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Summary

We present a general framework for modelling adaptive trait dynamics in which we integrate various concepts
and techniques from modern ESS-theory. The concept of evolutionarily singular strategies is introduced as a
generalization of the ESS-concept. We give a full classi®cation of the singular strategies in terms of ESS-

stability, convergence stability, the ability of the singular strategy to invade other populations if initially rare
itself, and the possibility of protected dimorphisms occurring within the singular strategy's neighbourhood. Of
particular interest is a type of singular strategy that is an evolutionary attractor from a great distance, but
once in its neighbourhood a population becomes dimorphic and undergoes disruptive selection leading to

evolutionary branching. Modelling the adaptive growth and branching of the evolutionary tree can thus be
considered as a major application of the framework. A haploid version of Levene's `soft selection' model is
developed as a speci®c example to demonstrate evolutionary dynamics and branching in monomorphic and

polymorphic populations.
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Introduction

The evolutionarily stable strategy (or ESS; Maynard Smith and Price, 1973), e�ectively de®ned as
an evolutionary trap, has become the main tool for predicting the outcomes of long-term phe-
notypic evolution when ®tness depends on the frequencies of the various phenotypes present in a
population. A major advantage of the ESS is that it can be resolved from phenotypic consider-
ations alone without having to account explicitly for the (often unknown) underlying genetic detail.
Moreover, by circumventing the intricacies of diploid Mendelian inheritance, more complex eco-
logical interactions and adaptations can be explored than is usually possible with a fully genetic
approach. In those cases where a comparison with more complete approaches is possible, ESS-
theory has been shown to be largely compatible with both quantitative genetics (Charlesworth,
1990; Taper and Case, 1992; Abrams et al., 1993a) and population genetics (Eshel and Feldman,
1982, 1984; Eshel, 1991, 1996; Hammerstein and Selten, 1993; Hammerstein, 1996; Matessi and Di
Pasquale, 1996; Weissing, 1996).
Notwithstanding its strength and elegance, the ESS has a serious drawback: It always remains to

be seen whether during the course of evolution the ESS will actually become established at all. It
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now has been generally acknowledged that ESS-stability (which renders a population immune
against invasion by any new mutant) and convergence stability (which ensures the gradual ap-
proach through a series of small evolutionary steps) are two totally independent stability concepts
that can occur in any combination (Eshel and Motro, 1981; Eshel, 1983; Taylor, 1989; Chris-
tiansen, 1991; Abrams et al., 1993b). A phenotype that is convergence-stable is an evolutionary
attractor in the sense that a population that starts o� with a di�erent phenotype can always be
invaded by phenotypes nearer by. If a phenotype is not convergence-stable, then any such initial
perturbation tends to increase. The signi®cance of the ESS as a long-term evolutionary predictor
thus depends on whether or not it is also convergence-stable.
In this paper, we integrate various concepts and techniques from modern ESS-theory into a

single mathematical framework for modelling the dynamics of long-term phenotypic evolution. We
introduce the concept of an `evolutionarily singular strategy' as a generalization of the ESS-
concept. Our main result is a classi®cation of the singular strategies in terms of ESS-stability,
convergence stability, the ability of the singular strategy to invade other populations if initially rare
itself, and the possibility of protected dimorphisms occurring within the singular strategy's
neighbourhood. These four properties are to a large extent independent of one another and can
occur in many combinations. Each combination represents a qualitatively di�erent evolutionary
scenario. A type of singular strategy that stands out in particular is convergence-stable, but it lacks
ESS-stability. We show that from larger distances it acts as an evolutionary attractor, but once
nearby the population undergoes disruptive selection and splits up into two subsequently pheno-
typically diverging subpopulations. We therefore consider modelling the adaptive growth and
branching of the evolutionary tree as a major application of the classi®cation.
We ®rst develop the framework for monomorphic resident populations, and generalize some of

our results to polymorphic populations later. We formulate a haploid version of Levene's (1953)
`soft selection' model as a speci®c example to demonstrate evolutionary branching in both
monomorphic and polymorphic populations. A more formal approach of the framework, in-
cluding generalizations for multidimensional (that is, vector-valued) strategies, was presented by
Metz et al. (1996).

The framework

Assumptions

We assume that individuals reproduce asexually, and that the o�spring are phenotypically identical
to the parent. Phenotypes are denoted by their strategy, which can vary continuously. We consider
one-dimensional (that is, scalar-valued) strategies only.
The strategies in a given resident population can be considered as a set of model parameters that

implicitly specify a unique attractor for the resident population dynamics. Mutations occur suf-
®ciently infrequently so that the population has reached its attractor before a new mutant comes
along. On the longer time-scale of mutations, therefore, a population can be represented by merely
listing all strategies that are present.
A polymorphic resident population is assumed always to be a protected polymorphism in the

sense that each strategy present is protected against extinction by a positive growth rate when rare.
Consequently, what strategies remain once the population has settled down again in a new de-
mographic attractor after the successful invasion of a new mutant, can be described purely in terms
of the growth rates of each strategy if rare.
Finally, we assume that phenotypic mutations are small but random. We explicitly do not assume

in®nitesimally small evolutionary changes. Evolution thus proceeds by small but discrete steps.
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Monomorphic populations

Fitness is the long-term exponential growth rate of a phenotype in a given environment (Metz
et al., 1992). The environment contains abiotic as well as biotic factors, including the number and
frequencies of the various phenotypes themselves. Once a population has reached its demographic
attractor, there are no long-lasting trends towards population decline or growth. The ®tness of all
phenotypes present, therefore, has become zero. Let Ex denote the environment in a population of
a single phenotype with strategy x, and let r(x,Ex) denote the population's long-term exponential
growth rate. At the demographic attractor we thus have

r�x;Ex� � 0 �1�
Next, consider a new mutant with strategy y emerging in a population of residents with strategy x.
As long as the mutant is still rare, its e�ect on the environment Ex as set by the residents is
negligible. The ®tness of the mutant is therefore equal to

sx�y� � r�y;Ex� �2�
What sx(y) exactly looks like depends on the particular biological problem at hand. A speci®c
example is given later. We here merely assume that sx(y) is a known function of x and y, and
develop a theory of adaptive dynamics in terms of properties of sx(y) only.
If sx(y) > 0, the mutant can spread (but will not necessarily always do so as a result of random ex-

tinction due to the small initial size of the mutant population). If sx(y)< 0, it will die out. If sx(y)> 0
and sy(x) < 0, then the mutant can spread but the resident cannot recover when rare itself. A
protected dimorphism of x and y is therefore not possible, and eventually the mutant will replace
the resident and take over the whole population. If mutations are small, so that x and y are very
similar to one another, we have as a linear approximation of the mutant's ®tness

sx�y� � sx�x� � D�x��y ÿ x� �3�
where D(x), the local ®tness gradient, is de®ned as

D�x� � osx�y�
oy

� �
y�x

�4�

Since by de®nition sx�x� � r x;Ex� � � 0 for all x (see Equations 1 and 2), the sign of D(x) determines
what mutants can invade. If D(x) > 0, then only mutants with y> x can invade and take over the
population, whereas if D(x) < 0, then this is only possible for mutants with y< x. The population
thus evolves in the direction of the local ®tness gradient until it reaches the neighbourhood of a
strategy for which D(x) is zero. A strategy for which the local ®tness gradient is zero we call an
`evolutionarily singular strategy'. Near a singular strategy there is no longer directional selection,
and it may happen that both sx(y) > 0 and sy(x) > 0. In this case, neither strategy can eliminate
the other, and the population necessarily becomes dimorphic.
The evolution of a monomorphic population can be analysed graphically by means of a `pairwise

invasibility plot'; that is, a graph of the sign of sx(y) as a function of x and y (Fig. 1; for other
examples of pairwise invasibility plots, see Van Tienderen and De Jong, 1986; Metz et al., 1992;
Kisdi and MeszeÂ na, 1993, 1995). To see what mutants can spread in a given resident population, we
look along a vertical line through a point on the x-axis representing the resident's strategy. The parts
of this line inside a region marked `+' correspond to strategies on the y-axis for which sx(y) > 0,
and hence denote potentially invading mutants. The parts of the line inside a region marked `)'
correspond to mutants for which sx(y) < 0, and which therefore cannot invade. On the principal
diagonal, sx(y) is by de®nition zero (cf. Equations 1 and 2). The intersection of the diagonal with
another line on which sx(y) is zero corresponds to an evolutionarily singular strategy. If mutations
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are small, we need to consider only strategies within a narrow band along the diagonal. A `+' just
above and a `)' just below the diagonal indicates a positive ®tness gradient, whereas a `)' above
and a `+' below indicates a negative ®tness gradient.
Close to a singular strategy there are only eight possible generic local con®gurations of the

pairwise invasibility plot that can be algebraically characterized in terms of the second-order
derivatives of sx(y) evaluated at the singular strategy (Fig. 2). Each con®guration represents a
di�erent evolutionary scenario that can be interpreted in terms of ESS-stability, convergence
stability, the ability of the singular strategy to invade other populations if initially rare itself, and
the possibility of protected dimorphisms occurring within the singular strategy's neighbourhood.
We ®rst consider each of these four properties of the singular strategy separately, before we
investigate their possible combinations and the corresponding evolutionary scenarios.

Properties of the singular strategy

A singular strategy x* is (locally) ESS-stable (Maynard Smith, 1982) if no nearby mutant can
invade; in other words, if sx*(y) < 0 for all y ¹ x* in a neighbourhood of x*. In the pairwise
invasibility plot, the vertical line through x* lies completely inside a region marked `)' (Figs 2c±f).
Since along this vertical line sx(y) as a function of y has a maximum for y � x*, it follows that at the
singular strategy

o2sx�y�
oy2

< 0 �5�

A singular strategy that is ESS-stable is an evolutionary trap in the sense that once it has become
established in a population, no further evolutionary change is possible by small mutations.
A singular strategy is (locally) convergence-stable (Christiansen, 1991) if a population of a

nearby phenotype can be invaded by mutants that are even closer to x*; that is, if sx(y) > 0 for

Figure 1. Example of a pairwise invasibility plot. The resident's and mutant's strategy are denoted by x and y,
respectively. The shaded area indicates combinations of x and y for which the mutant's ®tness, sx(y), is
positive. The singular strategy is denoted by x*.
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x< y< x* and x* < y< x. In the pairwise invasibility plot, there is a `+' above the diagonal on
the left, and below the diagonal on the right of x* (Figs 2b±e); in other words, the local ®tness
gradient points towards the singular strategy. Since at x* the sign of the local ®tness gradient
changes from positive to negative, D(x) is a (locally) decreasing function of x, and hence at the
singular strategy we have

dD�x�
dx

� o2sx�y�
oxoy

� o2sx�y�
oy2

< 0 �6�

(Eshel, 1983). Note that as on the diagonal of the pairwise invasibility plot sx(y) is always zero, the
second-order directional derivative of sx(y) under a slope of 45° must also be zero on the diagonal,
that is,

o2sx�y�
ox2

� 2
o2sx�y�
oxoy

� o2sx�y�
oy2

� 0 �7�

If we use this to eliminate the cross-derivative in Expression (6), we get

o2sx�y�
ox2

>
o2sx�y�

oy2
�8�

(Figs 2b±e). For a monomorphic population, a singular strategy that is convergence-stable is an
evolutionary attractor. A singular strategy that is not convergence-stable is an evolutionary re-
peller from which an initially monomorphic population evolves away.
A singular strategy can spread in populations of a slightly di�erent phenotype when initially rare

itself if sx(x*) > 0 for all x ¹ x* in a neighbourhood of x*. In the pairwise invasibility plot, the
horizontal line through x* on the y-axis lies entirely inside a region marked `+' (Figs 2a±d). Since

Figure 2. The eight possible generic local con®gurations of the pairwise invasibility plot and their relation to
the second-order derivatives of sx(y). In the shaded regions within the separate plots, sx(y) is positive.
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along this horizontal line sx(y) as a function of x has a minimum for x � x�, it follows that at the
singular strategy

o2sx�y�
ox2

> 0 �9�

Two strategies x and y can mutually invade, and hence give rise to a dimorphic population, if both
sx(y) > 0 and sy(x) > 0. The set of all pairs of mutually invasible strategies near a singular strategy
is given by the overlapping parts of the `+' regions in the pairwise invasibility plot and its mirror
image taken along the main diagonal (Fig. 3). This set is non-empty if, and only if, the secondary
diagonal lies inside a `+' region (Figs 2a±c,h). Since along the secondary diagonal sx(y) has a local
minimum for x � y � x*, the second-order directional derivative of sx(y) at the singular strategy
under a slope of )45° must be positive, that is,

o2sx�y�
ox2

ÿ 2
o2sx�y�
oxoy

� o2sx�y�
oy2

> 0 �10�

If we use Equation (7) to eliminate the cross-derivative, we ®nd

o2sx�y�
ox2

> ÿ o2sx�y�
oy2

�11�

(Figs 2a±c,h). With small evolutionary steps, an initially monomorphic population can become
dimorphic only within the vicinity of a singular strategy that satis®es the above condition.
The four properties of the singular strategy and their algebraic relationship are summarized in

Table 1. Although not fully independent of one another, the four properties can be combined in
various ways, yielding the eight basic con®gurations presented in Fig. 2. For example, a singular
strategy can be ESS-stable but not convergence-stable (Fig. 2f), or convergence-stable but not
ESS-stable (Fig. 2b) (for examples, see Eshel and Motro, 1981; Eshel, 1983; Christiansen, 1991;
Brown and Pavlovic, 1992; Abrams et al., 1993b; Kisdi and MeszeÂ na, 1993, 1995; MeszeÂ na et al., in
press). A singular strategy that is both an ESS and convergence-stable (Figs 2c±e) is called a
`continuously stable strategy' or CSS (Eshel and Motro, 1981; Eshel, 1983). A continuously stable
strategy may still be incapable of invading other populations if initially rare itself (Fig. 2e), in
which case it can be approached only monotonically (that is, either from the left or from the right)
by an in®nite series of ever decreasing evolutionary steps (Kisdi and MeszeÂ na, 1993, 1995). If
mutual invasibility is possible near a singular strategy that lacks convergence stability, the popu-

Figure 3. Graphic representation of the set of mutually invasible strategies. (a) Sign of sx(y); (b) sign of sy(x);
and (c) superposition of (a) and (b).
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lation may evolve away before it has a chance of becoming dimorphic (Figs 2a,h). However, if the
singular strategy is convergence-stable, then an initially monomorphic population inevitably
sooner or later becomes dimorphic (Figs 2b,c). As until now we have assumed monomorphic
resident populations, the occurrence of mutual invasibility giving rise to protected dimorphisms
poses a potential problem that is dealt with below.

Dimorphisms near a singular strategy and evolutionary branching

The evolutionary signi®cance of mutual invasibility near a convergence-stable singular strategy x*
depends on whether or not it is also ESS-stable. If x* is convergence-stable and an ESS, then
mutually invasible strategies are necessarily on opposite sides of x* (Fig. 2c). A mutant with
strategy y can invade a resident population with strategies x1 and x2 (with x1 < x2) if, and only if,
x1 < y < x2 (see Appendix 1). The reason for this can be seen intuitively as follows. In a
monomorphic resident population at the ESS, no mutant can invade. The mutant's ®tness, sx*(y),
as a function of the mutant's strategy, y, has a maximum at y � x* where it is zero, but elsewhere
the ®tness is negative (Fig. 4a). The case of a dimorphic resident population with strategies x1 and
x2 close to x* can be considered a small perturbation of this situation. As the mutant's ®tness is
zero for y � x1 and y � x2, the maximum of the mutant's ®tness now lies between x1 and x2 where it
is positive (Fig. 4b). Mutants in between the two resident types, therefore, can invade, whereas

Table 1. Properties of the singular strategies

Property Characterization

ESS-stable b < 0
Convergence-stable a ) b > 0

Singularity can spread a > 0
Nearby dimorphisms a + b > 0

a � o2sx�y�=ox2; b � o2sx�y�=oy2.

Figure 4. A mutant's ®tness in a dimorphic population with strategies x1 and x2 as a perturbation from the
®tness in a monomorphic population with a single strategy x* that is an ESS (a±c) or not an ESS (d±f).
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mutants outside cannot. A mutant that is su�ciently close to the ESS replaces both residents, and
renders the population monomorphic again. Otherwise, only the type that is on the same side of x*
as the mutant, but further away, is ousted, and the population remains dimorphic (Fig. 4c). In the
long run, however, any dimorphism eventually disappears as the population gradually evolves
towards the ESS through a series of monomorphic and (converging) dimorphic population states.
If x* is convergence-stable but not an ESS (Fig. 2b), then a mutant can invade if, and only if,

y < x1 or x2 < y (see Appendix 1). To see this intuitively, note that in a monomorphic resident
population at a singular strategy that is not an ESS, all nearby mutants can invade (Fig. 2b), and
hence have a positive ®tness (Fig. 4d). A slight perturbation leads to the case of a dimorphic
resident population with strategies x1 and x2 close to x* (Fig. 4e). Only mutants outside the two
resident types have a positive ®tness and can invade, whereas mutants in between cannot. After
invasion it is always the strategy in the middle that is ousted (Fig. 4f). With each successive
invasion, therefore, the two remaining strategies become more and more distinct. In the long term,
the population e�ectively splits up into two diverging subpopulations. This process of phenotypic
divergence in an initially monomorphic population we call `evolutionary branching'. The corre-
sponding singular strategy we will refer to as the `evolutionary branching point'. An example of
evolutionary branching is given later (for other examples of branching, see Metz et al., 1992, 1996;
MeszeÂ na et al., in press).
We thus conclude that, irrespective of whether or not mutual invasibility near a singular strategy

is possible, singular strategies that are convergence-stable as well as ESS-stable (that is, the con-
tinuously stable strategies sensu Eshel and Motro, 1981; Eshel, 1983) give rise to stabilizing se-
lection in both monomorphic and nearby dimorphic populations. These singular strategies
therefore represent the ®nal, monomorphic outcomes of an evolutionary process. In contrast,
singular strategies that are convergence-stable but not ESS-stable (that is, the branching points) are
attractors for monomorphic populations but repellers for nearby dimorphic populations. Once an
initially monomorphic population has come su�ciently close to the singular strategy, it will be-
come dimorphic and subsequently undergo disruptive selection, leading to two phenotypically
distinct and diverging subpopulations.

Polymorphic populations

After branching, the two resident strategies soon grow too far apart for the local approximation of
the mutant's ®tness in a dimorphic resident population near the branching point as used above to
be valid anymore. To see how evolution proceeds after branching, we generalize the formalism to
populations with an arbitrary number of di�erent phenotypes. Let Ex1;...;xn denote the environment
in a population with strategies x1,...,xn at its demographic attractor, and let r�xi;Ex1;...;xn� denote the
long-term growth rate of the xi -phenotype. Since the long-term exponential growth rate of each
resident type is zero, Ex1;...;xn must satisfy

r xi;Ex1;...;xn

ÿ � � 0 �12�
for all i (cf. Equation 1). In general, this is possible only if the environment can be represented by a
vector of at least n independent components. For example, this is the case if individuals a�ect one
another through the availability of n di�erent kinds of resources, the abundance of which in turn
depends on the frequencies of the various types of individuals present. The dimensionality of the
environment thus sets a theoretical upper limit to the number of phenotypes that could possibly co-
exist (MacArthur and Levins, 1964; Tilman, 1982). The actual number of co-existing types,
however, may at any time be smaller. For n � 2; the set of possible protected dimorphisms is given
by the overlapping `+' regions of the pairwise invasibility plot and its mirror image taken along the
principal diagonal (cf. Fig. 3).

42 Geritz et al.

This copy belongs to 'agrawal'



The growth rate of an initially rare mutant with strategy y in a resident population with strat-
egies x1,...,xn at its demographic attractor is equal to

sx1 ;...;xn�y� � r y;Ex1;...;xn

ÿ � �13�

(cf. Equation 2). With small mutations, the direction of evolution in the xi-strategy is indicated by
the sign of the local ®tness gradient:

Di�x1; . . . ; xn� � osx1;...;xn �y�
oy

� �
y�xi

�14�

(cf. Equation 4). Combinations of strategies for which Di(x1,...,xn) is zero lie on a n)1 dimensional
manifold that we shall refer to as the xi -isocline. For n � 2, the x1- and x2-isoclines are lines that
divide the set of protected dimorphisms into a number of separate regions with di�erent co-
evolutionary directions (Figs 6a and 7a). On the xi -isocline, there is no longer directional selection
in the xi -strategy. If the n)1 other strategies were ®xed and did not evolve, then each point on the
xi -isocline would correspond to a singular strategy in an environment set by the other strategies.
However, the n)1 other strategies are not ®xed and continue to evolve (and possibly move the
population away from the xi -isocline again) unless the local ®tness gradient is zero for all strategies
at the same time, that is, at the point of intersection of all isoclines. We call a polymorphism
consisting of the strategies x1*,...,xn*, such that Di(x1*,...,xn*) is zero for all resident strategies
simultaneously, an `evolutionarily singular coalition'.
The individual strategies of a singular coalition can each be classi®ed in a similar way as singular

strategies. A singular coalition is evolutionarily stable so that no new mutants can invade the
population if, and only if, all its constituent strategies are ESS; that is, if

o2sx1;...;xn�y�
oy2

� �
y�x�i
xj�x�j 8 j

< 0 �15�

for all i (cf. Equation 5; Brown and Vincent, 1987, 1992; Vincent and Brown, 1989; Brown and
Pavlovic, 1992). Generalization of convergence stability is less straightforward and depends on the
relative size and frequency of mutations in the various resident strategies. It is neither su�cient nor
necessary that the condition for convergence stability in a monomorphic population (Equation 8)
applies to each individual strategy of the singular coalition separately (Matessi and Di Pasquale,
1996). However, unambiguous examples of convergence stability for n � 2 have been recognized
(Motro, 1994; Matessi and Di Pasquale, 1996; see also the example in the next section). Mutual
invasibility of a mutant and the resident from which it was derived is possible near a singular
coalition if, and only if,

o2sx1;...;xn�y�
ox2i

� �
y�x�i
xj�x�j 8 j

< ÿ o2sx1;...;xn�y�
oy2

� �
y�x�i
xj�x�j 8 j

�16�

(cf. Equation 11). Mutual invasibility has no long-term consequences if the strategy is at the
same time evolutionarily stable; that is, if it also satis®es Condition (15). A singular coalition
that is both ESS- and convergence-stable represents a ®nal, polymorphic outcome of the evo-
lutionary process. A singular coalition that is convergence-stable but for which at least one
strategy lacks ESS stability and allows for mutual invasibility nearby (that is, for which Equation
16 is satis®ed but Equation 15 is not) will lead to further branching of the evolutionary tree (see
Appendix 1).
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A speci®c example

We develop here a haploid version of Levene's (1953) `soft selection' model with continuous
strategies as a speci®c example to demonstrate evolutionary dynamics and branching in mono-
morphic and polymorphic populations. Consider a resident population with strategies x1,...,xn of
an organism with discrete, non-overlapping generations in a spatially heterogeneous environment
consisting of m di�erent patches. Each patch can support only a limited number of established
individuals denoted by K1,...,Km respectively. The total number of established individuals with
strategy xi �i � 1; . . . ; n� summed over all patches is denoted by Ni. We assume that all patches are
occupied to maximum capacity, so that the total population size in each generation is always
constant, that is,

Xn

i�1
Ni �

Xm

j�1
Kj �17�

During dispersal, the o�spring are distributed randomly into the di�erent patches such that the
number of juveniles with a given strategy landing in a given patch is proportional to the frequency
of that particular strategy among the dispersing o�spring. Assuming that all established individ-
uals have the same fecundity irrespective of their strategy or patch, the number of juveniles with
strategy xi landing in a given patch is thus proportional to Ni.
Within a patch, juveniles ®rst undergo a period of frequency-independent selection followed by a

period of non-selective `contest' competition, during which the available living space is allocated at
random among the survivors. With fj(xi) denoting the pre-competitive survival probability for an
individual with strategy xi in the jth patch, the fraction of the available space in the jth patch
allocated to individuals with strategy xi is

fj�xi�Ni =
Xn

h�1
fj�xh�Nh �18�

For the total number of established individuals with strategy xi in the next generation summed over
all patches, we consequently have

N 0i �
Xm

j�1
Kjfj�xi�Ni =

Xn

h�1
fj�xh�Nh

 !
�19�

At equilibrium, N 0i � Ni for all i. For the population to maintain n strategies at equilibrium, the
number of patches must be greater than or equal to the number of co-existing strategies, that is
m ³ n. Whenever an equilibrium with n strategies is possible, it is unique and stable (Gliddon and
Strobeck, 1975; Strobeck, 1979).
Consider an initially rare mutant with strategy y in a resident population with strategies x1,...,xn.

The resident population at its equilibrium determines the level of competition in the various
patches as experienced by the mutant. As long as the mutant is still rare, the environment as set by
the residents remains una�ected by the mutant's presence itself. Let N̂i denote the number of
resident individuals with strategy xi at equilibrium. For the number of mutants, Nmut, in successive
years, we thus have as a ®rst-order approximation

N 0mut �
Xm

j�1
Kjfj�y�Nmut =

Xn

h�1
fj�xh�N̂h

 !
�20�

(cf. Equation 19). Consequently, the mutant's exponential growth rate is
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Sx1 ;...;xn�y� � log
N 0mut
Nmut

� log
Xm

j�1
Kjfj�y�=

Xn

h�1
fj�xh�N̂h

 !
�21�

Below we con®ne ourselves to the case of three patches, each with the same carrying capacity,
that is K1 � K2 � K3. Moreover, we assume that the pre-competitive survival probabilities in the
di�erent patches are bell-shaped functions of strategy, that is,

fj�x� � a exp ÿ�xÿ lj�2
2r2

 !
�22�

each with the same height (a) and width (r), but with di�erent though evenly spaced optima
l1 � ÿd, l2 � 0 and l3 � d for some ®xed value d representing patch di�erence. In Appendix 2, we
show that based on the above assumptions there is a unique evolutionarily singular strategy x� � 0
that is convergence-stable, that can invade other populations, and in the neighbourhood of which
there are always pairs of strategies that can mutually invade. If the patches are su�ciently similar
to one another, that is if d/r < 1.22, then the singular strategy is also evolutionarily stable
(Fig. 5a). The long-term evolutionary outcome then consists of a single generalist strategy that,
although optimally adapted to the middle patch, also exploits the other two patches. If the patches
are further apart (d/r > 1.22), however, then the singular strategy is a branching point (Fig. 5b).
After having reached the singular strategy, the population now undergoes evolutionary branching,
during which the generalist gives way to a dimorphic coalition of more specialized strategies
(Fig. 6b).
Figure 6a gives the set of potential protected dimorphisms for d=r � 1:5, and was obtained by

taking the overlapping parts of the `+' regions of the pairwise invasibility plot in Fig. 5b and its
mirror image along the main diagonal (cf. Fig. 3). The resulting set is necessarily symmetric in the
main diagonal. The isoclines, given by

Di�x1; x2� � osx1;x2�y�
oy

� �
y�xi

� 0 �23�

Figure 5. Pairwise invasibility plots for Levene's (1953) haploid selection model with three patches for (a)

d=r � 1 and (b) d=r � 1:5.
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for i � 1; 2 (cf. Equation 14), were computed numerically using Equation (21), and divide the set of
potential dimorphisms into eight regions (four symmetrically on each side of the diagonal). Within
each region, the set of permissible directions of evolutionary change ± that is, the `invasion cone'
(Matessi and Di Pasquale, 1996) ± follows from the local ®tness gradients (Equation 14 with
Equation 21) and is indicated by arrows (Fig. 6a). The intersection of the isoclines corresponds to
an evolutionarily singular coalition. The invasion cones determine whether or not the singular
coalition is convergence-stable. The mutant's ®tness as a function of its own strategy has a local
maximum on the xi -isocline (thick lines in Fig. 6a) if

o2sx1;x2�y�
oy2

� �
y�xi

< 0 �24�

(cf. Equation 15), and a local minimum (thin lines in Fig. 6a) if the inverse inequality is true. A
singular coalition is evolutionarily stable only if at the point of intersection both isoclines cor-
respond to ®tness maxima, that is, if both isoclines are thick. If the patches are not too far apart
(1.22 < d/r < 2.10), then there is a unique singular coalition that is both convergence-stable and
ESS-stable (Fig. 6a). Therefore, after branching at x� � 0, the population evolves towards a stable
dimorphism in which the middle patch is exploited by both strategies, while the remaining two
patches are both monopolized by only one strategy each (Fig. 6b).
If the di�erence between the patches is larger (d/r > 2.10), then the isoclines intersect at three

points corresponding to three di�erent evolutionarily singular coalitions (Fig. 7a). On inspection
of the invasion cones, it can be seen that two of these are convergence-stable, separated by a
convergence-unstable singular coalition. To which of the two convergence-stable coalitions the

Figure 6. (a) Set of potential protected dimorphisms with invasion cones and isoclines for d=r � 1:5. Thick
isoclines are ESS-stable, thin isoclines lack ESS-stability. (b) Simulated evolutionary tree. The arrows at the

top indicate the within-patch optimal strategies.
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population will actually evolve is a matter of chance. Neither coalition is evolutionarily stable (one
of the intersecting isoclines is always a thin line), so that once the population has come su�ciently
nearby, it will undergo further branching. Both convergence-stable dimorphic coalitions consist of
a specialist adapted to either the ®rst or third patch, and a relative generalist exploiting the two
remaining patches. It is always this generalist that undergoes further branching, giving way to more
specialized strategies. Independent of the dimorphic coalition to which the population will evolve
®rst, the population eventually ends up as a stable trimorphism with each strategy adapted to its
own speci®c patch (Figs 7b,c).
The dynamics of evolution as predicted by the model are con®rmed by numerical simulations

(Figs 6b and 7b,c). In these simulations, we use Equation (19) to calculate the number of indi-
viduals with di�erent strategies in successive generations. Starting with a monomorphic popula-
tion, new types are generated with a low probability per generation by small but random mutations
from strategies already present. The new mutants are added to the population with a low initial
frequency. By iteration of Equation (19), some mutants will increase in number, whereas others
remain rare or gradually vanish. When the frequency of a given strategy drops below a certain pre-
set threshold, the strategy is considered to have gone extinct and is removed from the population.
Details of the simulation (like the precise mutation rate, mutation radius, inoculation and ex-
tinction thresholds) do not qualitatively a�ect the outcome of the simulations.
Figure 8 shows how the number, the stability properties and the positions of the singular

strategy and the singular coalitions change due to changes in patch di�erence. The monomorphic
singularity does not change its position, but it loses ESS-stability and becomes a branching point
when d/r becomes larger than 1.22 (Fig. 8a). The dimorphic singularity ®rst appears when the
monomorphic singularity becomes a branching point (Fig. 8b). As patch di�erence increases, the
strategies of the dimorphic coalition also grow further apart. At d=r � 2:10, the dimorphic sin-

Figure 7. (a) Set of possible protected dimorphisms with invasion cones and isoclines for d=r � 2:5. Thick
isoclines are ESS-stable, thin isoclines lack ESS-stability. (b,c) Simulated evolutionary trees with alternative
branching patterns. The arrows at the top indicate the within-patch optimal strategies.
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gularity undergoes a `pitchfork' bifurcation yielding three dimorphic singularities, two of which are
convergence-stable but not ESS-stable (pairs of strategies numbered 1 and 3 in Fig. 8b), separated
by a convergence-unstable dimorphic singularity (pair numbered 2). The trimorphic singular co-
alition already emerges at d=r � 1:93, that is, before the dimorphism has lost its ESS-stability.
Although ESS-stable, the trimorphism remains unreachable for an initially monomorphic or di-
morphic population until the dimorphic coalition loses ESS-stability at d=r � 2:10 (Fig. 8c). As
patch di�erence decreases, the frequency of the middle strategy of the trimorphism becomes zero
when d/r approaches 1.93. At the same time, the other two strategies of the trimorphism converge
to the dimorphic coalition (Fig. 8c). As patch di�erence increases, the strategies of the trimorphism
converge to the within-patch optimal strategies l1, l2 and l3.
MeszeÂ na et al. (in press) demonstrated evolutionary branching in a monomorphic population in

a similar model with two patches and limited migration between the patches (for recent related
models, see Brown and Pavlovic, 1992; Brown, 1996).

Discussion

Starting from four basic assumptions, we model evolution as a sequence of monomorphic or
polymorphic population states, where the transition from one state to the next occurs when an
advantageous mutant comes around and spreads. The evolutionarily singular strategies play a key
role in the evolutionary dynamics of an initially monomorphic population. Among the eight
possible di�erent types of singular strategies (Fig. 2), we can distinguish three main groups: sin-
gular strategies that lack convergence stability and therefore act as evolutionary repellers (Figs

Figure 8. Bifurcation plot with d/r as the bifurcation parameter for (a) the monomorphic singular strategy, (b)
the dimorphic singular coalition (di�erent strategy pairs are labelled 1±3), and (c) the trimorphic singular
coalition. Thick lines indicate ESS-stability, thin lines indicate lack of ESS-stability of the corresponding

strategy.
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2a,f±h); singular strategies that are both evolutionarily and convergence-stable (that is, the `con-
tinuously stable strategies' sensu Eshel and Motro, 1981; Eshel, 1983; Figs 2c±e), and hence rep-
resent ®nal outcomes of an evolutionary process; and, ®nally, the singular strategy that is
convergence-stable but not ESS-stable, that is, the evolutionary branching point (Fig. 2b). This
latter type stands out in particular, because from a great distance it acts as an evolutionary
attractor, but once nearby, the population undergoes disruptive selection leading to evolutionary
branching. With small evolutionary steps, an initially monomorphic population can become dis-
tinctively dimorphic only if it passes ®rst through the neighbourhood of a singular strategy of this
type. The branching point, therefore, plays a central role in the adaptive growth and branching of
the evolutionary tree. Disruptive selection at singular strategies that are convergence-stable but not
evolutionarily stable has also been indicated in speci®c models by Christiansen and Loeschcke
(1980), Brown and Pavlovic (1992), Metz et al. (1992) and Abrams et al. (1993b).
The generalization of the singular strategy for polymorphic populations is the evolutionarily

singular coalition. Each individual strategy of a singular coalition can be classi®ed in the same way
as a monomorphic singular strategy. A singular coalition, each strategy of which is an ESS given
the other strategies, represents a ®nal evolutionary stop for a polymorphic population. Evolution
towards a singular coalition consisting of one or more branching points will lead to further
branching of the evolutionary tree. Depending on the number of branching points contained in the
singular coalition, one or more new branches may develop (nearly) simultaneously (for an example
of simultaneous branching in a dimorphic population, see Metz et al., 1996). Like in the case of
monomorphic populations, with small mutations a polymorphic population can reach a higher
level of (protected) polymorphism only if it ®rst passes through the neighbourhood of a singular
coalition with at least one branching point. Extinction of branches may occur when a population
evolves towards the boundary of the set of possible protected polymorphisms, in which case the
population falls back again to a lower level of polymorphism (see, e.g. Metz et al., 1996). In
polymorphic populations, evolutionary cycles are also possible (Marrow et al., 1992; Dieckmann
et al., 1995; Abrams and Matsuda, 1996).
The predictions from our framework are con®rmed by numerical simulations (see the example in

the previous section; for other examples, see Metz et al., 1992, 1996; MeszeÂ na et al., in press).
However, in contrast with our basic assumptions, in the simulations new mutants often come
along before the population has reached its demographic attractor and before disadvantageous
mutants have disappeared. The simulations, therefore, show that relaxation of the assumption that
the resident population has reached its demographic attractor before a new mutant comes along,
and that a polymorphic population is always a protected polymorphism, does not qualitatively
a�ect the results. In the simulations, the predictions also prove to be fairly robust with respect to
larger mutations. Below we consider the signi®cance of some of the other assumptions of the
framework.
The present modelling is con®ned to one-dimensional strategies only (or to one-dimensional

parameterizations of multidimensional strategies). Extension of the framework to multiple traits
under simultaneous selection is not straightforward. In particular, the meaning of convergence
stability becomes ambiguous and more complex (but see Motro, 1994; Matessi and Di Pasquale,
1996). Some generalizations tomultiple traits have been discussed byMetz et al. (1996). For a speci®c
example of multiple traits in a population genetics context, see Christiansen and Loeschcke (1987).
In this article, we assume that for each possible coalition of strategies there is a unique demo-

graphic attractor that determines the long-term exponential growth rate of an emerging mutant
strategy (Equations 2 and 13). The demographic attractor may be a ®xed point, a limit cycle or an
ergodic stochastic attractor (but see Rand et al., 1994 and Ferriere and Gatto, 1995 for compli-
cations in the case of chaotic attractors). If there were more than one attractor, then the resident
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population could no longer be represented by its strategies alone. Two populations with the same
strategies but in di�erent demographic states may follow di�erent evolutionary courses, because
the biotic environment in the two populations is not the same (cf. Rand et al., 1994). However, if
mutations are small and, moreover, a small change in strategies is accompanied by a small change
in population dynamics, then during the course of evolution a population may track gradual
changes in the initial demographic attractor instead of jumping back and forth between di�erent
parallel attractors. Consequently, for a monomorphic resident population, there will be di�erent
pairwise invasibility plots depending on the initial demographic state of the population. Obviously,
this picture no longer holds if, as a consequence of the evolutionary change in the resident strat-
egies, the population dynamics undergo a bifurcation such that the demographic attractor un-
dergoes an abrupt change, loses its population dynamical stability or ceases to exist altogether (e.g.
Matsuda and Abrams, 1994). Note, however, that neither evolutionary branching nor extinction of
branches is necessarily accompanied by a discontinuous change in the population dynamics. Re-
peated alternations between parallel demographic states due to environmental disturbances on an
ecological time-scale could best be modelled as a single, multi-peaked stochastic attractor rather
than as di�erent deterministic population states. This is not possible, however, if the alternations
occur on a longer time-scale.
In this article, we assume that mutations are small but ®nite. This leads to an evolutionary

dynamics with small but discrete steps in the phenotype space. A similar approach with discrete
evolutionary steps in a population genetics context was followed by Matessi and Di Pasquale
(1996). Many other authors, however, assume in®nitesimally small steps leading to a continuous
adaptive dynamics (in time as well as in phenotype space) in which the change per unit time is
proportional to the ®tness gradient (e.g. Hofbauer and Sigmund, 1990; Marrow et al., 1992, 1996;
Abrams et al., 1993b; Dieckmann et al., 1995, Dieckmann and Law, 1996). The ®xed-points (or
equilibria) of the continuous adaptive dynamics coincide with the singular strategies or singular
coalitions of our descrete step approach, but the dynamical properties are di�erent. In particular,
with in®nitesimally small mutation steps, evolutionary branching does not occur. To see this, note
that mutual invasibility is possible only within the neighbourhood of a singular strategy of a size
proportional to the mutation step size itself. As the mutation step size decreases, an initially
monomorphic population necessarily has to come closer to the singular strategy before the pop-
ulation can become dimorphic. In the limit of continuous dynamics, the step size has become zero,
so that the neighbourhood in which mutual invasibility can occur has collapsed to a single point,
that is, the ®xed-point itself. Since with continuous adaptive dynamics, ®xed-points can be ap-
proached but are never actually reached, mutual invasibility, and hence evolutionary branching,
are no longer possible.
The dimensionality of the environment sets an upper limit to the number of di�erent strategies

that can co-exist as a protected polymorphism, and hence to the maximum diversity that can be
reached through branching of the evolutionary tree. One general prerequisite for branching,
therefore, is that individuals a�ect one another via at least two environmental variables that in turn
depend on the frequencies of the various strategies present. If individuals a�ect one another via
only a single environmental variable (such as population equilibrium density, or the abundance of
a single resource), then only one strategy can persist at a time, and mutual invasibility, and hence
evolutionary branching, are not possible. In such a one-dimensional environment, a (local) ESS is
always a (locally) optimal strategy that maintains the highest equilibrium density or lowest re-
source abundance (Tilman, 1982; Kisdi and MeszeÂ na, 1993, 1995; Mylius and Diekmann, 1995).
The pairwise invasibility plot is necessarily anti-symmetric along the main diagonal, and there are
only two possible local con®gurations of the pairwise invasibility plot (Fig. 9a), both of which are
degenerate cases in our general classi®cation of the singular strategies (Fig. 2).
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Another general prerequisite for evolutionary branching is that the mutant's ®tness is a non-
linear function of the mutant's strategy. This excludes branching in all cases where sx(y) is given as
the (weighted) arithmetic average over two alternative pure strategies (like in the case of matrix
games) with x and y denoting the mixing frequencies for the resident and the mutant respectively. If
the mutant's ®tness is a linear function of the mutant's strategy, then the second-order derivative of
sx(y) with respect to y is zero (cf. Equation 5), and there are only two local con®gurations of the
pairwise invasibility plot possible (Fig. 9b), both of which are non-generic cases in the general
classi®cation of Fig. 2. Once the singular has been established, all mutations are neutral (Fig. 9b;
cf. the Bishop±Cannings theorem, 1978). In matrix games, the singular strategy is then ESS-stable
if it can invade other populations if initially rare itself (Maynard Smith, 1982, p.14). If this is the
case, then the ESS is also automatically convergence-stable (Fig. 9b; Taylor, 1989; Eshel, 1996).
Mutual invasibility near the ESS is possible, but branching does not occur.
Although evolutionary branching is reminiscent of speciation, in the present context of asexually

reproducing organisms, the species concept has no clear meaning. The possible connection between
branching and speciation depends on the extent to which our results generalize to diploid and
sexual organisms, and in particular whether reproductive isolation evolves between the emerging
branches. One possible way of applying our approach to sexual populations is the following.
Assume that there is a continuum of potential allele types on a single, diploid locus, and that there
exists a function / such that /(x1,x2) is the phenotype of an individual with alleles x1 and x2.
Moreover, we assume that the phenotype of a heterozygote is always intermediate between that of
the two homozygotes. Note that this does not necessarily imply that the heterozygote also has an
intermediate ®tness. Consider an initially rare mutant allele y in a randomly mating monomorphic
resident population with allele x. As long as the mutant allele is still rare, its exponential growth
rate is equal to the exponential growth rate of the number of heterozygotes. For the mutant's
®tness we thus ®nd

sx�y� � r /�x; y�E/�x;x�

 � �25�

Figure 9. (a) Local con®guration of the pairwise invasibility plot near a local ®tness maximum (i.e. optimal
strategy) if the environment is one-dimensional; the signs are opposite near a local ®tness minimum (i.e.
pessimal strategy). (b) Pairwise invasibility plot in the case of an ESS if the mutant's ®tness is a linear function

of the mutant's strategy (for a non-ESS the signs are opposite).
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(cf. Equation 2), where /(x,y) is the phenotype of the heterozygote, and /(x,x) is the phenotype of
the resident homozygote. Using this de®nition of sx(y), the framework can be applied to sexual
populations with Mendelian inheritance describing evolution in allele space rather than in phe-
notype space.
Depending on the particular problem at hand, all eight local con®gurations (Fig. 2) of the

pairwise invasibility plot for allele types are theoretically possible, including the branching point.
Branching in allele space leads to genetic polymorphisms where random mating also gives rise to
heterozygotes with intermediate phenotypes. A necessary prerequisite for the evolution of repro-
ductive isolation between two branches is that these heterozygote o�spring have a lower ®tness
than homozygotes within the branches, while at the same time the genetic polymorphism in the
population as a whole is preserved. During the process of evolutionary branching, both conditions
are ful®lled. The heterozygotes have intermediate phenotypes that are selected against (Fig. 4e),
and still the dimorphism is protected due to frequency-dependent selection. Evolutionary
branching of alleles thus yields a stable dimorphism with partial post-zygotic isolation of the
branches (that is, heterozygote inferiority). Under appropriate conditions, pre-zygotic reproductive
isolation may indeed evolve, resulting in the formation of two distinct species (e.g. Maynard Smith,
1966; Balkau and Feldman, 1973; Dickinson and Antonovics, 1973; Felsenstein, 1981; Seger, 1985;
Diehl and Bush, 1989; de MeeuÃ s et al., 1993).
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Appendix 1

Consider a dimorphic resident population with strategies x1 and x2 near a singular strategy x*, and
let sx1; x2�y� denote the ®tness of an initially rare mutant with strategy y. Second-order Taylor
expansion of sx1; x2�y� for x1, x2, and y close to x*, yields

sx1;x2 �y� � a� b1 x1 ÿ x�� � � b2 x2 ÿ x�� � � b3 y ÿ x�� �
� 1

2
c11 x1 ÿ x�� �2 � 1

2
c22 x2 ÿ x�� �2 � 1

2
c33 y ÿ x�� �2

� c12 x1 ÿ x�� � x2 ÿ x�� � � c13 x1 ÿ x�� � y ÿ x�� � � c23 x2 ÿ x�� � y ÿ x�� � �A1�

where the coe�cients bi, cij (i � 1; 2; 3; j � 1; 2; 3) denote the ®rst- and second-order derivatives of
sx1,x2(y) evaluated at x1 � x2 � y � x*. Since the order of the numbering of the resident strategies is
arbitrary, we have

sx1;x2 �y� � sx2;x1�y� �A2�
If we apply this to Equation (A1), we ®nd that

b1 � b2; c11 � c22; c13 � c23 �A3�
Furthermore, as residents are selectively neutral among themselves, we necessarily have
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sx1 ;x2�x1� � sx1 ;x2�x2� � 0 �A4�

which, if applied to Equation (A1), yields the additional conditions

a � 0

b1 � b2 � b3 � 0

c11 � c22 � 0

c13 �
1

2
c33 � c23 �

1

2
c33 � 0

c12 � c23 � c12 � c13 � 0 �A5�

Finally, as the set of potential protected dimorphisms connects to the diagonal of the pairwise
invasibility plot exactly at the singular strategy (Fig. 3), we have

sx� ;x� �y� � sx� �y� �A7�

Second-order Taylor expansion of sx*(y) for y close to x* gives

sx� �y� � sx� x�� � � osx�y�
oy

� �
x�x�

y�x�

y ÿ x�� � � 1

2

o2sx�y�
oy2

� �
x�x�

y�x�

y ÿ x�� �2

�A8�
in which the ®rst term is zero because of the selective neutrality of residents among themselves. The
second term is also zero, because the local ®tness gradient vanishes at the singular strategy.
Equating (A1) with (A8) for x1 � x2 � x� thus gives

c33 �
o2sx�y�

oy2

� �
x�x�

y�x� �A9�
If we combine the information given in (A3), (A5) and (A9), and use this to simplify Equation
(A1), we get

sx1 ;x2�y� �
o2sx�y�

oy2

� �
x�x�

y�x�

�y ÿ x1��y ÿ x2�
�A10�

It follows that the graph of sx1,x2(y) as a function of y is a parabola with zeros at y � x1 and y � x2.
If x* is ESS-stable, the coe�cient in (A10) is negative (see Equation 5), so that the parabola has a
maximum and is positive for y in between x1 and x2 (Fig. 4b). If x* lacks ESS-stability, the
coe�cient in (A10) is positive (see Equation 5), and the parabola has a minimum and is positive for
y outside x1 and x2 (Fig. 4e).
Equation (A10) readily generalizes to cases of mutual invasibility of nearby types in the vicinity

of a singular coalition. Consider a protected polymorphism x1,...,xn close to a singular coalition
x1*,...,xn*. For given i, let xi¢ denote a mutant derived from xi that can coexist with all the other
strategies including xi itself. Proceeding in a similar manner as before, we get a second-order Taylor
approximation of the ®tness of a new mutant with strategy y close to xi and xi¢ in the now (n+1)-
morphic population

sx1 ;...;xi;x0i;...;xn�y� �
o2sx1;...;xi;...;xn�y�

oy2

" #
y�x�i
xj�x�j 8j

�y ÿ xi� y ÿ x0i
ÿ �

�A11�
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For a mutant close to xi*, the ®tness as a function of its own strategy is a parabola with zeros at
y � xi and y � x �i . If xi* is ESS-stable (cf. Equation 15), then only mutants in between xi and xi¢
can invade, whereas otherwise only mutants outside can invade.

Appendix 2

We here derive algebraically the singular strategies and their stability properties in Levene's (1953)
`soft selection' model for haploids with m di�erent patches. Let cj � Kj=RKj denote the relative size
of the j th patch, and let the pre-competitive survival probability, fj(x), for an individual with
strategy x in the j th patch be given by Equation (22). Then, the ®tness of an initially rare mutant
with strategy y in an equilibrium resident population with strategy x is

sx�y� � log
Xm

j�1
cj

fj�y�
fj�x� � log

Xm

j�1
cj exp ÿ

y ÿ lj

ÿ �2ÿ xÿ lj

ÿ �2
2r2

 !
�B1�

(cf. Equation 21), where the total population size RNi is equal to RKi (cf. Equation 17). At a
singular strategy, x*, the local ®tness gradient by de®nition is zero, that is,

osx�y�
oy

� �
y�x�x�

� ÿ
Xm

j�1
cj

x� ÿ lj

r2

� �
� 0 �B2�

Solving Equation (B2) for x*, we ®nd

x� �
Xm

j�1
cjlj �B3�

That is, the weighted average of the within-patch optimal strategies. For the stability properties of
the singular strategy, we need

o2sx�y�
ox2

�
Xm

j�1
cj

x� ÿ lj

r2

� �2

� 1

r2
�B4�

and

o2sx�y�
oy2

�
Xm

j�1
cj

x� ÿ lj

r2

� �2

ÿ 1

r2
�B5�

for y � x � x�. Since (B4) is positive, it follows that x* can always spread in populations of a
di�erent strategy (cf. Equation 9). Moreover, summation of (B4) and (B5) gives

o2sx�y�
ox2

� o2sx�y�
oy2

� 2
Xm

j�1
cj

x� ÿ lj

r2

� �2

�B6�

which is also positive, so that mutual invasibility within the singular strategy's neighbourhood is
also always possible (cf. Equation 11). From (B5) it follows that x* is ESS-stable if

Xm

j�1
cj

x� ÿ lj

ÿ �2
r2

< 1 �B7�

but lacks ESS-stability if

Xm

j�1
cj

x� ÿ lj

ÿ �2
r2

> 1 �B8�

56 Geritz et al.

This copy belongs to 'agrawal'



(cf. Equation 5). In other words, x* is an ESS as long as r is su�ciently large; that is, as long as the
overlap of the ®tness functions in the di�erent patches is su�ciently large. The singular strategy is
always convergence-stable, however, independently of whether or not it is an ESS, because

o2sx�y�
ox2

ÿ o2sx�y�
oy2

� 2

r2
�B9�

which is positive (cf. Equation 8). Consequently, if x* is not an ESS, it is a branching point. With
three patches of equal size (c1 � c2 � c3 � 1=3), and with equally spaced within-patch optima with
di�erence d (l1 � ÿd;l2 � 0; l3 � d), the Inequalities (B7) and (B8) respectively become d/r
<Ö1.5 (�1.22) and d/r >Ö1.5.
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