
Stochastic analysis, spring 2013, Solutions Exercises-4, 14.02.2013

1. Let τ1(ω) and τ2(ω) stopping times with respect to the filtration F = (Ft :
t ∈ T ) taking values in T . Here T could be either R+ or N.

Use the definition of stopping time to show that σ(ω) = min(τ1(ω), τ2(ω))
is a F-stopping time.

Solution.

{σ ≤ t} = {τ1 ≤ t} ∩ {τ2 ≤ t} ∈ Ft ∀t

2. Let (Mt : t ∈ R+) a F-martingale, and τ a F-stopping time.

Show that the stopped process (Mt∧τ : t ∈ R+)

Mτ
t (ω) =Mt∧τ (ω) =Mt(ω)1(τ(ω) > t) +Mτ(ω)(ω)1(τ(ω) ≤ t)

is a F-martingale.

We have shown this when T = N is discrete by using the martingale
transform. In continuous time we have not yet defined such martingale
transforms. Prove the statement directly by using the definitions.

Solution. This exercise requires Doob’s optional sampling theorem and
two regularization results from the continuous time theory which will be
presented in coming lectures (sorry for that).

• If τ is an F-stopping time,

τn(ω) = inf
{
k2−n : k ∈ N, k2−n ≥ τ(ω)

}
∈ Dn

is a F-stopping time.
This follows easily: since τ is a stopping time{

ω : τn(ω) > t
}
=
{
ω : τ(ω) > tn − 2−n} ∈ Ftn−2−n ⊆ Ft

where we have defined

tn(ω) = inf
{
k2−n : k ∈ N, k2−n ≥ t

}
∈ Dn

satisfies tn − 2−n < t ≤ tn.
Note that τn(ω) ↓ τ(ω) and tn ↓ t as n ↑ ∞. A bounded stopping
time is approximated from above by a sequence of stopping times
taking finitely many values.
Note also that it is not always possible to approximate a stopping
from below by a sequence of stopping times. In continuous time such
such stopping times are called predictable times.

• Doob’s discrete time optional stopping lemma:

Lemma 1. If 0 ≤ σ(ω) ≤ τ(ω) are bounded stopping times in the
discrete time filtration F = (Ft : t ∈ N), and Mt is a F-martingale,

EP (Mτ |Fσ)(ω) =Mσ(ω) (1)
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where Fσ is the stopped σ-algebra.

• In continuous time, a martingale has a right continuous modifications
with left limits, we say cadlag, Therefore we can always assume that
all the martingales we use are cadlag.

Note: assuming that the paths are cadlag, it follows that the paths t 7→
Mt(ω) are Borel measurable and therefore the composition ω 7→Mτ(ω)(ω)
is F-measurable.

In particular Mt(ω) = limn→∞Mtn(ω). For s = t there is nothing to
prove, since when τ is an F-stopping time,

Mτ∧t(ω) =Mτ (ω)1(τ(ω) ≤ t) +Mt1(τ(ω) > t)

is Ft measurable, since τ(ω)1(τ(ω) ≤ t) is Ft-measurable, because {r <
τ(ω) ≤ s} ∈ Ft, ∀ 0 ≤ r < s ≤ t.

Consider 0 ≤ s < t and let

sn(ω) = inf
{
k2−n : k ∈ N, k2−n ≥ s

}
∈ Dn

a dyadic sequence with sn ↓ s, sn ≤ tn.
Now note that at each dyadic level n

E(Mτn∧tn |Fsn)(ω) =Mτn∧sn(ω) (2)

follows directly from the discrete time result which we obtained by using
the martingale transform representation of the stopped process.

Now (τn(ω) ∧ sn) ↓ (τ(ω) ∧ s), and since u 7→Mu(ω) is right-continuous,

Mτn∧sn(ω) −→Mτ∧s(ω)

For the left hand side of (2), note that by applying Doob optional stopping
theorem at the dyadic level n for the bounded stopping times

(τn ∧ tn) ≤ (τ0 ∧ t0) ≤ (t+ 1) we obtain

Mτn∧tn = E(Mτ0∧t0 |Fτn∧tn)

where Mτ0∧t0 ∈ L1(P ), ( by the martingale transform representation),
and we work in the non-increasing discrete time filtration (Fτk∧tk ; k ∈ N).
This implies that the collection{

Mτn∧tn : n ∈ N
}

is uniformly integrable, and by Doob martingale backward convergence
theorem Mτn∧tn(ω)→Mτ∧t(ω), not only P -a.s. but also in L1(P ) norm.

We show that Yn := E(Mτn∧tn |Fsn) −→ Y := E(Mτ∧t|Fs) by using di-
rectly the definition of conditional expectation.
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Note that (Yn : n ∈ N) is uniformly integrable, because (Mτn∧tn : n ∈ N)
is U.I. For A ∈ Fs ⊆ Fsn ,

E
(
Yn1A

)
= E

(
Mτn∧tn1A

)
−→ E

(
Mτ∧t1A

)
= E

(
Y 1A)

Note also that Yn = Mτn∧sn is a martingale with time parameter n ∈ N,
and by the backward martingale convergence theorem Yn → Y∞ = Mτ∧s
P -almost surely and in L1(P ).

Therefore E
(
Yn1A

)
→ E(Y∞1A) = E(Y 1A) for all A ∈ Fs, which implies

Y∞ = Y , since Y∞ is Fs-measurable (assuming that the filtration F is
right-continuous).

It means that ∀A ∈ Fs

E
(
Mτ∧t1A

)
= E

(
Mτ∧s1A

)
Note that here we need to assume that the filtration F is right-continuous,
namely

Fs = Fs+ :=
⋂
n∈N
Fsn . (3)

In this way, assuming right-continuity for the filtration, we are able to
extend all the results for stopping times in discrete time to continuous
time.

3. Let (Mt(ω))t∈T a martingale with respect to the filtration F = (Ft) with
M0(ω) = 0. Here T could be either R+ or N.
Define the family of random times τx : x ∈ R

τx(ω) =

{
inf{s :Ms ≥ x} for x ≥ 0
inf{s :Ms ≤ x} for x < 0

Show that τx is a stopping time.

Solution For x > 0, t ∈ T ,

{τx > t} = { sup
s≤t

Ms < x} ∈ Ft

because by the regularization lemma in the lecture notes a martingale
indexed by R+ has almost surely left and right limits at all times, which
means

sup
s≤t

Ms(ω) = sup
s∈[0,t]∩Q

Ms(ω)

is Ft-measurable.

For x < 0 take the infimum.

4. Let

Mt(ω) =

t∑
s=1

Xs(ω)
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is a binary random walk where t ∈ N and (Xs : s ∈ N) are i.i.d. random
variables with

P (Xs = ±1) = P (Xs = ±1|Fs−1) = 1/2

Xs is Fs measurable and P -independent from Fs−1.

• Show that (Mt)t∈N and (M2
t − t)t∈N are F-martingales.

Solution

E(Mt|Ft−1) = EP (Mt−1 +Xt|Ft−1) =Mt−1 + 0,

E(M2
t |Ft−1) = EP ((Mt−1 +Xt)

2|Ft−1) =
EP (M

2
t−1 +X2

t + 2Mt−1Xt|Ft−1) =M2
t−1 + E(X2

t ) + 2Mt−1E(Xt) =M2
t−1 + 1

• Consider the stopping time σ(ω) = min(τa, τb) where a < 0 < b ∈ N,
and the stopped martingales (Mt∧σ)t∈N and (M2

t∧σ − t ∧ σ)t∈N.
Show that Doob’s martingale convergence theorem applies and

lim
t→∞

Mt∧σ(ω) =Mσ(ω)

exists P -almost surely.
Solution The stopped process (Mt∧σ) is a martingale taking values
in [a, b], therefore it is uniformly integrable (because it is bounded).
In particlar it is bounded in L1(P ) and Doob’s martingale conver-
gence theorem applies, P -almost surely (and by UI also in L1(P ))

lim
t→∞

Mt∧σ(ω) =Mσ(ω)

By the way, this implies already that P (σ < ∞) = 1, since on
the set {σ = ∞} the random walk would continue fluctuating with
(lim supMt − lim infMt) ≥ 1. In the next step we show that σ is
finite in another way.

• Consider now (M2
t∧σ − t ∧ σ). Use the martingale property together

with the reverse Fatou lemma to show that E(σ) <∞ which implies
P (σ <∞) = 1.
Solution The stopped martingale (M2

t∧σ − t∧ σ) is a submartingale
bounded from above, since

M2
t∧σ − t ∧ σ ≤ (a2 ∨ b2)

By Doob’s convergence theorem it has a limit P a.s. and since
Mt∧σ(ω)→Mσ(ω),

lim
t→∞

(M2
t∧σ − t ∧ σ) = (M2

σ − σ) ∈ L1(P )

and M2
σ(ω) is bounded, necessarily σ ∈ L1(P ). In particular P (σ <

∞) = 1.
We can see that σ ∈ L1(P ) also by the reverse Fatou lemma:
which applies since (M2

t∧σ − t ∧ σ) ≤ (a2 ∨ b2),
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E(M2
σ − σ) = E(lim sup

t→∞
M2
t∧σ − t ∧ σ) ≥ lim sup

t→∞
E(M2

t∧σ − t ∧ σ) = 0

which implies

E(σ) ≤ E(M2
σ) ≤ a2 ∨ b2 <∞

• For a < 0 < b ∈ N, compute P (τa < τb).

Hint: a martingale has constant expectation EP (Mt) = EP (M0). This
holds also for the stopped martingale Mτ

t =Mt∧τ .

Solution

0 = E(Mt∧σ) = E(Mσ)

where P (σ < ∞) = 1 and by uniform integrability we can take the limit
as t→∞ inside the expactation. Now

0 = E(Mσ) = aP (Mσ = a) + bP (Mσ = b) = aP (τa < τb) + b
(
1− P (τa < τb)

)
=⇒ P (τa < τb) =

b

b− a

5. Let Mt(ω) = Bt(ω), t ∈ R+, a Brownian motion which is assumed to be
F-adapted, and such that for all 0 < s < t the increment (Bt − Bs) is
P -independent from the σ-algebra Fs.
Note this since by assumption the Brownian motion is F-adapted, it follows
that FBt = σ(Bs : 0 ≤ s ≤ t) ⊆ Ft, which could be strictly bigger.

• Show that Bt, Mt = (B2
t − t) and Zat = exp(aBt − a2t/2) are F-

martingales.
Solution It follows since (Bt −Bs) ⊥⊥ Fs for 0 ≤ s ≤ t.

E(B2
t |Fs) = B2

s + E((Bt −Bs)2|Fs) + 2BsE(Bt −Bs|Fs)
B2
s + E((Bt −Bs)2) + 2BsE(Bt −Bs) = B2

s + (t− s) + 0

E(Zt|Fs) = E
(
exp(aBt − a2t/2)

∣∣Fs) =
E
(
exp(a(Bt −Bs)

∣∣Fs) exp(−a2(t− s)/2) exp(aBs − a2s/2)
= E

(
exp(a(Bt −Bs)

)
exp(−a2(t− s)/2)Zs

= E(exp(a
√
t− sB1)) exp(−a2(t− s)/2)Zs = Zs

where B1 has standard Gaussian distribution.

• Let σ(ω) = min(τa(ω), τb(ω)), for a < 0 < b ∈ R. We will see in the
lectures that the Doob martingale convergence theorem applies also
to continuous martingales in continuous time. By following the same
line of proof as in the random walk case check that P (σ <∞) = 1.

• Let a < 0 < b ∈ R. Compute P (τa < τb),
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Hints

When M is either a Brownian motion or a random walk with bounded
jumps, the stopped process Mt∧σ(ω) is a uniformly bounded martingale.
To compute P (τa < τb), use first the martingale property

E(Mt∧σ) = E(M0) = 0,

then for t→∞ use the bounded convergence theorem.

The stopped process Bt∧σ(ω) is a martingale, and since it takes values in
[a, b] it is bounded and therefore uniformly integrable.

By Doob’s martingale convergence theorem

lim
t→∞

Bt∧σ = Bσ

with both P -almost sure convergence and in L1(P ), and Bσ ∈ L1(P )

Also the martingale (B2
t∧σ − t ∧ σ) ≤ a2 ∨ b2 is a submartingale bounded

from above, and Doob’s convergence theorem applies,

(B2
t∧σ − t ∧ σ)→ (B2

σ − σ)

P -almost surely with (B2
σ − σ) ∈ L1(P ). Since |B2

σ(ω)| is bounded, it
follows that σ ∈ L1(P ) and P (σ <∞).

Now since σ(ω) <∞, with probability one, either Bσ(ω) = a, or Bσ(ω) =
b.

To compute P (τa < τb), use first the martingale property and the bounded
convergence theorem

0 = E(B0) = E(Bt∧σ)→ E(Bσ) = aP (Bσ = a) + b(1− P (Bσ = a))

and we obtain the same result as in the random walk case.
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