
Computation methods 
• Bayesian inference is based on 

reporting  properties of posterior 
distributions (means, tail areas, etc.) 

• This needs integration over posterior 
distribution. 

 
• Conjugate priors can be found for 

limited cases  need computational 
methods to approximate posterior 
density and integrals of it.  
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Computation methods 
• Approaches: 

• Exact analytic solution of posterior distribution available, 
algebraic solution to integrals (e.g. tail areas) – mainly 
for simplest problems. 

• Exact analytic solution of posterior, numeric solution to 
integrals (e.g. integrals of beta-distributions by R-
functions) 

• Approximate but analytic solution: Normal distribution 
as an approximation 

• Monte Carlo approximation:  generate large sample of 
random values from posterior distribution, evaluate 
empirical distribution of this sample. 

• Also: for some type of models, other numerical 
computations possible (e.g. INLA) 
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Normal approximation 
• With larger data set (sample size large), 

posterior distributions tend to get more 
peaked  looks like normal distribution!  
• Approximate posterior distribution by                    

N(  E(θ|X), V(θ|X) ),   if you can just find out 
posterior mean and variance.  Then compute 
integrals from this normal density as needed. 

• Modal approximation: focus on posterior mode 
instead of mean:  
 

• Here:      is posterior mode 
 

• And                                       is called ’observed 
information’ 
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Normal approximation 
• Modal approximation is based on Taylor series 

expansion of log-posterior density function 
(≈log-likelihood if large sample) at mode 

                                              constant wrt θ. 
                                                  
                                                                     =0 (derivative at mode)         
 
                                                        
                           
                  
            ~0 (higher order terms small if θ near mode) 
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Intro to Monte Carlo method 
• Example of a Monte Carlo sampler in 2D:  

• imagine a circle (radius L/2) within a square of 
LxL. 

• If points are randomly generated over the 
square, what’s the probability to hit within 
circle? 

• By algebra:  π(L/2)2/L2   =   π/4 = 3.14159…/4. 
• By simulation: 

 
 

• This also provides a Monte Carlo approx of π. 

 
 
 

 
 

 
 

 
 
 

 

 
 

 

5 

∑
=

∈≈∈
K

k

k
SK

SP
1

}{ )(11)( θθ θ



Law of large numbers 
• If θk (k=1,2,3,…) are i.i.d. (independent, 

identically distributed) with probability 
density π(θ), then 
 

  
 

• Integrations can be done by Monte Carlo 
sampling.  
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Monte Carlo used for… 
• To approximate mean, variance, probability, 

for a density of θ or g(θ). 
 
 
 
 
 
 

 
 Can do approximate Bayesian inference. 
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…used for: 
• Wanted: e.g. posterior mean   

 
• With conjugate priors, π(θ|X) would be a 

standard distribution.  
• Calculate directly, using known expressions. 
• Use statistical software, e.g. R to compute quantiles, 

etc.     qbeta(c(0.025,0.975),2,5)    
• Even if we had solved the density, it can be difficult 

to evaluate E( g(θ) |X)   Monte Carlo is easier. 
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Many Monte Carlo methods 
• Monte Carlo is just a label for lots of 

methods, below some examples 
• Each aims to produce a random sample from 

a target distribution (in bayesian inference: 
this is usually posterior distribution) 
 

• Some methods produce independent 
random samples (i.i.d.).  

• Markov chain Monte Carlo methods 
produce dependent samples. These are 
more generally applicable – and used in 
BUGS.  
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WinBUGS/OpenBUGS 
• A tool that will do the Monte Carlo 

sampling for you (more generally MCMC) 
• What you need to do? 

• Write logical definition of your model: 
• Prior and likelihood. 
• Model can be hierarchical with several layers. 

• Define what your data are. (fixed values). 
• The model should constitute a proper 

posterior distribution. (Or prior if no data). 
• Compile and run, monitor results, check 

convergence, analyze results. 
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WinBUGS/OpenBUGS 

• Binomial model in BUGS 
• Recall the conjugate solution.  
• π(θ|X) = π(X | N,θ) π(θ) /c 
• To compute posterior, we define    

π(X | N,θ) and π(θ). And we set a 
value for observed X (=data).   

• Note: we do not need to define or 
solve constant c! 

 
 

 
 
 

 
 

 
 

 
 
 

 

 
 

 

11 



WinBUGS/OpenBUGS 

• In BUGS –language: 
model{ 
X ~ dbin(theta,N)   # defines ’likelihood’ 
theta ~ dunif(0,1)  # defines prior 
# or maybe:  ~dbeta(a,b) 
}  
# data given as a list: 
list(X=3,N=20) 
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Directed Acyclic Graph: DAG 

• Graphical representation: DAG 
• Describes conditional distributions 
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X 
When X is observed (fixed) as data When X is unknown 

P(X | θ) 

P(θ) 
Can solve: 
P(θ|X) 



DAG 
• What happens if θ is fixed, X are not? 

 
 
 
 
 

• X will be independent of each other, 
given θ.    Simulate each X 
independently with given parameter(s).  
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DAG 
• What happens if some X are fixed, θ is 

not? 
 
 
 
 
 

• Unknown X will be dependent on known X. (we 
can learn from the ’siblings’).  solve posterior 
for θ, simulate Xn from that. 
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DAG 
• What happens if X is fixed, θ are 

not? 
 
 
 
 

• Given X, unknown θ will be dependent on each 
other.  E.g. X ~ Bin(1-(1-θ1)(1−θ2),N), so that 
data X constrain the possible values of θ. 
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DAG 
• Identifiability of θ1 & θ2 ? 

 
 
 
 

• In general: if for different parameter values  θ ≠ 
θ’ the likelihood function is different  L(θ) ≠ 
L(θ’), then parameter(s) θ is (are) identifiable 
from data. 
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DAG 
• E.g. X ~ Bin(1-(1-θ1)(1−θ2),N)  parameter θ 

= (θ1, θ2) not identifiable from data X&N.   
• Identifiability in posterior? 

• Only if prior evidence exists so that π(θ) ≠ 
π(θ’). 

• In principle: identifiability not a problem for 
conducting Bayesian inference, as long as 
the posterior still is a proper distribution! 

• But could lead to computational problems in 
practice, e.g. poor convergence in BUGS.    
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About BUGS language 
• Declarative language:  don’t try to think 

procedural programming. 
• Directly corresponds to a DAG 
• (1) Nodes are either ’stochastic’ or ’deterministic’: 

• They depend on parents (=other nodes): either as 
   Child  ~  ddistribution(Parents)    [stochastic] 
   Or:  
   Child <- function(Parents)      [deterministic] 

• (2) Or nodes are ’founder nodes’ which are constants. 
E.g. parameters of prior distribution  (no parents), or 
fixed design variable N in binomial modeling. 

• When data are assigned to any Child node  Bayesian 
inference about parents. 
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About BUGS language 
• Every model is a logical definition which 

corresponds to defining likelihood and prior in 
Bayes theorem 

• A logical definition can be expressed in several 
equivalent ways: 
X ~ dbin(theta,N) 
theta ~ dunif(0,1);   X <- 3; N <- 20  

    is same as  (assuming x is given as data) 
        theta ~ dbeta(a,b);  
        a <- X+1 ;   b <- N-X+1; X <- 3; N <- 20  
         (if x was not given as data, the latter would not be 
defined, and the former would produce predictive 
distribution for X & the prior for theta) 
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About BUGS language 
• It is good practice to keep model definition 

and data separated. 
• Data = ”everything that is given as constant” 
• Model = defined functions and/or 

distributions (for all nodes in DAG): 
     model{ 

X ~ dbin(theta,N) 
theta ~ dbeta(a,b); 
} 
# data: 
List(a=1,b=1,X=3,N=20)  
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WinBUGS/OpenBUGS 
• Bayesian inference & diagnosis in BUGS 

 
 
 
 

 
• Parent nodes  Child nodes: from cause to 

effect.  
• May contain stochastic & deterministic nodes. 

• Here: effects are stochastic, depend on 
parameters determined by causes (which again 
are stochastic). 
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WinBUGS/OpenBUGS 
• Cold = 1/0 
• Angina  = 1/0 
• Sore_throat = 1/0 
• Fever = 1/0 
• White_spots = 1/0 

 
• Angina can cause any of the symptoms 
• Cold can cause only fever or sore throat 
• (=assumptions!) 
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Stochastic nodes 



WinBUGS/OpenBUGS 
• P(Sore_throat) = p1  
• P(Fever)  = p2 
• P(White_spots) = p3 

 
• p1 <- cold * (1 - angina) * 0.1 +  
               (1 - cold) * angina * 0.8 +  
               cold * angina * 0.95 +  
               (1 - cold) * (1 - angina) * 0.05 

 
• p2 and p3 similarly defined…. 
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Deterministic nodes 



WinBUGS/OpenBUGS 

• Resulting code, generated from the 
graphical model: 
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model{
angina ~ dbern(0.5)
cold ~ dbern(0.5)
f ev er~ dbern(p2)
sore_throat ~ dbern(p1)
white_spots ~ dbern(p3)
p1 <- cold * (1 - angina) * 0.1 + (1 - cold) * angina * 0.8 + cold * angina * 0.95 + (1 - cold) * (1 - angina) * 0.05
p2 <- cold * (1 - angina) * 0.1 + (1 - cold) * angina * 0.7 + cold * angina * 0.85 + (1 - cold) * (1 - angina) * 0.01
p3 <- angina

}



WinBUGS/OpenBUGS 
• The model is joint distribution of all unknown 

variables 
• The two causes  are given prior probabilities (here: 

P(angina)=0.5, P(cold)=0.5 independently) 
• The symptoms are given conditional probabilities, 

given by parameters p1, p2, p3, because they are 
Bernoulli variables. These probabilities should 
depend on the causes, according to a given model. 

• Goal: to evaluate P(angina,cold | symptoms). 
• This model could be constructed graphically with 

’Doodle-BUGS’  or directly writing the code. 
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WinBUGS/OpenBUGS 
• Including full data in a full likelihood. 
• With several data points X1+…+Xn : 

• Write the likelihood using sufficient statistics, if this 
can be found.  
• E.g. instead of the product of n Bernoulli-likelihoods we 

can write one binomial likelihood,  
• or instead of n exponential likelihoods we can write one 

likelihood with gamma-density [because if Xi ~ exp(θ), 
then X1+…+Xn = Y ~ Gamma(n,θ) ]  

• Or just write full likelihood as product of P(Xi | θ) 
using for-loops in BUGS:  

 for(i in 1:n){    x[i]  ~  ddistr(parameters)   }     
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WinBUGS/OpenBUGS 
• Write also likelihood terms for censored data, if 

needed.  
• The posterior distribution may no longer have analytic 

solution, because conjugacy may not exist, but BUGS 
can simulate the posterior. 

• Censored data models in OpenBUGS: 
• for(i in 1:n){    x[i]  ~  ddistr(parameters) C(,B[i])  } 
 If the observation was x[i]<B[i] 
• for(i in 1:n){    x[i]  ~  ddistr(parameters) C(A[i],)  } 
 If the observation was x[i]>A[i] 
• for(i in 1:n){    x[i]  ~  ddistr(parameters) C(A[i],B[i])  } 
 If the observation was  A[i] < x[i] < B[i] 

 
• Note: the corresponding x[i] should be written as NA in the 

data, whereas exactly observed x[i] are given the observed 
values in data listing. 
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WinBUGS/OpenBUGS 
• Model  Specification Tool 

• Check model    (check syntax) 
• Load data   (values for observed variables) 
• Compile    (check if model + data makes a posterior) 
• Gen inits   (initial values for the MCMC sampler) 

• Model  update tool 
• Update = run some MCMC iterations 

• Inference  Sample monitor tool 
• Specify which parameters to analyse (=see their 

marginal distributions), & Update more iterations. 
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Demo with OpenBUGS 
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