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Stochastic analysis, 7. exercises
Janne Junnila

March 14, 2013

Exercise 1 Suppose we have an urn which contains at time 𝑡 = 0 two balls, one black
and one white. At each time 𝑡 ∈ ℕ we draw uniformly at random from the urn one
ball, and put it back together with a new ball of the same colour.

We introduce the random variables
𝑋u�(𝜔) = 1{the ball drawn at time 𝑡 is black}

and denote 𝑆u� = (1 + 𝑋1 + … + 𝑋u�), 𝑀u� = 𝑆u�/(𝑡 + 2), the proportion of black balls in
the urn. We use the filtration {ℱu�} with ℱu� = 𝜎{𝑋u� : 𝑠 ∈ ℕ, 𝑠 ≤ 𝑡}.

i) Compute the Doob decomposition of (𝑆u�), 𝑆u� = 𝑆0 + 𝑁u� + 𝐴u�, where (𝑁u�) is a
martingale and (𝐴u�) is predictable.

ii) Show that (𝑀u�) is a martingale and find the representation of (𝑀u�) as a martin-
gale transform 𝑀u� = (𝐶 ⋅ 𝑁)u�, where (𝑁u�) is the martingale part of (𝑆u�) and (𝐶u�) is
predictable.

iv) Note that the martingale (𝑀u�)u�≥0 is uniformly integrable (Why?). Show that 𝑃 a.s.
and in 𝐿1 exists 𝑀∞ = limu�→∞ 𝑀u�. Compute 𝐸(𝑀∞).

v) Show that 𝑃(0 < 𝑀∞ < 1) > 0.

Since 𝑀∞(𝜔) ∈ [0, 1], it is enough to show that 0 < 𝐸(𝑀2
∞) < 𝐸(𝑀∞) with strict

inequalities.

Solution 1 i) We have 𝐴u� = ∑u�
u�=1(𝐸(𝑆u�|ℱu�−1)−𝑆u�−1) and 𝑁u� = ∑u�

u�=1(𝑆u�−𝐸(𝑆u�|ℱu�−1)).
By the definition of 𝑆u�, we can write these as

𝐴u� =
u�

∑
u�=1

(𝐸(1 + 𝑋1 + … + 𝑋u�|ℱu�−1) − 1 − 𝑋1 − … − 𝑋u�−1)

=
u�

∑
u�=1

𝐸(𝑋u�|ℱu�−1) =
u�

∑
u�=1

𝑀u�−1

𝑁u� =
u�

∑
u�=1

(1 + 𝑋1 + … + 𝑋u� − 𝐸(1 + 𝑋1 + … + 𝑋u�|ℱu�−1)) =

=
u�

∑
u�=1

(𝑋u� − 𝐸(𝑋u�|ℱu�−1)) =
u�

∑
u�=1

(𝑋u� − 𝑀u�−1)
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ii) 𝑀u� is a martingale since

𝐸(𝑀u�|ℱu�−1) = 𝐸(𝑆u�/(𝑡 + 2)|ℱu�−1) = 𝐸(𝑆0 + 𝐴u� + 𝑁u�|ℱu�−1)
𝑡 + 2

= 𝑆0 + 𝐴u� + 𝑁u�−1
𝑡 + 2

= 𝑆u�−1 + 𝑀u�−1
𝑡 + 2

=
u�u�−1
u�+1 (𝑡 + 1) + 𝑀u�−1

𝑡 + 2
= 𝑀u�−1(𝑡 + 1) + 𝑀u�−1

𝑡 + 2
= 𝑀u�−1.

Moreover,

𝑀u� = 𝑆u�
𝑡 + 2

= 𝑆0 + 𝐴u� + 𝑁u�
𝑡 + 2

= 𝑆0 + ∑u�
u�=1 𝑀u�−1 + 𝑁u�
𝑡 + 2

,

so

(𝑡 + 2)𝑀u� −
u�

∑
u�=1

𝑀u�−1 − 𝑆0 = 𝑁u�.

Therefore

𝑁u�−𝑁u�−1 = (𝑡+2)𝑀u�−
u�

∑
u�=1

𝑀u�−1−𝑆0−(𝑡+1)𝑀u�−1+
u�−1
∑
u�=1

𝑀u�−1+𝑆0 = (𝑡+2)(𝑀u�−𝑀u�−1).

Summing over 𝑡 gives us

𝑀u� = 𝑀0 +
u�

∑
u�=1

𝑁u� − 𝑁u�−1
𝑡 + 2

.

iv) The martingale 𝑀u� is uniformly integrable, since 𝑀u� < 1 for all 𝑡. For the same
reason Doob’s martingale convergence theorem applies and 𝑀u� → 𝑀∞ almost surely
and in 𝐿1. We have 𝐸(𝑀∞) = 𝑀0 = 1

2 .

v) To reach a contradiction, assume that 𝑃(0 < 𝑀∞ < 1) = 0, then by (iv) we must
have 𝑃(𝑀∞ = 0) = 𝑃(𝑀∞ = 1) = 1

2 . It follows that 𝐸(𝑀2
∞) = 1

2 . We will compute
𝐸(𝑀2

∞) to get a contradiction. We note that 𝑀 2
u� is a submartingale. Write the Doob

decomposition 𝑀 2
u� = 𝑀2

0 + 𝐿u� + 𝑃u�, where 𝐿u� is a martingale and 𝑃u� is a predictable
increasing process,

𝐿u� =
u�

∑
u�=1

(𝑀 2
u� − 𝐸(𝑀 2

u� |ℱu�−1))

𝑃u� =
u�

∑
u�=1

(𝐸(𝑀 2
u� |ℱu�−1) − 𝑀2

u�−1)

=
u�

∑
u�=1

(𝐸(𝑆2
u� |ℱu�−1)

(𝑖 + 2)2
− 𝑆2

u�−1
(𝑖 + 1)2

)

=
u�

∑
u�=1

(𝑆2
u�−1 + 2𝑆u�−1𝐸(𝑋u�|ℱu�−1) + 𝐸(𝑋 2

u� |ℱu�−1)
(𝑖 + 2)2

− 𝑆2
u�−1

(𝑖 + 1)2
)

=
u�

∑
u�=1

((𝑖 + 1)2𝑆2
u�−1 + 2(𝑖 + 1)2𝑆u�−1𝑀u�−1 + (𝑖 + 1)2𝑀u�−1 − (𝑖 + 2)2𝑆2

u�−1
(𝑖 + 1)2(𝑖 + 2)2

)
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=
u�

∑
u�=1

((−2𝑖 − 3)𝑆2
u�−1 + 2(𝑖 + 1)𝑆2

u�−1 + (𝑖 + 1)𝑆u�−1

(𝑖 + 1)2(𝑖 + 2)2
)

=
u�

∑
u�=1

((𝑖 + 1)𝑆u�−1 − 𝑆2
u�−1

(𝑖 + 1)2(𝑖 + 2)2
)

=
u�

∑
u�=1

(
𝑆u�−1

(𝑖 + 1)(𝑖 + 2)2 − 𝑆2
u�−1

(𝑖 + 1)2(𝑖 + 2)2
)

=
u�

∑
u�=1

(𝑀u�−1 − 𝑀2
u�−1

(𝑖 + 2)2
) .

Thus we get a recurrence relation for 𝐸(𝑀 2
u� ), namely

𝐸(𝑀 2
u� ) = 𝐸(𝑃u�)+𝐸(𝑀2

0) = 1
4

+
u�

∑
u�=1

(𝐸(𝑀u�−1) − 𝐸(𝑀2
u�−1)

(𝑖 + 2)2
) = 1

4
+

u�
∑
u�=1

(
1

2(𝑖 + 2)2 − 𝐸(𝑀2
u�−1)

(𝑖 + 2)2
) .

Write 𝑎u� = 𝐸(𝑀 2
u�). Then it follows that

𝑎u� − 𝑎u�−1 =
1

2(𝑛 + 2)2 −
1

(𝑖 + 2)2 𝑎u�−1,

which can also be written as

𝑎u� =
1

2(𝑛 + 2)2 +
(𝑛 + 1)(𝑛 + 3)

(𝑛 + 2)2 𝑎u�−1, 𝑎0 = 1/4.

We will show by induction that 𝑎u� = 1
3 − 1

6(u�+2) . This clearly holds for 𝑎0. Assuming
that it holds for 𝑎u�, we get

𝑎u�+1 =
1

2(𝑛 + 3)2 +
(𝑛 + 2)(𝑛 + 4)

(𝑛 + 3)2 (1
3

− 1
6(𝑛 + 2)

)

=
1

2(𝑛 + 3)2 +
(𝑛 + 2)(𝑛 + 4)(2(𝑛 + 2) − 1)

6(𝑛 + 2)(𝑛 + 3)2

=
3(𝑛 + 2) + (𝑛 + 2)(𝑛 + 4)(2(𝑛 + 2) − 1)

6(𝑛 + 2)(𝑛 + 3)2

= 3(𝑛 + 2) + 2(𝑛 + 2)2(𝑛 + 4) − (𝑛 + 2)(𝑛 + 4)
6(𝑛 + 2)(𝑛 + 3)2

= 3(𝑛 + 2) + 2(𝑛 + 2)2(𝑛 + 4) − (𝑛 + 2)
6(𝑛 + 2)(𝑛 + 3)2

− 1
6(𝑛 + 3)

=
2(𝑛 + 2)(1 + (𝑛 + 2)(𝑛 + 4))

6(𝑛 + 2)(𝑛 + 3)2 − 1
6(𝑛 + 3)

= 1
3

− 1
6(𝑛 + 3)

.

Therefore it follows that 𝐸(𝑀2
∞) = limu�→∞ 𝑎u� = 1/3 < 1/2, which is a contradiction.

Exercise 2 Consider an i.i.d. random sequence (𝑈u� : 𝑡 ∈ ℕ) with uniform distribu-
tion on [0, 1], 𝑃(𝑈1 ∈ 𝑑𝑥) = 1[0,1](𝑥)𝑑𝑥. Note that 𝐸(𝑈u�) = 1/2.
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Consider also the random variable − log(𝑈1(𝜔)) which is 1-exponential w.r.t. P.

𝑃(− log(𝑈1) > 𝑥) = { exp(−𝑥), if 𝑥 ≥ 0
1, if 𝑥 < 0

− log(𝑈1) ∈ 𝐿1(𝑃) with 𝐸(− log(𝑈1)) = 1.

(a) Let 𝑍0 = 1, and

𝑍u�(𝜔) = 2u�
u�

∏
u�=1

𝑈u�(𝜔)

Show that (𝑍u�) is a martingale in the filtration 𝔽 = (ℱu� : 𝑡 ∈ ℕ), with ℱu� = 𝜎(𝑍1, …, 𝑍u�) =
𝜎(𝑈1, …, 𝑈u�).

(b) Show that 𝐸(𝑍u�) = 1.

(c) Show that the limit 𝑍∞(𝜔) = limu�→∞ 𝑍u�(𝜔) exists P-almost surely.

(d) Show that

𝑍∞(𝜔) = 0 P-a.s.

(e) Show that the martingale 𝑍u� is not uniformly integrable.

(f) Show that log(𝑍u�(𝜔)) is a supermartingale, does it satisfy the assumptions of
Doob’s martingale convergence theorem?

(g) At every time 𝑡 ∈ ℕ, define the probability measure

𝑄u�(𝐴) = 𝐸(𝑍u�1u�) ∀𝐴 ∈ ℱu�

on the probability space (Ω, ℱu�).

Show that the random variables (𝑈1, …, 𝑈u�) are i.i.d. also under 𝑄u�, compute their
probability density under 𝑄u�.

Solution 2 (a) 𝑍u� is clearly integrable. Moreover,

𝐸(𝑍u�|ℱu�−1) = 2u�
u�−1
∏
u�=1

𝑈u�𝐸(𝑈u�|ℱu�−1) = 2u�−1
u�−1
∏
u�=1

𝑈u�

by independence.

(b) Since 𝑍u� is a martingale, we have 𝐸(𝑍u�) = 𝑍0 = 1.

(c) The martingale 𝑍u� is bounded from below, so by Doob’s martingale convergence
theorem 𝑍∞(𝜔) = limu�→∞ 𝑍u�(𝜔) exists P-almost surely.

(d) Let 𝜀 > 0. We will show that
∞
∑
u�=1

𝑃(𝑍u� > 𝜀) < ∞.
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Then by Borel-Cantelli lemma, 𝑍u�(𝜔) ≤ 𝜀 almost surely for 𝑡 large enough. Because
𝜀 is arbitrary, the result will follow. Now

𝑃(𝑍u� > 𝜀) = 𝑃 ⎛⎜
⎝

u�
∏
u�=1

𝑈u� >
𝜀
2u�

⎞⎟
⎠

= 𝑃 ⎛⎜
⎝

−
u�

∑
u�=1

log 𝑈u� < log 2u�

𝜀
⎞⎟
⎠

.

Recalling that the sum of i.i.d. exponentially distributed random variables has Gauss-
ian distribution, we see that

𝑃(𝑍u� > 𝜀) =
log 2u�

u�

∫
0

𝑥u�−1𝑒−u�

(𝑡 − 1)!
𝑑𝑥.

Integration by parts gives us

log 2u�
u�

∫
0

𝑥u�−1𝑒−u�

(𝑡 − 1)!
𝑑𝑥 = −[

log 2u�
u�

0

𝑥u�−1𝑒−u�

(𝑡 − 1)!
] +

log 2u�
u�

∫
0

𝑥u�−2𝑒−u�

(𝑡 − 2)!
𝑑𝑥,

and by iterating this we have

log 2u�
u�

∫
0

𝑥u�−1𝑒−u�

(𝑡 − 1)!
𝑑𝑥 = −[

log 2u�
u�

0
𝑒−u� (1 + 𝑥 + 𝑥2

2!
+ … + 𝑥u�−1

(𝑡 − 1)!
) ].

Therefore

𝑃(𝑍u� > 𝜀) = 1 −
𝜀
2u�

⎛⎜
⎝

1 + log 2u�

𝜀
+ … + (log 2u�

u� )
u�−1

(𝑡 − 1)!
⎞⎟
⎠

=
𝜀
2u�

∞
∑
u�=u�

(log 2u�

u� )
u�

𝑖!
.

Now, we can change the order of summation to get

∞
∑
u�=1

𝑃(𝑍u� > 𝜀) =
∞
∑
u�=1

u�
∑
u�=1

𝜀 (log 2u�

u� )
u�

2u�𝑖!
.

Moreover, for large 𝑖, u�(log 2u�
u� )

u�

2u�u�!
increases as 𝑡 increases from 1 to 𝑖:

(log 2u�+1
u�

)
u�

2u�+1

(log 2u�
u� )

u�

2u�

= 1
2

(
(𝑡 + 1) log 2 − log 𝜀

𝑡 log 2 − log 𝜀 )
u�

≥ 1
2

(1 +
log 2

𝑡 log 2 − log 𝜀)
u�

≥ 1
2

(1 +
log 2

𝑖 log 2 − log 𝜀)
u�

= 1
2

⎛⎜⎜
⎝

1 +
1

𝑖 − log u�
log 2

⎞⎟⎟
⎠

u�− log u�
log 2

⎛⎜⎜
⎝

1 +
1

𝑖 − log u�
log 2

⎞⎟⎟
⎠

log u�
log 2

→
𝑒
2 > 1 as 𝑖 → ∞

It follows that we have the estimate
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∞
∑
u�=1

𝑃(𝑍u� > 𝜀) ≲
∞
∑
u�=1

(log 2u�

u� )
u�

2u�(𝑖 − 1)!
.

Also for large 𝑖, log 2u�

u� ≤ 𝑖𝑐, where log 2 < 𝑐 < 2/𝑒. (The chosen upper bound will
become clear soon.) Thus we only have to show that

∞
∑
u�=1

(𝑖𝑐/2)u�

(𝑖 − 1)!
< ∞.

To do this, we will approximate the logarithm of each term:

𝑖 log(𝑖𝑐/2) −
u�−1
∑
u�=1

log 𝑗 ≤ 𝑖 log 𝑖 + 𝑖 log(𝑐/2) −
u�−1
∫
1

log 𝑥 𝑑𝑥

≤ 𝑖 log 𝑖 + 𝑖 log(𝑐/2) − (𝑖 − 1) log(𝑖 − 1) + (𝑖 − 1) + 1

= 𝑖 log 𝑖
𝑖 − 1

+ 𝑖(1 + log(𝑐/2)) + log(𝑖 − 1)

Now 𝑖 log u�
u�−1 → 1 as 𝑖 → ∞ and the linear term 𝑖(1 + log(𝑐/2)) dominates log(𝑖 − 1)

with 1 + log(𝑐/2) < 0, so

(𝑖𝑐/2)u�

(𝑖 − 1)!
≲ 𝐶𝑒−u�u�

for some constants 𝐶, 𝐷 > 0 and the series converges.

(e) Since 𝐸(𝑍∞) = 0 ≠ limu�→∞ 𝐸(𝑍u�) = 1, the martingale cannot be uniformly inte-
grable.

(f) Because log(𝑍u�) = 𝑡 log 2 + ∑u�
u�=1 log 𝑈u�, and because

1
∫
0

log 𝑥 𝑑𝑥 < ∞, log(𝑍u�) is

integrable. Moreover, we have

𝐸(log(𝑍u�)|ℱu�−1) = 𝑡 log 2 +
u�

∑
u�=1

𝐸(log 𝑈u�|ℱu�−1) ≤ 𝑡 log 2 +
u�−1
∑
u�=1

log 𝑈u� − log 2

= (𝑡 − 1) log 2 +
u�−1
∑
u�=1

log 𝑈u� = log ⎛⎜
⎝

2u�−1
u�−1
∏
u�=1

𝑈u�⎞⎟
⎠

= log(𝑍u�−1),

so log(𝑍u�) is a supermartingale. It does not satisfy the assumptions of Doob’s mar-
tingale convergence theorem, since

𝑡 log 2 − 𝑡 = 𝐸(log(𝑍u�)) = 𝐸(log(𝑍u�)+) − 𝐸(log(𝑍u�)−),

so 𝐸(log(𝑍u�)−) = 𝐸(log(𝑍u�)+) + 𝑡(1 − log 2) ≥ 𝑡(1 − log 2) → ∞.

(g) Suppose that 1 ≤ 𝑖 < 𝑗 ≤ 𝑡. We have

𝑄u�({𝑈u� < 𝑎} ∩ {𝑈u� < 𝑏}) = ∫ 𝑍u�1{u�u�<u�}1{u�u�<u�} 𝑑𝑃 = 2u� ∫ 𝑈1…𝑈u�1{u�u�<u�}1{u�u�<u�} 𝑑𝑃

= 4 ∫ 𝑈u�𝑈u�1{u�u�<u�}1{u�u�<u�} 𝑑𝑃 = 4 ∫ 𝑈u�1{u�u�<u�} 𝑑𝑃 ∫ 𝑈u�1{u�u�<u�} 𝑑𝑃

= ∫ 𝑍u�1{u�u�<u�} 𝑑𝑃 ∫ 𝑍u�1{u�u�<u�} 𝑑𝑃 = 𝑄u�({𝑈u� < 𝑎})𝑄u�({𝑈u� < 𝑏}),
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so 𝑈u� and 𝑈u� are independent. Their cumulative distribution function is

𝑈(𝑥) = 𝑄u�({𝑈u� < 𝑎}) = 2 ∫ 𝑈u�1{u�u�<u�} 𝑑𝑃 = 2
1

∫
0

𝑥1{u�<u�} 𝑑𝑥 = 2
u�

∫
0

𝑥 𝑑𝑥 = 𝑎2,

so the probability density is 𝑢(𝑥) = 2𝑥.

Exercise 3 Consider a function 𝑓 ∈ 𝐿1(ℝu�, ℬ(ℝu�), 𝑑𝑥). Define the 𝜎 -algebra

ℱu� = 𝜎{𝑄u�,u� = (𝑧2−u�, (𝑧 + 1)2−u�], 𝑧 ∈ ℤu�} ⊂ ℬ(ℝu�), 𝑘 ∈ ℤ

and the two sided filtration 𝔽 = (ℱu� : 𝑘 ∈ ℤ) where the dyadic cubes (𝑄u�,u� : 𝑧 ∈ ℤu�)
form a partition of ℝu�, and the functions

𝑓u�(𝑥) = ∑
u�∈ℤu�

1(𝑥 ∈ 𝑄u�,u�)
1

|𝑄u�,u�| ∫
u�u�,u�

𝑓 (𝑦) 𝑑𝑦

where for 𝑘 ∈ ℤ, |𝑄u�,u�| = 2−u�u� is the Lebesgue measure of the 𝑑-dimensional dyadic
cube.

Show that 𝑓u�(𝑥) is an 𝔽-martingale w.r.t. Lebesgue measure.

Show that limu�→−∞ 𝑓u�(𝑥) = 0 both almost surely and in 𝐿1(ℝu�)-sense.

Define the maximal function

𝑓 □(𝑥) := sup
u�∈ℤ

𝑓u�(𝑥).

Show that for 1 < 𝑝 < ∞

‖𝑓 □(𝑥)‖u�u�(ℝu�) ≤
𝑝

𝑝 − 1 sup
u�∈ℤ

‖𝑓u�‖u�u�(ℝu�) ≤
𝑝

𝑝 − 1‖𝑓 ‖u�u�(ℝu�)

and
𝑐𝑃(|𝑓 □(𝑥)| > 𝑐) ≤ sup

u�∈ℤ
‖𝑓u�‖u�1(ℝu�) ≤ ‖𝑓 ‖u�1(ℝu�)

Solution 3 We will proceed lemma by lemma.

Lemma 1 We have ‖𝑓u�‖u� ≤ ‖𝑓 ‖u� for all 𝑘 ∈ ℤ and 1 ≤ 𝑝 < ∞.

Proof. We have

‖𝑓u�‖u�
u� = ∑

u�∈ℤu�

|𝑄u�,u�| ⋅
1

|𝑄u�,u�|u�
∣∣∣∣∣
∫

u�u�,u�

𝑓 (𝑦) 𝑑𝑦
∣∣∣∣∣

u�

≤ ∑
u�∈ℤu�

1
|𝑄u�,u�|u�−1

⎛⎜⎜⎜
⎝

∫
u�u�,u�

|𝑓 (𝑦)| 𝑑𝑦⎞⎟⎟⎟
⎠

u�

If 𝑝 = 1, then this is just ‖𝑓 ‖1, proving the claim. Otherwise we apply Hölder’s in-
equality and get
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‖𝑓u�‖u�
u� ≤ ∑

u�∈ℤu�

1
|𝑄u�,u�|u�−1 ∫

u�u�,u�

|𝑓 (𝑦)|u� 𝑑𝑦|𝑄u�,u�|u�/u� = ‖𝑓 ‖u�
u� .

□

The above lemma shows in particular that each 𝑓u� is integrable.

Lemma 2 For each 𝑘 ∈ ℤ, 𝐸(𝑓u�) = 𝐸(𝑓 ). Moreover, 𝐸(𝑓 |ℱu�) = 𝑓u�.

Proof. We have

∫
ℝu�

𝑓u�(𝑥) 𝑑𝑥 = ∑
u�∈ℤu�

|𝑄u�,u�| ⋅
1

|𝑄u�,u�| ∫
u�u�,u�

𝑓 (𝑦) 𝑑𝑦 = ∫
ℝu�

𝑓 (𝑥) 𝑑𝑥.

Clearly 𝑓u� is ℱu� measurable. In addition if 𝐴 ∈ ℱu�, then 𝐴 is a union of disjoint dyadic
cubes 𝑄u�. We have

∫
u�

𝑓 (𝑥) 𝑑𝑥 = ∑
u�u�

∫
u�u�

𝑓 (𝑥) 𝑑𝑥 = ∑
u�u�

|𝑄u�|𝑓u�(𝑧u�) = ∑
u�u�

∫
u�u�

𝑓u�(𝑦) 𝑑𝑦 = ∫
u�

𝑓u�(𝑦) 𝑑𝑦,

where 𝑧u� is any point in 𝑄u�. Thus by the uniqueness of conditional expectation,
𝐸(𝑓 |ℱu�) = 𝑓u�. □

Lemma 3 The sequence 𝑓u� is a martingale.

Proof. By previous lemma this follows as usual from the tower property of the con-
ditional expectation

𝐸(𝑓u�+1|ℱu�) = 𝐸(𝐸(𝑓 |ℱu�+1)|ℱu�) = 𝑓u�. □

Lemma 4 We have 𝑓u� → 0 almost everywhere as 𝑘 → −∞.

Proof. For every 𝑥 ∈ ℝu�,

|𝑓u�(𝑥)| ≤ ∑
u�∈ℤu�

1(𝑥 ∈ 𝑄u�,u�)
1

|𝑄u�,u�| ∫
u�u�,u�

|𝑓 (𝑦)| 𝑑𝑦 ≤ 1
2−u�u�

‖𝑓 ‖u�1.

The right hand side goes to 0 as 𝑘 → −∞. □

Lemma 5 We have 𝑓u� → 𝑓 almost surely and in 𝐿1 as 𝑛 → ∞.

Proof. Almost surely convergence follows either by using Lebesgue differentiation
theorem, or by the martingale convergence theorem. To show convergence in 𝐿1, we
split the integral into two parts. Let 𝜀 > 0. Then there exists a (large) dyadic cube 𝑄,
such that ∫

ℝu�∖u�
|𝑓 (𝑥)| 𝑑𝑥 < 𝜀. Then also

∫
ℝu�∖u�

|𝑓u�(𝑥) − 𝑓 (𝑥)| 𝑑𝑥 ≤ ∫
ℝu�∖u�

|𝑓u�(𝑥)| + |𝑓 (𝑥)| 𝑑𝑥 < 2𝜀,

because ∫
ℝu�∖u�

|𝑓u�(𝑥)| 𝑑𝑥 ≤ ∫
ℝu�∖u�

|𝑓 (𝑥)| 𝑑𝑥 when 𝑘 is large enough so that the cubes on

the level 𝑘 tile the set ℝu� ∖ 𝑄. (It is enough to assume that 𝑘 is at least the level on
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which 𝑄 is.) On the other hand, 𝑄 has finite measure (which we can normalize to be
1), and 𝑓u�|𝑄 is uniformly integrable because 𝑓u� = 𝐸(𝑓 |ℱu�). Therefore 𝑓u�|𝑄 → 𝑓 |𝑄 in 𝐿1.
The result follows since 𝜀 > 0 was arbitrary, and

∫
ℝu�

|𝑓u�(𝑥) − 𝑓 (𝑥)| 𝑑𝑥 ≤ ∫
u�

|𝑓u�(𝑥) − 𝑓 (𝑥)| 𝑑𝑥 + ∫
ℝu�∖u�

|𝑓u�(𝑥) − 𝑓 (𝑥)| 𝑑𝑥 < 3𝜀

for 𝑘 large enough. □

Notice that since 𝑓 is a martingale, |𝑓 | is a submartingale. Define

𝑓 □
u�0,u�(𝑥) = sup

u�0≤u�≤u�
|𝑓u�(𝑥)|.

Then for all 𝑛0 < 𝑛 ∈ ℤ, by Theorem 18,

𝑐𝑃(𝑓 □
u�0,u� ≥ 𝑐) ≤ 𝐸(|𝑓u�|1(𝑓 □

u�0,u� > 𝑐)).

If we now let 𝑛0 → −∞, we get

𝑐𝑃(𝑓 □
−∞,u� ≥ 𝑐) ≤ 𝐸(|𝑓u�|1(𝑓 □

−∞,u� > 𝑐)). (1)

We can use Lemma 18 to get

‖𝑓 □
−∞,u�‖u� ≤

𝑝
𝑝 − 1‖𝑓u�‖u�,

and taking supremum on both sides leaves us with

‖𝑓 □‖u� ≤
𝑝

𝑝 − 1 sup
u�∈ℤ

‖𝑓u�‖u� ≤
𝑝

𝑝 − 1‖𝑓 ‖u�.

Taking supremums in (1) gives us

𝑐𝑃(𝑓 □ ≥ 𝑐) ≤ sup
u�∈ℤ

𝐸(|𝑓u�|1(𝑓 □
−∞,u� > 𝑐)) ≤ sup

u�∈ℤ
𝐸(|𝑓u�|) ≤ 𝐸(|𝑓 |).


