Department of mathematics and statistics
Topology I
Final exam 14.11.2013
You may keep with you a one-sided size A4 "memory-helper" during the exam.

1. Let e be the discrete $\{0,1\}$-metric on the real line \mathbb{R}. Show that

$$
d(x, y)=\left|x_{1}-y_{1}\right|+e\left(x_{2}, y_{2}\right), \quad x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}
$$

defines a metric d in the plane \mathbb{R}^{2}. Determine the open ball $B(\overline{0}, 1)$ in this metric, where $\overline{0}=(0,0)$.
2. Let (X, d) be a metric space and $A \subset X$ a subset. Define the set $\operatorname{int}(A)$ consisting of inner points of A and its boundary set ∂A. Show that A is an open set if and only if

$$
A \cap \partial A=\emptyset
$$

3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function, and let

$$
G(f)=\{(x, f(x)): x \in \mathbb{R}\}
$$

be its graph. Show that the metric spaces \mathbb{R} and $G(f)$ are homeomorphic. The real line \mathbb{R} is equipped with its usual metric and $G(f)$ has the metric induced by the euclidean metric of the plane \mathbb{R}^{2}.
4. Let $A \subset \mathbb{R}^{2}$ be a closed and bounded set. Show that there is a point $(a, b) \in A$, such that

$$
a+b \leq x+y
$$

for all $(x, y) \in A$. Hint: continuous functions on compact sets.
5. (i) Define a connected metric space (X, d).
(ii) Is the metric space $\left(\mathbb{R}^{2}, e\right)$ connected, where e is the discrete $\{0,1\}$ metric in the plane? Please explain your argument.

