Stochastic analysis, 7. exercises

Janne Junnila

March 14, 2013

Exercise 1 Suppose we have an urn which contains at time $t=0$ two balls, one black and one white. At each time $t \in \mathbb{N}$ we draw uniformly at random from the urn one ball, and put it back together with a new ball of the same colour.

We introduce the random variables

$$
X_{t}(\omega)=1\{\text { the ball drawn at time } t \text { is black }\}
$$

and denote $S_{t}=\left(1+X_{1}+\ldots+X_{t}\right), M_{t}=S_{t} /(t+2)$, the proportion of black balls in the urn. We use the filtration $\left\{\mathcal{F}_{n}\right\}$ with $\mathcal{F}_{n}=\sigma\left\{X_{s}: s \in \mathbb{N}, s \leq t\right\}$.
i) Compute the Doob decomposition of $\left(S_{t}\right), S_{t}=S_{0}+N_{t}+A_{t}$, where $\left(N_{t}\right)$ is a martingale and $\left(A_{t}\right)$ is predictable.
ii) Show that $\left(M_{t}\right)$ is a martingale and find the representation of $\left(M_{t}\right)$ as a martingale transform $M_{t}=(C \cdot N)_{t}$, where $\left(N_{t}\right)$ is the martingale part of $\left(S_{t}\right)$ and $\left(C_{t}\right)$ is predictable.
iv) Note that the martingale $\left(M_{t}\right)_{t \geq 0}$ is uniformly integrable (Why?). Show that P a.s. and in L^{1} exists $M_{\infty}=\lim _{t \rightarrow \infty} M_{t}$. Compute $E\left(M_{\infty}\right)$.
v) Show that $P\left(0<M_{\infty}<1\right)>0$.

Since $M_{\infty}(\omega) \in[0,1]$, it is enough to show that $0<E\left(M_{\infty}^{2}\right)<E\left(M_{\infty}\right)$ with strict inequalities.

Solution 1 i) We have $A_{t}=\sum_{i=1}^{t}\left(E\left(S_{i} \mid F_{i-1}\right)-S_{i-1}\right)$ and $N_{t}=\sum_{i=1}^{t}\left(S_{i}-E\left(S_{i} \mid F_{i-1}\right)\right)$. By the definition of S_{t}, we can write these as

$$
\begin{aligned}
A_{t} & =\sum_{i=1}^{t}\left(E\left(1+X_{1}+\ldots+X_{i} \mid \mathcal{F}_{i-1}\right)-1-X_{1}-\ldots-X_{i-1}\right) \\
& =\sum_{i=1}^{t} E\left(X_{i} \mid F_{i-1}\right)=\sum_{i=1}^{t} M_{i-1} \\
N_{t} & =\sum_{i=1}^{t}\left(1+X_{1}+\ldots+X_{i}-E\left(1+X_{1}+\ldots+X_{i} \mid F_{i-1}\right)\right)= \\
& =\sum_{i=1}^{t}\left(X_{i}-E\left(X_{i} \mid F_{i-1}\right)\right)=\sum_{i=1}^{t}\left(X_{i}-M_{i-1}\right)
\end{aligned}
$$

ii) M_{t} is a martingale since

$$
\begin{aligned}
E\left(M_{t} \mid F_{t-1}\right) & =E\left(S_{t} /(t+2) \mid F_{t-1}\right)=\frac{E\left(S_{0}+A_{t}+N_{t} \mid F_{t-1}\right)}{t+2}=\frac{S_{0}+A_{t}+N_{t-1}}{t+2} \\
& =\frac{S_{t-1}+M_{t-1}}{t+2}=\frac{\frac{S_{t-1}}{t+1}(t+1)+M_{t-1}}{t+2}=\frac{M_{t-1}(t+1)+M_{t-1}}{t+2}=M_{t-1} .
\end{aligned}
$$

Moreover,

$$
M_{t}=\frac{S_{t}}{t+2}=\frac{S_{0}+A_{t}+N_{t}}{t+2}=\frac{S_{0}+\sum_{i=1}^{t} M_{i-1}+N_{t}}{t+2}
$$

so

$$
(t+2) M_{t}-\sum_{i=1}^{t} M_{i-1}-S_{0}=N_{t}
$$

Therefore
$N_{t}-N_{t-1}=(t+2) M_{t}-\sum_{i=1}^{t} M_{i-1}-S_{0}-(t+1) M_{t-1}+\sum_{i=1}^{t-1} M_{i-1}+S_{0}=(t+2)\left(M_{t}-M_{t-1}\right)$.
Summing over t gives us

$$
M_{n}=M_{0}+\sum_{t=1}^{n} \frac{N_{t}-N_{t-1}}{t+2} .
$$

iv) The martingale M_{t} is uniformly integrable, since $M_{t}<1$ for all t. For the same reason Doob's martingale convergence theorem applies and $M_{t} \rightarrow M_{\infty}$ almost surely and in L^{1}. We have $E\left(M_{\infty}\right)=M_{0}=\frac{1}{2}$.
v) To reach a contradiction, assume that $P\left(0<M_{\infty}<1\right)=0$, then by (iv) we must have $P\left(M_{\infty}=0\right)=P\left(M_{\infty}=1\right)=\frac{1}{2}$. It follows that $E\left(M_{\infty}^{2}\right)=\frac{1}{2}$. We will compute $E\left(M_{\infty}^{2}\right)$ to get a contradiction. We note that M_{t}^{2} is a submartingale. Write the Doob decomposition $M_{t}^{2}=M_{0}^{2}+L_{t}+P_{t}$, where L_{t} is a martingale and P_{t} is a predictable increasing process,

$$
\begin{aligned}
L_{t} & =\sum_{i=1}^{t}\left(M_{i}^{2}-E\left(M_{i}^{2} \mid F_{i-1}\right)\right) \\
P_{t} & =\sum_{i=1}^{t}\left(E\left(M_{i}^{2} \mid F_{i-1}\right)-M_{i-1}^{2}\right) \\
& =\sum_{i=1}^{t}\left(\frac{E\left(S_{i}^{2} \mid F_{i-1}\right)}{(i+2)^{2}}-\frac{S_{i-1}^{2}}{(i+1)^{2}}\right) \\
& =\sum_{i=1}^{t}\left(\frac{S_{i-1}^{2}+2 S_{i-1} E\left(X_{i} \mid F_{i-1}\right)+E\left(X_{i}^{2} \mid F_{i-1}\right)}{(i+2)^{2}}-\frac{S_{i-1}^{2}}{(i+1)^{2}}\right) \\
& =\sum_{i=1}^{t}\left(\frac{(i+1)^{2} S_{i-1}^{2}+2(i+1)^{2} S_{i-1} M_{i-1}+(i+1)^{2} M_{i-1}-(i+2)^{2} S_{i-1}^{2}}{(i+1)^{2}(i+2)^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{t}\left(\frac{(-2 i-3) S_{i-1}^{2}+2(i+1) S_{i-1}^{2}+(i+1) S_{i-1}}{(i+1)^{2}(i+2)^{2}}\right) \\
& =\sum_{i=1}^{t}\left(\frac{(i+1) S_{i-1}-S_{i-1}^{2}}{(i+1)^{2}(i+2)^{2}}\right) \\
& =\sum_{i=1}^{t}\left(\frac{S_{i-1}}{(i+1)(i+2)^{2}}-\frac{S_{i-1}^{2}}{(i+1)^{2}(i+2)^{2}}\right) \\
& =\sum_{i=1}^{t}\left(\frac{M_{i-1}-M_{i-1}^{2}}{(i+2)^{2}}\right) .
\end{aligned}
$$

Thus we get a recurrence relation for $E\left(M_{t}^{2}\right)$, namely

$$
E\left(M_{t}^{2}\right)=E\left(P_{t}\right)+E\left(M_{0}^{2}\right)=\frac{1}{4}+\sum_{i=1}^{t}\left(\frac{E\left(M_{i-1}\right)-E\left(M_{i-1}^{2}\right)}{(i+2)^{2}}\right)=\frac{1}{4}+\sum_{i=1}^{t}\left(\frac{1}{2(i+2)^{2}}-\frac{E\left(M_{i-1}^{2}\right)}{(i+2)^{2}}\right) .
$$

Write $a_{n}=E\left(M_{n}^{2}\right)$. Then it follows that

$$
a_{n}-a_{n-1}=\frac{1}{2(n+2)^{2}}-\frac{1}{(i+2)^{2}} a_{n-1}
$$

which can also be written as

$$
a_{n}=\frac{1}{2(n+2)^{2}}+\frac{(n+1)(n+3)}{(n+2)^{2}} a_{n-1}, \quad a_{0}=1 / 4
$$

We will show by induction that $a_{n}=\frac{1}{3}-\frac{1}{6(n+2)}$. This clearly holds for a_{0}. Assuming that it holds for a_{n}, we get

$$
\begin{aligned}
a_{n+1} & =\frac{1}{2(n+3)^{2}}+\frac{(n+2)(n+4)}{(n+3)^{2}}\left(\frac{1}{3}-\frac{1}{6(n+2)}\right) \\
& =\frac{1}{2(n+3)^{2}}+\frac{(n+2)(n+4)(2(n+2)-1)}{6(n+2)(n+3)^{2}} \\
& =\frac{3(n+2)+(n+2)(n+4)(2(n+2)-1)}{6(n+2)(n+3)^{2}} \\
& =\frac{3(n+2)+2(n+2)^{2}(n+4)-(n+2)(n+4)}{6(n+2)(n+3)^{2}} \\
& =\frac{3(n+2)+2(n+2)^{2}(n+4)-(n+2)}{6(n+2)(n+3)^{2}}-\frac{1}{6(n+3)} \\
& =\frac{2(n+2)(1+(n+2)(n+4))}{6(n+2)(n+3)^{2}}-\frac{1}{6(n+3)} \\
& =\frac{1}{3}-\frac{1}{6(n+3)} .
\end{aligned}
$$

Therefore it follows that $E\left(M_{\infty}^{2}\right)=\lim _{n \rightarrow \infty} a_{n}=1 / 3<1 / 2$, which is a contradiction.
Exercise 2 Consider an i.i.d. random sequence ($U_{t}: t \in \mathbb{N}$) with uniform distribution on $[0,1], P\left(U_{1} \in d x\right)=1_{[0,1]}(x) d x$. Note that $E\left(U_{t}\right)=1 / 2$.

Consider also the random variable $-\log \left(U_{1}(\omega)\right)$ which is 1 -exponential w.r.t. P.

$$
P\left(-\log \left(U_{1}\right)>x\right)= \begin{cases}\exp (-x), & \text { if } x \geq 0 \\ 1, & \text { if } x<0\end{cases}
$$

$-\log \left(U_{1}\right) \in L^{1}(P)$ with $E\left(-\log \left(U_{1}\right)\right)=1$.
(a) Let $Z_{0}=1$, and

$$
Z_{t}(\omega)=2^{t} \prod_{s=1}^{t} U_{s}(\omega)
$$

Show that $\left(Z_{t}\right)$ is a martingale in the filtration $\mathbb{F}=\left(\mathcal{F}_{t}: t \in \mathbb{N}\right)$, with $\mathcal{F}_{t}=\sigma\left(Z_{1}, \ldots, Z_{t}\right)=$ $\sigma\left(U_{1}, \ldots, U_{t}\right)$.
(b) Show that $E\left(Z_{t}\right)=1$.
(c) Show that the limit $Z_{\infty}(\omega)=\lim _{t \rightarrow \infty} Z_{t}(\omega)$ exists P-almost surely.
(d) Show that

$$
Z_{\infty}(\omega)=0 \quad \text { P-a.s. }
$$

(e) Show that the martingale Z_{t} is not uniformly integrable.
(f) Show that $\log \left(Z_{t}(\omega)\right)$ is a supermartingale, does it satisfy the assumptions of Doob's martingale convergence theorem?
(g) At every time $t \in \mathbb{N}$, define the probability measure

$$
Q_{t}(A)=E\left(Z_{t} 1_{A}\right) \quad \forall A \in \mathcal{F}_{t}
$$

on the probability space $\left(\Omega, \mathcal{F}_{t}\right)$.
Show that the random variables $\left(U_{1}, \ldots, U_{t}\right)$ are i.i.d. also under Q_{t}, compute their probability density under Q_{t}.

Solution 2 (a) Z_{t} is clearly integrable. Moreover,

$$
E\left(Z_{t} \mid F_{t-1}\right)=2^{t} \prod_{s=1}^{t-1} U_{s} E\left(U_{t} \mid F_{t-1}\right)=2^{t-1} \prod_{s=1}^{t-1} U_{s}
$$

by independence.
(b) Since Z_{t} is a martingale, we have $E\left(Z_{t}\right)=Z_{0}=1$.
(c) The martingale Z_{t} is bounded from below, so by Doob's martingale convergence theorem $Z_{\infty}(\omega)=\lim _{t \rightarrow \infty} Z_{t}(\omega)$ exists P-almost surely.
(d) Let $\varepsilon>0$. We will show that

$$
\sum_{t=1}^{\infty} P\left(Z_{t}>\varepsilon\right)<\infty
$$

Then by Borel-Cantelli lemma, $Z_{t}(\omega) \leq \varepsilon$ almost surely for t large enough. Because ε is arbitrary, the result will follow. Now

$$
P\left(Z_{t}>\varepsilon\right)=P\left(\prod_{s=1}^{t} U_{s}>\frac{\varepsilon}{2^{t}}\right)=P\left(-\sum_{s=1}^{t} \log U_{s}<\log \frac{2^{t}}{\varepsilon}\right)
$$

Recalling that the sum of i.i.d. exponentially distributed random variables has Gaussian distribution, we see that

$$
P\left(Z_{t}>\varepsilon\right)=\int_{0}^{\log \frac{2^{t}}{\varepsilon}} \frac{x^{t-1} e^{-x}}{(t-1)!} d x
$$

Integration by parts gives us

$$
\int_{0}^{\log \frac{2^{t}}{\varepsilon}} \frac{x^{t-1} e^{-x}}{(t-1)!} d x=-\left[\begin{array}{l}
\log \frac{2^{t}}{\varepsilon} \\
0
\end{array} \frac{x^{t-1} e^{-x}}{(t-1)!}\right]+\int_{0}^{\log \frac{2^{t}}{\varepsilon}} \frac{x^{t-2} e^{-x}}{(t-2)!} d x
$$

and by iterating this we have

$$
\int_{0}^{\log \frac{2^{t}}{\varepsilon}} \frac{x^{t-1} e^{-x}}{(t-1)!} d x=-\left[{ }_{0}^{\log \frac{2^{t}}{\varepsilon}} e^{-x}\left(1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{t-1}}{(t-1)!}\right)\right]
$$

Therefore

$$
P\left(Z_{t}>\varepsilon\right)=1-\frac{\varepsilon}{2^{t}}\left(1+\log \frac{2^{t}}{\varepsilon}+\ldots+\frac{\left(\log \frac{2^{t}}{\varepsilon}\right)^{t-1}}{(t-1)!}\right)=\frac{\varepsilon}{2^{t}} \sum_{i=t}^{\infty} \frac{\left(\log \frac{2^{t}}{\varepsilon}\right)^{i}}{i!}
$$

Now, we can change the order of summation to get

$$
\sum_{t=1}^{\infty} P\left(Z_{t}>\varepsilon\right)=\sum_{i=1}^{\infty} \sum_{t=1}^{i} \frac{\varepsilon\left(\log \frac{2^{t}}{\varepsilon}\right)^{i}}{2^{t} i!}
$$

Moreover, for large $i, \frac{\varepsilon\left(\log \frac{2^{t}}{\varepsilon}\right)^{i}}{2^{t i!}}$ increases as t increases from 1 to i :

$$
\begin{aligned}
\frac{\frac{\left(\log \frac{2^{t+1}}{\varepsilon}\right)^{i}}{2^{t+1}}}{\frac{\left(\log \frac{2^{t}}{\varepsilon}\right)^{i}}{2^{t}}} & =\frac{1}{2}\left(\frac{(t+1) \log 2-\log \varepsilon}{t \log 2-\log \varepsilon}\right)^{i} \\
& \geq \frac{1}{2}\left(1+\frac{\log 2}{t \log 2-\log \varepsilon}\right)^{i} \\
& \geq \frac{1}{2}\left(1+\frac{\log 2}{i \log 2-\log \varepsilon}\right)^{i} \\
& =\frac{1}{2}\left(1+\frac{1}{i-\frac{\log \varepsilon}{\log 2}}\right)^{i-\frac{\log \varepsilon}{\log 2}}\left(1+\frac{1}{i-\frac{\log \varepsilon}{\log 2}}\right)^{\frac{\log \varepsilon}{\log 2}} \rightarrow \frac{e}{2}>1 \quad \text { as } i \rightarrow \infty
\end{aligned}
$$

It follows that we have the estimate

$$
\sum_{t=1}^{\infty} P\left(Z_{t}>\varepsilon\right) \lesssim \sum_{i=1}^{\infty} \frac{\left(\log \frac{2^{i}}{\varepsilon}\right)^{i}}{2^{i}(i-1)!}
$$

Also for large $i, \log \frac{2^{i}}{\varepsilon} \leq i c$, where $\log 2<c<2 / e$. (The chosen upper bound will become clear soon.) Thus we only have to show that

$$
\sum_{i=1}^{\infty} \frac{(i c / 2)^{i}}{(i-1)!}<\infty
$$

To do this, we will approximate the logarithm of each term:

$$
\begin{aligned}
i \log (i c / 2)-\sum_{j=1}^{i-1} \log j & \leq i \log i+i \log (c / 2)-\int_{1}^{i-1} \log x d x \\
& \leq i \log i+i \log (c / 2)-(i-1) \log (i-1)+(i-1)+1 \\
& =i \log \frac{i}{i-1}+i(1+\log (c / 2))+\log (i-1)
\end{aligned}
$$

Now $i \log \frac{i}{i-1} \rightarrow 1$ as $i \rightarrow \infty$ and the linear term $i(1+\log (c / 2))$ dominates $\log (i-1)$ with $1+\log (c / 2)<0$, so

$$
\frac{(i c / 2)^{i}}{(i-1)!} \lesssim C e^{-D i}
$$

for some constants $C, D>0$ and the series converges.
(e) Since $E\left(Z_{\infty}\right)=0 \neq \lim _{t \rightarrow \infty} E\left(Z_{t}\right)=1$, the martingale cannot be uniformly integrable.
(f) Because $\log \left(Z_{t}\right)=t \log 2+\sum_{i=1}^{t} \log U_{i}$, and because $\int_{0}^{1} \log x d x<\infty, \log \left(Z_{t}\right)$ is integrable. Moreover, we have

$$
\begin{aligned}
E\left(\log \left(Z_{t}\right) \mid F_{t-1}\right) & =t \log 2+\sum_{i=1}^{t} E\left(\log U_{i} \mid F_{t-1}\right) \leq t \log 2+\sum_{i=1}^{t-1} \log U_{i}-\log 2 \\
& =(t-1) \log 2+\sum_{i=1}^{t-1} \log U_{i}=\log \left(2^{t-1} \prod_{i=1}^{t-1} U_{i}\right)=\log \left(Z_{t-1}\right)
\end{aligned}
$$

so $\log \left(Z_{t}\right)$ is a supermartingale. It does not satisfy the assumptions of Doob's martingale convergence theorem, since

$$
t \log 2-t=E\left(\log \left(Z_{t}\right)\right)=E\left(\log \left(Z_{t}\right)^{+}\right)-E\left(\log \left(Z_{t}\right)^{-}\right)
$$

so $E\left(\log \left(Z_{t}\right)^{-}\right)=E\left(\log \left(Z_{t}\right)^{+}\right)+t(1-\log 2) \geq t(1-\log 2) \rightarrow \infty$.
(g) Suppose that $1 \leq i<j \leq t$. We have

$$
\begin{aligned}
Q_{t}\left(\left\{U_{i}<a\right\} \cap\left\{U_{j}<b\right\}\right) & =\int Z_{t} 1_{\left\{U_{i}<a\right\}} 1_{\left\{U_{j}<b\right\}} d P=2^{t} \int U_{1} \ldots U_{t} 1_{\left\{U_{i}<a\right\}} 1_{\left\{U_{j}<b\right\}} d P \\
& =4 \int U_{i} U_{j} 1_{\left\{U_{i}<a\right\}} 1_{\left\{U_{j}<b\right\}} d P=4 \int U_{i} 1_{\left\{U_{i}<a\right\}} d P \int U_{j} 1_{\left\{U_{i}<b\right\}} d P \\
& =\int Z_{t} 1_{\left\{U_{i}<a\right\}} d P \int Z_{t} 1_{\left\{U_{j}<b\right\}} d P=Q_{t}\left(\left\{U_{i}<a\right\}\right) Q_{t}\left(\left\{U_{j}<b\right\}\right)
\end{aligned}
$$

so U_{i} and U_{j} are independent. Their cumulative distribution function is

$$
U(x)=Q_{t}\left(\left\{U_{i}<a\right\}\right)=2 \int U_{i} 1_{\left\{U_{i}<a\right\}} d P=2 \int_{0}^{1} x 1_{\{x<a\}} d x=2 \int_{0}^{a} x d x=a^{2}
$$

so the probability density is $u(x)=2 x$.
Exercise 3 Consider a function $f \in L^{1}\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right), d x\right)$. Define the σ-algebra

$$
\mathcal{F}_{k}=\sigma\left\{Q_{k, z}=\left(z 2^{-k},(z+1) 2^{-k}\right], z \in \mathbb{Z}^{d}\right\} \subset \mathcal{B}\left(\mathbb{R}^{d}\right), \quad k \in \mathbb{Z}
$$

and the two sided filtration $\mathbb{F}=\left(F_{k}: k \in \mathbb{Z}\right)$ where the dyadic cubes $\left(Q_{k, z}: z \in \mathbb{Z}^{d}\right)$ form a partition of \mathbb{R}^{d}, and the functions

$$
f_{k}(x)=\sum_{z \in \mathbb{Z}^{d}} 1\left(x \in Q_{k, z}\right) \frac{1}{\left|Q_{k, z}\right|} \int_{Q_{k, z}} f(y) d y
$$

where for $k \in \mathbb{Z},\left|Q_{k, z}\right|=2^{-k d}$ is the Lebesgue measure of the d-dimensional dyadic cube.

Show that $f_{k}(x)$ is an \mathbb{F}-martingale w.r.t. Lebesgue measure.
Show that $\lim _{k \rightarrow-\infty} f_{k}(x)=0$ both almost surely and in $L^{1}\left(\mathbb{R}^{d}\right)$-sense.
Define the maximal function

$$
f \square(x):=\sup _{k \in \mathbb{Z}} f_{k}(x) .
$$

Show that for $1<p<\infty$

$$
\left\|f^{\square}(x)\right\|_{L^{p}\left(\mathbb{R}^{d}\right)} \leq \frac{p}{p-1} \sup _{k \in \mathbb{Z}}\left\|f_{k}\right\|_{L^{p}\left(\mathbb{R}^{d}\right)} \leq \frac{p}{p-1}\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

and

$$
c P\left(\left|f^{\square}(x)\right|>c\right) \leq \sup _{k \in \mathbb{Z}}\left\|f_{k}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)} \leq\|f\|_{L^{1}\left(\mathbb{R}^{d}\right)}
$$

Solution 3 We will proceed lemma by lemma.
Lemma 1 We have $\left\|f_{k}\right\|_{p} \leq\|f\|_{p}$ for all $k \in \mathbb{Z}$ and $1 \leq p<\infty$.
Proof. We have

$$
\begin{aligned}
\left\|f_{k}\right\|_{p}^{p} & =\sum_{z \in \mathbb{Z}^{d}}\left|Q_{k, z}\right| \cdot \frac{1}{\left|Q_{k, z}\right|^{p}}\left|\int_{Q_{k, z}} f(y) d y\right|^{p} \\
& \leq \sum_{z \in \mathbb{Z}^{d}} \frac{1}{\left|Q_{k, z}\right|^{p-1}}\left(\int_{Q_{k, z}}|f(y)| d y\right)^{p}
\end{aligned}
$$

If $p=1$, then this is just $\|f\|_{1}$, proving the claim. Otherwise we apply Hölder's inequality and get

$$
\left\|f_{k}\right\|_{p}^{p} \leq \sum_{z \in \mathbb{Z}^{d}} \frac{1}{\left|Q_{k, z}\right|^{p-1}} \int_{Q_{k, z}}|f(y)|^{p} d y\left|Q_{k, z}\right|^{p / q}=\|f\|_{p}^{p}
$$

The above lemma shows in particular that each f_{k} is integrable.
Lemma 2 For each $k \in \mathbb{Z}, E\left(f_{k}\right)=E(f)$. Moreover, $E\left(f \mid F_{k}\right)=f_{k}$.
Proof. We have

$$
\int_{\mathbb{R}^{d}} f_{k}(x) d x=\sum_{z \in \mathbb{Z}^{d}}\left|Q_{k, z}\right| \cdot \frac{1}{\left|Q_{k, z}\right|} \int_{Q_{k, z}} f(y) d y=\int_{\mathbb{R}^{d}} f(x) d x
$$

Clearly f_{k} is F_{k} measurable. In addition if $A \in F_{k}$, then A is a union of disjoint dyadic cubes Q_{i}. We have

$$
\int_{A} f(x) d x=\sum_{Q_{i}} \int_{Q_{i}} f(x) d x=\sum_{Q_{i}}\left|Q_{i}\right| f_{k}\left(z_{i}\right)=\sum_{Q_{i}} \int_{Q_{i}} f_{k}(y) d y=\int_{A} f_{k}(y) d y,
$$

where z_{i} is any point in Q_{i}. Thus by the uniqueness of conditional expectation, $E\left(f \mid F_{k}\right)=f_{k}$.

Lemma 3 The sequence f_{k} is a martingale.
Proof. By previous lemma this follows as usual from the tower property of the conditional expectation

$$
E\left(f_{k+1} \mid F_{k}\right)=E\left(E\left(f \mid F_{k+1}\right) \mid F_{k}\right)=f_{k} .
$$

Lemma 4 We have $f_{k} \rightarrow 0$ almost everywhere as $k \rightarrow-\infty$.
Proof. For every $x \in \mathbb{R}^{d}$,

$$
\left|f_{k}(x)\right| \leq \sum_{z \in \mathbb{Z}^{d}} 1\left(x \in Q_{k, z}\right) \frac{1}{\left|Q_{k, z}\right|} \int_{Q_{k, z}}|f(y)| d y \leq \frac{1}{2^{-k d}}\|f\|_{L^{1}}
$$

The right hand side goes to 0 as $k \rightarrow-\infty$.
Lemma 5 We have $f_{n} \rightarrow f$ almost surely and in L^{1} as $n \rightarrow \infty$.
Proof. Almost surely convergence follows either by using Lebesgue differentiation theorem, or by the martingale convergence theorem. To show convergence in L^{1}, we split the integral into two parts. Let $\varepsilon>0$. Then there exists a (large) dyadic cube Q, such that $\int_{\mathbb{R}^{d} \backslash Q}|f(x)| d x<\varepsilon$. Then also

$$
\int_{\mathbb{R}^{d} \backslash Q}\left|f_{k}(x)-f(x)\right| d x \leq \int_{\mathbb{R}^{d} \backslash Q}\left|f_{k}(x)\right|+|f(x)| d x<2 \varepsilon,
$$

because $\int_{\mathbb{R}^{d} \backslash Q}\left|f_{k}(x)\right| d x \leq \int_{\mathbb{R}^{d} \backslash Q}|f(x)| d x$ when k is large enough so that the cubes on the level k tile the set $\mathbb{R}^{d} \backslash Q$. (It is enough to assume that k is at least the level on
which Q is.) On the other hand, Q has finite measure (which we can normalize to be $1)$, and $f_{k} \mid Q$ is uniformly integrable because $f_{k}=E\left(f \mid F_{k}\right)$. Therefore $f_{k}|Q \rightarrow f| Q$ in L^{1}. The result follows since $\varepsilon>0$ was arbitrary, and

$$
\int_{\mathbb{R}^{d}}\left|f_{k}(x)-f(x)\right| d x \leq \int_{Q}\left|f_{k}(x)-f(x)\right| d x+\int_{\mathbb{R}^{d} \backslash Q}\left|f_{k}(x)-f(x)\right| d x<3 \varepsilon
$$

for k large enough.
Notice that since f is a martingale, $|f|$ is a submartingale. Define

$$
f_{n_{0}, n}^{\square}(x)=\sup _{n_{0} \leq t \leq n}\left|f_{t}(x)\right| .
$$

Then for all $n_{0}<n \in \mathbb{Z}$, by Theorem 18,

$$
c P\left(f_{n_{0}, n}^{\square} \geq c\right) \leq E\left(\left|f_{n}\right| 1\left(f_{n_{0}, n}^{\square}>c\right)\right)
$$

If we now let $n_{0} \rightarrow-\infty$, we get

$$
\begin{equation*}
c P\left(f_{-\infty, n}^{\square} \geq c\right) \leq E\left(\left|f_{n}\right| 1\left(f_{-\infty, n}^{\square}>c\right)\right) \tag{1}
\end{equation*}
$$

We can use Lemma 18 to get

$$
\left\|f_{-\infty, n}^{\square}\right\|_{p} \leq \frac{p}{p-1}\left\|f_{n}\right\|_{p}
$$

and taking supremum on both sides leaves us with

$$
\left\|f^{\square}\right\|_{p} \leq \frac{p}{p-1} \sup _{k \in \mathbb{Z}}\left\|f_{k}\right\|_{p} \leq \frac{p}{p-1}\|f\|_{p} .
$$

Taking supremums in (1) gives us

$$
c P\left(f^{\square} \geq c\right) \leq \sup _{k \in \mathbb{Z}} E\left(\left|f_{n}\right| 1\left(f_{-\infty, n}^{\square}>c\right)\right) \leq \sup _{k \in \mathbb{Z}} E\left(\left|f_{n}\right|\right) \leq E(|f|) .
$$

