Computation methods

- Bayesian inference is based on reporting properties of posterior distributions (means, tail areas, etc.)
- This needs *integration* over posterior distribution.
- Conjugate priors can be found for limited cases → need computational methods to approximate posterior density and integrals of it.

Computation methods

• Approaches:

- Exact analytic solution of posterior distribution available, algebraic solution to integrals (e.g. tail areas) – mainly for simplest problems.
- Exact analytic solution of posterior, numeric solution to integrals (e.g. integrals of beta-distributions by R-functions)
- Approximate but analytic solution: Normal distribution as an approximation
- Monte Carlo approximation: generate large sample of random values from posterior distribution, evaluate empirical distribution of this sample.
- Also: for some type of models, other numerical computations possible (e.g. INLA)

Normal approximation

- With larger data set (sample size large), posterior distributions tend to get more peaked → looks like normal distribution!
 - Approximate posterior distribution by N(E(θ|X), V(θ|X)), if you can just find out posterior mean and variance. Then compute integrals from this normal density as needed.
 - Modal approximation: focus on posterior mode instead of mean: $\pi(\theta \mid X) \approx N\left(\hat{\theta}, \left[I(\hat{\theta})\right]^{-1}\right)$
 - Here: $\hat{\theta}$ is posterior mode
 - And $I(\theta) = -\frac{d^2}{d\theta} \log \pi(X | \theta)$ is called 'observed information'

Normal approximation

 Modal approximation is based on Taylor series expansion of log-posterior density function (≈log-likelihood if large sample) at mode

 $\log \pi(\theta \mid X) \approx \log \pi(X \mid \hat{\theta}) + \leftarrow \text{constant wrt } \theta.$

$$\begin{bmatrix} \frac{d}{d\theta} \log \pi(X \mid \theta) \end{bmatrix}_{\theta = \hat{\theta}} \frac{(\theta - \hat{\theta})}{1!} + \quad \leftarrow = 0 \text{ (derivative at mode)}$$
$$\begin{bmatrix} \frac{d^2}{d\theta^2} \log \pi(X \mid \theta) \end{bmatrix}_{\theta = \hat{\theta}} \frac{(\theta - \hat{\theta})^2}{2!} + \dots$$

+... \leftarrow ~0 (higher order terms small if θ near mode)

Intro to Monte Carlo method

- Example of a Monte Carlo sampler in 2D:
 - imagine a circle (radius L/2) within a square of LxL.
 - If points are randomly generated over the square, what's the probability to hit within circle?
 - By algebra: $\pi(L/2)^2/L^2 = \pi/4 = 3.14159.../4$.
 - By simulation: $P(\theta \in S) \approx \frac{1}{K} \sum_{k=1}^{K} \mathbb{1}_{\{\theta \in S\}}(\theta^k)$
 - This also provides a Monte Carlo approx of π .

Law of large numbers

If θ^k (k=1,2,3,...) are i.i.d. (independent, identically distributed) with probability density π(θ), then

$$\overline{g(\theta)_{K}} = \frac{1}{K} \sum_{k=1}^{K} g(\theta_{k}) \to E(g(\theta)) = \int_{\Theta} g(\theta) \pi(\theta) d\theta$$

Integrations can be done by Monte Carlo sampling.

Monte Carlo used for...

• To approximate mean, variance, probability, for a density of θ or g(θ).

$$\overline{\theta}_{K} = \frac{1}{K} \sum_{k=1}^{K} \theta_{k} \to E(\theta) \quad \text{when} \quad K \to \infty$$

$$\overline{\theta}^{2}{}_{K} = \frac{1}{K} \sum_{k=1}^{K} \theta_{k}^{2} \to E(\theta^{2})$$

$$\frac{1}{K} \sum_{k=1}^{K} (\theta_{k} - \overline{\theta}_{K})^{2} = \frac{1}{K} \sum_{k=1}^{K} \theta_{k}^{2} - (\overline{\theta}_{K})^{2} \to E(\theta^{2}) - (E(\theta))^{2} = V(\theta)$$

$$\frac{1}{K} \sum_{k=1}^{K} I_{\{0,\infty\}}(\theta_{k}) \to E(I_{\{0,\infty\}}(\theta)) = P(\theta > 0) \quad \text{use indicator variables!}$$

 \rightarrow Can do approximate Bayesian inference.

...used for:

- Wanted: e.g. posterior mean $E(\theta | X) = \int \theta \pi(\theta | X) d\theta$
- With conjugate priors, $\pi(\theta|X)$ would be a standard distribution.
 - Calculate directly, using known expressions.
 - Use statistical software, e.g. R to compute quantiles, etc. qbeta(c(0.025,0.975),2,5)
 - Even if we had solved the density, it can be difficult to evaluate $E(g(\theta) | X) \rightarrow Monte$ Carlo is easier.

Many Monte Carlo methods

- Monte Carlo is just a label for lots of methods, below some examples
- Each aims to produce a random sample from a target distribution (in bayesian inference: this is usually posterior distribution)
- Some methods produce **independent random samples** (i.i.d.).
- Markov chain Monte Carlo methods produce dependent samples. These are more generally applicable – and used in BUGS.

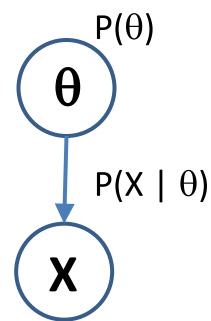
- A tool that will do the Monte Carlo sampling for you (more generally MCMC)
- What you need to do?
 - Write *logical definition* of your model:
 - Prior and likelihood.
 - Model can be hierarchical with several layers.
 - Define what your data are. (fixed values).
 - The model should constitute a proper posterior distribution. (Or prior if no data).
 - Compile and run, monitor results, check convergence, analyze results.

- Binomial model in BUGS
 - Recall the conjugate solution.
 - $\pi(\boldsymbol{\theta} \mid X) = \pi(X \mid N, \boldsymbol{\theta}) \pi(\boldsymbol{\theta}) / c$
 - To compute posterior, we define π(X | N,θ) and π(θ). And we set a value for observed X (=data).
 - Note: we do not need to define or solve constant c!

- In BUGS –language: model{
 - X ~ dbin(theta,N) # defines 'likelihood'
 theta ~ dunif(0,1) # defines prior
 # or maybe: ~dbeta(a,b)
 - }
 # data given as a list:
 list(X=3,N=20)

Directed Acyclic Graph: DAG

- Graphical representation: DAG
 - Describes conditional distributions

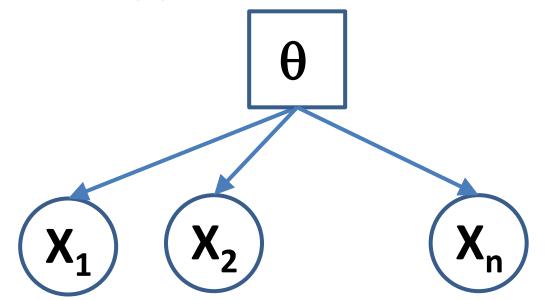


Can solve:
 P(θ|X)
 X

When X is unknown

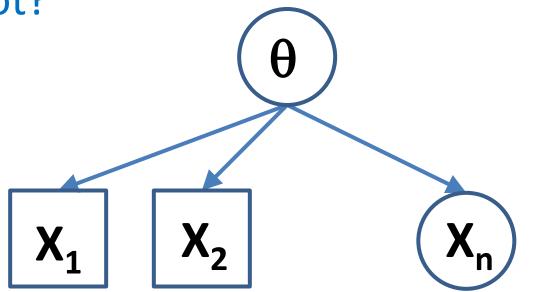
When X is observed (fixed) as data

• What happens if θ is fixed, X are not?



 X will be independent of each other, given θ. → Simulate each X independently with given parameter(s).

What happens if some X are fixed, θ is not?



• Unknown X will be dependent on known X. (we can learn from the 'siblings'). \rightarrow solve posterior for θ , simulate X_n from that.

• What happens if X is fixed, θ are not? θ_1 θ_2 θ_n

Given X, unknown θ will be dependent on each other. E.g. X ~ Bin(1-(1-θ₁)(1-θ₂),N), so that data X constrain the possible values of θ.

- Identifiability of $\theta_1 \& \theta_2$? $\theta_1 \qquad \theta_2$ X
- In general: if for different parameter values θ ≠ θ' the likelihood function is different L(θ) ≠ L(θ'), then parameter(s) θ is (are) identifiable from data.

- E.g. X ~ Bin(1-(1- θ_1)(1- θ_2),N) parameter θ = (θ_1 , θ_2) not identifiable from data X&N.
- Identifiability in posterior?
 - Only if prior evidence exists so that $\pi(\theta) \neq \pi(\theta')$.
 - In principle: identifiability not a problem for conducting Bayesian inference, as long as the posterior still is a proper distribution!
 - But could lead to computational problems in practice, e.g. poor convergence in BUGS.

About BUGS language

- Declarative language: don't try to think procedural programming.
- Directly corresponds to a DAG
- (1) Nodes are either 'stochastic' or 'deterministic':
 - They depend on parents (=other nodes): either as Child ~ ddistribution(Parents) [stochastic] Or:

Child <- function(Parents) [deterministic]

- (2) Or nodes are 'founder nodes' which are constants. E.g. parameters of prior distribution (no parents), or fixed design variable N in binomial modeling.
- When data are assigned to any Child node → Bayesian inference about parents.

About BUGS language

- Every model is a logical definition which corresponds to defining likelihood and prior in Bayes theorem
- A logical definition can be expressed in several equivalent ways:

X ~ dbin(theta,N)

theta ~ dunif(0,1); X <- 3; N <- 20

is same as (assuming x is given as data)

theta ~ dbeta(a,b);

a <- X+1; b <- N-X+1; X <- 3; N <- 20

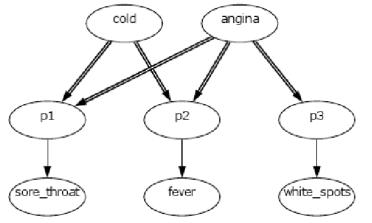
(if x was not given as data, the latter would not be defined, and the former would produce predictive distribution for X & the prior for theta)

About BUGS language

- It is good practice to keep model definition and data separated.
- Data = "everything that is given as constant"
- Model = defined functions and/or distributions (for all nodes in DAG):

```
model{
X ~ dbin(theta,N)
theta ~ dbeta(a,b);
}
# data:
List(a=1,b=1,X=3,N=20)
X
```

• Bayesian inference & diagnosis in BUGS



- Parent nodes → Child nodes: from cause to effect.
- May contain stochastic & deterministic nodes.
 - Here: effects are stochastic, depend on parameters determined by causes (which again are stochastic).

- Cold = 1/0
- Angina = 1/0
- Sore_throat = 1/0
- Fever = 1/0
- White_spots = 1/0

Stochastic nodes

- Angina can cause any of the symptoms
- Cold can cause only fever or sore throat
- (=assumptions!)

- P(Sore_throat) = p1
- P(Fever) = p2
- P(White_spots) = p3

Deterministic nodes

- p1 <- cold * (1 angina) * 0.1 + (1 - cold) * angina * 0.8 + cold * angina * 0.95 + (1 - cold) * (1 - angina) * 0.05
- p2 and p3 similarly defined....

• Resulting code, generated from the graphical model:

```
model{
```

```
angina ~ dbern(0.5)
cold ~ dbern(0.5)
fev er~ dbern(p2)
sore_throat ~ dbern(p1)
white_spots ~ dbern(p3)
p1 <- cold * (1 - angina) * 0.1 + (1 - cold) * angina * 0.8 + cold * angina * 0.95 + (1 - cold) * (1 - angina) * 0.05
p2 <- cold * (1 - angina) * 0.1 + (1 - cold) * angina * 0.7 + cold * angina * 0.85 + (1 - cold) * (1 - angina) * 0.01
p3 <- angina
```

25

- The model is joint distribution of all unknown variables
- The two causes are given prior probabilities (here: P(angina)=0.5, P(cold)=0.5 independently)
- The symptoms are given conditional probabilities, given by parameters p₁, p₂, p₃, because they are Bernoulli variables. These probabilities should depend on the causes, according to a given model.
- Goal: to evaluate P(angina,cold | symptoms).
- This model could be constructed graphically with 'Doodle-BUGS' or directly writing the code.

- Including full data in a full likelihood.
- With several data points X₁+...+X_n :
 - Write the likelihood using *sufficient statistics*, if this can be found.
 - E.g. instead of the product of n Bernoulli-likelihoods we can write one binomial likelihood,
 - or instead of n exponential likelihoods we can write one likelihood with gamma-density [because if $X_i \sim exp(\theta)$, then $X_1 + ... + X_n = Y \sim Gamma(n, \theta)$]
 - Or just write full likelihood as *product of* P(X_i | θ) using for-loops in BUGS:
 for(i in 1:n){ x[i] ~ ddistr(parameters) }

- Write also likelihood terms for **censored data, if needed**.
- The posterior distribution may no longer have analytic solution, because conjugacy may not exist, but BUGS can simulate the posterior.
- Censored data models in OpenBUGS:
 - for(i in 1:n){ x[i] ~ ddistr(parameters) C(,B[i]) }
 If the observation was x[i]<B[i]</p>
 - for(i in 1:n){ x[i] ~ ddistr(parameters) C(A[i],) }
 If the observation was x[i]>A[i]
 - for(i in 1:n){ x[i] ~ ddistr(parameters) C(A[i],B[i]) }
 If the observation was A[i] < x[i] < B[i]
 - Note: the corresponding x[i] should be written as NA in the data, whereas exactly observed x[i] are given the observed values in data listing.

- Model → Specification Tool
 - Check model (check syntax)
 - Load data (values for observed variables)
 - Compile (check if model + data makes a posterior)
 - Gen inits (initial values for the MCMC sampler)
- Model \rightarrow update tool
 - Update = run some MCMC iterations
- Inference → Sample monitor tool
 - Specify which parameters to analyse (=see their marginal distributions), & Update more iterations.

Demo with OpenBUGS

🙀 OpenBUGS		Name Annu article inc	100		
File Edit Attribute	s Tools Info Model Inference Doodle Map Text	Window Examples Manuals Help	_		
	a untitled2		8		
	model{				
1	X ~ dbin(theta,N) theta ~ dunif(0,1) } list(X=3,N=20)	Specification Tool SS Check model load data compile num of chains 1 load inits for chain 1 gen inits		Update Tool updates 1000 refresh 100 update thin 1 iteration 1000 adapting over relax	
	Sample Monitor Tool node index beg index index index index		-		

Ŏ.

Σ

Pa

W

- and

O

e

