
Conjugate priors 
and one-parameter inference  

• Exact analytical solutions for posterior 
distributions can be found in special 
cases. 

• Occurs if prior p(q) is of the same 
functional form as p(X|q), when seen as 
function of q.  

• These are called conjugate priors. 

 
 

 

 

 

 

 

1 



Conjugate priors 
and one-parameter inference  

• First example is Binomial model:    
 P(X|q) = Binomial(N,q) 

 Model for sample data X,N. 

 q is e.g. population prevalence, etc. 

• Conjugate prior is p(q) = Beta(a,b) 

• Note: Beta(1,1)=Uniform(0,1) 

 

• Find out p(q|X) by simple algebra, 
starting from Bayes theorem.  
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Binomial model 

• Posterior density: p(q | X) = P(X|q)p(q)/c 

• Assuming uniform prior, this is:   

 

 

• Take a look at this as a function of q, with N, 
x, and c as fixed constants. 

• What probability density function can be 
seen?  Hint: compare to beta-density. 
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Binomial model 

• The posterior density of q can be written, 
up to a constant term as 

 

 

• Same as beta(x+1,N-x+1)-density. 

 

• Generally, if the uniform prior is replaced by 
beta(a,b)-density, we get beta(x+a,N-x+b).  
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Binomial model 

• The uniform prior corresponds to having 
two ’pseudo observations’: one red ball, 
one white ball, as if that was ’observed’ 
before data.  

• The posterior mean is (1+X)/(2+N) 
• Generally:  (a+X)/(a+b+N)  

• Can be expressed as: 

 

 With w = (ab)/(ab+N) 

• See what happens if  N  ∞, or if N0. 
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 With w = (ab)/(ab+N) 
• See what happens if  N  ∞, or if N0. 
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Binomial model 

• With any amount of data, we can make 
inference about q.  

• But, of course, with no data, we are left 
with the prior density! (which means we 
have learned nothing). 

• But even one data point gives some 
additional piece of evidence…  

• There is no requirement for size of data!  
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Binomial model 

• Simulated    
sample from      
the joint 
distribution 
p(q,X)= 

     P(X|N,q)p(q) 

 

• Spot P(X|N,q) and  

     p(q|X) in the Fig.              
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Why conjugate priors? 

 

• Conjugate choice of prior leads to closed 
form solutions. (Posterior density is in the 
same family as prior density). 

• Can also interpret conjugate prior as 
’pseudo data’ or ’prior data’.   The 
amount of prior evidence easy to 
compare with amount of real data. 

 

• Only a few conjugate solutions exist!  
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Likelihood principle 

• Likelihood principle: all information provided by 
data is contained in the likelihood function 
(uskottavuusfunktio) L(q;data) = P(data|q). 

• Then, if two data sets lead to the same likelihood 
function, the inference must be identical. 

• Likelihood inference (uskottavuuspäättely) in 
classical statistics is based on L(q;data). 

 

• Bayesian methods also obey likelihood principle:  
• e.g. it does not matter if we decide to make n experiments to 

observe  some x ~ Bin(n,p), or if we decide to continue until x 
successes, so that n ~ NegBin  for p, the likelihood is same!  
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Bernoulli and Binomial model 

• Think of a set of Bernoulli-variables B1,…,Bn         
for which Bi = 0 or 1. 

• Bi  Bj are independent for all i & j, conditionally, 
given q = the success probability. 

• For each Bi, the Bernoulli probability is thus 

 

• Then, the probability for the whole data, 
conditionally on q  is 

 

 

• So that X = S(Bi) ~ Bin(n,q). 
 

 

 

11 

ii BB

iBP



1

)1()|( qqq

XnXn

i

BBn

i in
iiBPBBP 






  )1()1()|()|,...,(

1

1

11 qqqqqq



Bernoulli and Binomial model 

• X is called sufficient statistics. (tyhjentävä 
tunnusluku). 

• For a given value of X, the inference on q 
should be the same because the 
likelihood function L(q)=P(data|q) is the 
same, regardless of the permutation of 
the Bi.  

• Then, also the posterior of q is the same 
under Binomial or Bernoulli data, (as long 
as the prior remains the same too). 
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Binomial model & priors 

• Uniform prior U(0,1) for q was 
’uninformative’. In what sense? 

• What if we study the density of q2 or 
log(q), assuming q ~ U(0,1)?  

• Jeffreys’ prior is uninformative in the 
sense that it is transformation invariant:  
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Binomial model & priors 

• J(q) is known as ’Fisher information for q’ 

• With Jeffreys’ prior for q we get, for any 
one-to-one smooth transformation 
f=h(q) that:  

 

 
 

 
        where  L = P(X|parameter) 
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Binomial model & priors 

• For the binomial model, Jeffreys’ prior is 
Beta(1/2,1/2).  

• But in general: 
•  Jeffreys’ prior can lead to improper densities 

(integral is infinite). 

•  Difficult to generalize into higher dimensions. 

•  Violates likelihood principle which states that 
inferences should be the same when the likelihood 
function is the same. 
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Binomial model & priors 

• Also: Haldane’s prior p(q) q-1 (1-q)-1 is 
uninformative. (≈ ”beta(0,0)”)  
• (How? Think of ’pseudo data’… )  

• But is improper. 

• Can a prior be improper density? 
• Yes, but!  - the likelihood needs to be such that the 

posterior still integrates to one. 

• With Haldane’s prior, this works only when the 
binomial data X is either >0 or <N. (but we could not 

know X in advance…) 
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Binomial model & priors 

• For the binomial model P(X|q), when 
computing the posterior p(q|X), we have 
at least 3 different uninformative priors: 

 
• p(q)=U(0,1)=Beta(1,1)   Bayes-Laplace 

• p(q)=Beta(1/2,1/2)  Jeffreys’ 

• p(q)  q-1(1-q)-1   Haldane’s 

 

• Each of them is uninformative in different ways!  

• Unique definition for uninformative does not exist. 
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Binomial model & priors 

• example: estimate the mortality    
THIRD DEATH 

“The expanded warning came as Yosemite announced that a third person 
had died of the disease (Hantavirus) and the number of confirmed cases 

rose to eight, all of them among U.S. visitors to the park.” 

Ok, it’s a small data,  

but we try: 

with uniform prior:  

p(r | data)=beta(3+1,8-3+1).  

Try also other priors. 
Posterior with Haldane’s in red     
“Since 1993, when the virus first was  

identified, the average death rate is  

36 percent, according to the CDC” 
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Binomial model & N? 

• In previous slides, N was fixed (known). We can 
also think situations where q is known , X is 
known, but N is unknown. 

• Exercise: solve P(N | q,X) = P(X | N,q)P(N)/c 
with suitable choice of prior.  
• Try e.g. discrete uniform over  a range of values. 

• Try e.g.   

 

• Bayes generally:  compute probabilities of any 
unknowns, given the knowns & prior & 
likelihood (model). 

NNP /1)( 
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Exponential model 

• Applicable for event times, 
concentrations, positive measurements,…  

 

 

• Mean E(X) = 1/q 

• Aim to get p(q|X), or p(q | X1,…,XN). 

• Conjugate prior Gamma(a,b) 

• Posterior: Gamma(a+1,b+X) or 
Gamma(a+N,b+X1+…+XN).  
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Exponential model 

• Posterior mean of q is  
(a+N)/(b+X1+…+XN) 

• What happens if N∞, or N0? 

• Uninformative prior (a,b)(0,0) 

• Subjective & Objective Bayes approach:  
• Prior could be based on existing knowledge ( 

expert knowledge elicitation or literature or 
previous data  informative gamma-prior) 

• Without using previous knowledge  use 
uninformative gamma-prior 

• As long as it’s gamma-prior, exact solutions. 

 

 

 

 
 

 

 
 

 

 

 



Exponential model 

• Example: life times of 10 light bulbs were 
T = 4.1, 0.8, 2.0, 1.5, 5.0, 0.7, 0.1, 4.2, 0.4, 
1.8 years. Estimate the failure rate? (true=0.5) 

• Ti ~ exp(q) 

• Uninformative prior                                                 
gives p(q|T) =                                     
gamma(10,20.6).    

• Could also parameterize                                    
with 1/q  and                                                           
use inverse-gamma prior.   

 

 

 
 

 

 

 

 

 

 



Exponential model 

• Some observations may be censored, so 
we only know that Ti < ci,  or Ti > ci  

• The probability for the whole data is then 
of the form (’full likelihood’):  

• P(data |q) =   

 p(Ti|q)  P(Ti < ci |q)  P(Ti > ci |q) 

• For this we need cumulative probability 
functions, but Bayes theorem still applies, 
just more complicated.   

 

 

 

 

 
 

 

 

 

 

 

 



Poisson model 

• Widely applicable model for counts 
x=0,1,2,3,… For example: disease cases, 
accidents, faults, births, deaths over a time, 
or within an area, etc… 

 
 
• l = E(X) 
• Also: constant intensity in a Poisson process: 

E(X in time T) = lT 
  
• With single observation X, aim to get: p(l|X) 

= P(X|l)p(l)/c 
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Poisson model 

• Conjugate prior?  Gamma-density: 

 

 

• Then: 

 

 

• Simplify expression, what density you 
see? (up to a normalizing constant). 
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Poisson model 

• Posterior density is Gamma(X+a,1+b). 

• Posterior mean is (X+a)/(1+b)  

 

• Can be written as weighted sum of ’data 
mean’ X and ’prior mean’ a/b. 
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Poisson model 

• With a set of observations: X1,…,XN: 

 

 

• And with the Gamma(a,b)-prior we get: 
Gamma(X1+…+XN+a,N+b). 

 

• Posterior mean 

 

• What happens if N∞, or N0? 
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Poisson model 
• Uninformative Gamma-prior: in the limit 

(a,b)(0,0), so posterior is then 
Gamma(X1+…+XN,N). Alternatively, could use 
improper flat prior p(l) = U(0,∞)  so that 
posterior is proportional to likelihood.   

• Alternatively, use informative prior: e.g. based on 
expert opinion from which we could elicitate 
prior mean and variance E(l)= a/b and V(l)= 
a/b2  for solving prior parameters a,b. 
 
 

• Compare the conjugate analysis with Binomial 
model. Note similarities. 
 

 
 
 
 

 

 
 

 



Poisson model in epidemiology 

• Parameterize with exposure 
• epidemiological problems: rate of cases per year, or 

per 100,000 persons per year. 

• Model:  Xi ~ Poisson( l Ei ) 

• Ei is exposure, e.g. population of the ith city (in a 
year).  

• l is common disease incidence (unknown). 

• Xi is observed number of cases in ith city.   
 

• Aim to get posterior density of l. 

 
 

 

 

 

 

 

 



Poisson model in epidemiology 

• Example: 64 lung cancer cases in 1968-
1971 in Fredericia, Denmark, population 
6264. Estimate incidence per 100,000? 

• p(l|X,E) 

     = gamma(a+X,b+E) 

• With uninformative                                
prior, X=64,E=6264, we                              
get gamma(64,6264), 

     (plot: 105 l)    

 

 

 

 
 

 

 

 

 

 

 



Poisson model in microbiology 

• Similar: l = bacteria concentrations /g? 
Observed counts X: 5/100g, 10/50g 

• p(l|X,E) 

     = gamma(a+SXi,b+SEi) 

• With uninformative                               
prior, we get                                       
posterior:                                  
gamma(15,150) 
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Some examples of conjugate priors 

 

 

 

 
 

 

 

 

(These examples for one-parameter inference). 

 

 

Data model 
p(x|q) 

Prior of parameter 
p(q) 

Posterior of parameter 
p(q|x) 

x ~ Binomial(n, q) q ~  Beta(a,b) q ~ Beta(x+a,n-x+b) 

xi ~ Poisson(q) q ~ Gamma(a,b) q ~ Gamma(Sxi+a,n+b) 

xi ~ Exponential(q) q ~ Gamma(a,b) q ~ Gamma(n+a, Sxi+b) 

xi ~ N(q,1/t) q ~ N(q0,1/t0) q ~ N((t0/(t0+nt))q0 +  (nt/(t0+nt))y , 1/(t0+nt)) 

xi  ~ N(m,1/q) q ~ Gamma(a,b)    q ~ Gamma(a+n/2,b+n[s2+ (y-m )2 ]/2) 
 
s2 = n-1 S( yi - y)2 


