mathrm{N}}, \mathrm{N}\right)$. Alternatively, could use improper flat prior $\pi(\lambda)=U(0, \infty)$ so that posterior is proportional to likelihood.
- Alternatively, use informative prior: e.g. based on expert opinion from which we could elicitate prior mean and variance $E(\lambda)=\alpha / \beta$ and $V(\lambda)=$ α / β^{2} for solving prior parameters α, β.
- Compare the conjugate analysis with Binomial model. Note similarities.

Poisson model in epidemiology

- Parameterize with exposure
- epidemiological problems: rate of cases per year, or per 100,000 persons per year.
- Model: $X_{i} \sim \operatorname{Poisson}\left(\lambda E_{i}\right)$
- E_{i} is exposure, e.g. population of the i^{th} city (in a year).
- λ is common disease incidence (unknown).
- X_{i} is observed number of cases in $i^{\text {th }}$ city.
- Aim to get posterior density of λ.

Poisson model in epidemiology

- Example: 64 lung cancer cases in 19681971 in Fredericia, Denmark, population 6264. Estimate incidence per 100,000?
- $\pi(\lambda \mid \mathrm{X}, \mathrm{E})$
$=\operatorname{gamma}(\alpha+X, \beta+E)$
- With uninformative prior, X=64,E=6264, we get gamma(64,6264), $\left(\rightarrow\right.$ plot: $\left.10^{5} \lambda\right)$

Poisson model in microbiology

- Similar: $\lambda=$ bacteria concentrations $/ \mathrm{g}$? Observed counts X: 5/100g, 10/50g
- $\pi(\lambda \mid \mathrm{X}, \mathrm{E})$
$=\operatorname{gamma}\left(\alpha+\Sigma X_{i}, \beta+\Sigma E_{i}\right)$
- With uninformative prior, we get posterior: gamma(15,150)

Some examples of conjugate priors

Data model $\pi(x \mid \theta)$	Prior of parameter $\pi(\theta)$	Posterior of parameter $\pi(\theta \mid x)$
$x^{\sim} \sim \operatorname{Binomial}(n, \theta)$	$\theta \sim \operatorname{Beta}(a, b)$	$\theta \sim \operatorname{Beta}(x+a, n-x+b)$
$x_{i} \sim \operatorname{Poisson}(\theta)$	$\theta \sim \operatorname{Gamma}(a, b)$	$\theta \sim \operatorname{Gamma}\left(\sum x_{i}+a, n+b\right)$
$x_{i} \sim \operatorname{Exponential}(\theta)$	$\theta \sim \operatorname{Gamma}(a, b)$	$\theta \sim \operatorname{Gamma}\left(n+a, \Sigma x_{i}+b\right)$
$x_{i} \sim N(\theta, 1 / \tau)$	$\theta \sim N\left(\theta_{0}, 1 / \tau_{0}\right)$	$\theta \sim N\left(\left(\tau_{0} /\left(\tau_{0}+n \tau\right)\right) \theta_{0}+\left(n \tau /\left(\tau_{0}+n \tau\right)\right) \bar{y}, 1 /\left(\tau_{0}+n \tau\right)\right)$
$x_{i} \sim N(\mu, 1 / \theta)$	$\theta \sim \operatorname{Gamma}(a, b)$	$\theta \sim \operatorname{Gamma}\left(a+n / 2, b+n\left[s^{2}+(\bar{y}-\mu)^{2}\right] / 2\right)$
		$s^{2}=n^{-1} \Sigma\left(y_{i}-\bar{y}\right)^{2}$

(These examples for one-parameter inference).

