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Exercise1 Suppose we have an urn which contains at time t = 0 two balls, one black
and one white. At each time ¢t € N we draw uniformly at random from the urn one
ball, and put it back together with a new ball of the same colour.

We introduce the random variables

X;(w) = 1{the ball drawn at time ¢ is black}

and denote 5; = (1+ Xy + ... + X;), M; = 5;/(t + 2), the proportion of black balls in
the urn. We use the filtration {J,,} with F,, = ¢{X, :s € N,s < t}.

i) Compute the Doob decomposition of (S;), S; = Sy + N; + A;, where (N;) is a
martingale and (A;) is predictable.

ii) Show that (M;) is a martingale and find the representation of (M;) as a martin-
gale transform M; = (C - N);, where (N,) is the martingale part of (S;) and (C;) is
predictable.

iv) Note that the martingale (M;);s( is uniformly integrable (Why?). Show that P a.s.
and in L! exists M, = lim,_,, M;. Compute E(M.,).

v) Show that P(0 < M, < 1) > 0.

Since M (w) € [0, 1], it is enough to show that 0 < E(Mfo) < E(M,,) with strict
inequalities.

Solution1 i) Wehave A; = Zle(E(Sl-lj:i_l)—Si_l) and N, = Zle(Si—E(Siljji_l)).
By the definition of S;, we can write these as
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ii) M; is a martingale since

E(MF4_q) = E(S;/(t + 2)1F4_4) = E(So+ A+ Nyl Fy_q) _ So+Ai + Nig
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Summing over t gives us
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iv) The martingale M, is uniformly integrable, since M; < 1 for all t. For the same
reason Doob’s martingale convergence theorem applies and M; — M, almost surely
and in L'. We have E(M.,) = M, = %

v) To reach a contradiction, assume that P(0 < M., < 1) = 0, then by (iv) we must
have PIM, = 0) = P(M, =1) = % It follows that E(Mi) = % We will compute
E(Mi) to get a contradiction. We note that M tz is a submartingale. Write the Doob
decomposition M? = Mg + L; + P,, where L, is a martingale and P, is a predictable
increasing process,
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Thus we get a recurrence relation for E(M tz), namely

2y 2 _1 E(M;_1) — E(M? )_1 t ( E(le)>
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Write a,, = E(M?2). Then it follows that

1 1
2m+2)2 (422 "V

Ay —0p—1 =

which can also be written as

— 1 (n+1)(n+3)a oo = 1/4
" 2(n+2)2 (n+22 V0T
We will show by induction that a,, = % & +2) This clearly holds for ay. Assuming
that it holds for a,,, we get
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B 6(n +2)(n + 3)2 6(n +3)
_2n+2)(1+ (n+2)(n+4)) 1
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Therefore it follows that E(MZo ) =lim,,_, . a, =1/3 < 1/2, which is a contradiction.

Exercise 2 Consider an ii.d. random sequence (U, : t € N) with uniform distribu-
tion on [0,1], P(U; € dx) = 1,1;(x)dx. Note that E(U;) = 1/2.



Consider also the random variable —log(U; (w)) which is 1-exponential w.r.t. P.

—-x), ifx>0
P(—log(U;) > x) = {ixp( x) 1fi z0

—log(Uy) € LY(P) with E(=log(U;)) = 1.
(a) LetZg=1,and
t
Zy(w) =2 [ Ug(w)
s=1
Show that (Z;) is a martingale in the filtration F = (J4 : t € N), with F; = 0(Z, ..., Z;) =
U(Ul, ey Ut)
(b) Show that E(Z;) = 1.
(c) Show that the limit Z  (w) = lim,_, ., Z;(w) exists P-almost surely.

(d) Show that
Zo(w) =0 P-as.
(e) Show that the martingale Z; is not uniformly integrable.

(f) Show that log(Z;(w)) is a supermartingale, does it satisfy the assumptions of
Doob’s martingale convergence theorem?

(g) At every time t € N, define the probability measure
Qi(A) =E(Z1y) VA€ F
on the probability space (Q), F).

Show that the random variables (Uj, ..., U;) are ii.d. also under Q;, compute their
probability density under Q;.

Solution 2 (a) Z; is clearly integrable. Moreover,

t—1 —1
E(Z\Fp) =2 H UE(U,|F;_q) =21 l_[ U,

s=1 s=1

by independence.
(b) Since Z; is a martingale, we have E(Z;) = Z; = 1.

(c) The martingale Z; is bounded from below, so by Doob’s martingale convergence
theorem Z, (w) = lim;_,, Z;(w) exists P-almost surely.

(d) Let € > 0. We will show that
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Y P(Z;>€) < .
t=1



Then by Borel-Cantelli lemma, Z;(w) < ¢ almost surely for t large enough. Because
¢ is arbitrary, the result will follow. Now

t € t ot
P(Z; > ¢) :P(HUS > E) =P(—Ziloglls <log?>.
S= S=

Recalling that the sum of i.i.d. exponentially distributed random variables has Gauss-
ian distribution, we see that

-1,—x
Pz;>e= [ 22
y =1
Integration by parts gives us
log 2 2t
O? yt—1lp—x _[logixt—le—x] T ¢ yt=2,—x
(=1 0 (t—1)! =21
and by iterating this we have
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Therefore

P(Z;, >¢) = 1——(1+log_+ + (log 2
2! € t—1)!

Now, we can change the order of summation to get
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It follows that we have the estimate
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Also for large i, log 2?' < ic, where log2 < ¢ < 2/e. (The chosen upper bound will
become clear soon.) Thus we only have to show that

[eS) . i
Y (fc/ 2) ¢
= G—=D!
To do this, we will approximate the logarithm of each term:
i1 i1
ilog(ic/2) — ) logj <ilogi +ilog(c/2) — [ logxdx
=1 1

<ilogi+ilog(c/2) —(i—1logi—1)+ (G —-1)+1
~ ilog #1 4 i(1+ log(c/2)) + log(i — 1)
1_
Now ilog j — 1l asi — oo and the linear term i(1 + log(c/2)) dominates log(i — 1)
with 1 +log(c/2) <0, so
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for some constants C,D > 0 and the series converges.

(e) Since E(Z,,) = 0 # lim;_,, E(Z;) = 1, the martingale cannot be uniformly inte-
grable.

1
(f) Because log(Z;) = tlog2 + Zle log U;, and because [ logxdx < oo, log(Z,) is
0

integrable. Moreover, we have

t =1
E(log(Z)|F4_1) = tlog2 + Z E(logU;| F;_q) < tlog2 + Z log U; —log2
i=1 im1

=1 t=1
=(t—-1)log2+ Zlog U; =log (2t_1 1_[ Ui> = log(Z;_1),
i=1 i=1

so log(Z,) is a supermartingale. It does not satisfy the assumptions of Doob’s mar-
tingale convergence theorem, since

tlog2 —t = E(log(Z;)) = E(log(Z;)") — E(log(Z;)™),
so E(log(Z;)7) = E(og(Zp*) + t(1 —log2) > t(1 —log2) — co.
(g) Suppose that 1 <i < j <t. Wehave
Qs <@y N {U; < b)) = [ Zel g oLty 4P = 2 [ U Uyl Tty 4P
= 4f U Uil <oy i<y 4P = 4f Uil{ui<a>dpf Uil y,<py dP

= f Ztl(ui<a)dpf Zluy<py 4P = Q({U; <a)Q ({U; < bY),



so U; and U; are independent. Their cumulative distribution function is
1 a
Ux) = Q,({U; < a}) = 2j Uil <y 4P = 2f X1 gy dx = 2j xdx = a?,
0 0

so the probability density is u(x) = 2x.
Exercise 3 Consider a function f € LY(R4, B(R?),dx). Define the o-algebra
= 0{Qr. = 227K,z + 27K,z € 2% c B(RY), ke Z

and the two sided filtration F = (Fy : k € Z) where the dyadic cubes (Qkz:z € A
form a partition of R4, and the functions

1
frx) = Z 1(x € Qk,z)@d[ fdy

zeZ4

where for k € Z, |Qy .| = 2-kd is the Lebesgue measure of the d-dimensional dyadic
cube.

Show that f;.(x) is an F-martingale w.r.t. Lebesgue measure.
Show that lim;_,_, fx(x) = 0 both almost surely and in L1(R%)-sense.
Define the maximal function
FBx) := sup fr (x).
kez

Show thatfor1 < p < o

p p
IFP Ol ray < v -1 15(161123 WellLr may < pTlllfIILp(Rd)

and
CP([fD(XN > C) S SUP |Vk||L1(Rd) S “f”Ll(Rd)
keZ
Solution 3 We will proceed lemma by lemma.

Lemmal We have ||fk||p < ||f||p forallk € Zand 1 <p < co.

Proof. We have

P

1
Ifell) = Qkzl - 35— 7
b zgéd z ngﬂp
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If p = 1, then this is just ||f|l;, proving the claim. Otherwise we apply Holder’s in-
equality and get



1
Il < Y = [ F@IPdyiQe=l""" = IfI}.
|Qk’Z| ka

z€Z4
O
The above lemma shows in particular that each f; is integrable.
Lemma?2 Foreachk € Z, E(f,) = E(f). Moreover, E(f|Fy) = f;.

Proof. We have
1
[ fodr= 3 Qual 5 [ fody=[ fex
R4 ZEZ Qk,z R4

Clearly f; is F measurable. In addition if A € J, then A is a union of disjoint dyadic
cubes Q;. We have

[foyax=3" [ feode=) Qi) =Y [ fiydy = [ findy,
A Qi Q; Qi Qi Q; A

where z; is any point in Q;. Thus by the uniqueness of conditional expectation,

E (f|j:k) = fk . a
Lemma 3 The sequence f is a martingale.

Proof. By previous lemma this follows as usual from the tower property of the con-
ditional expectation

E(feralFi) = ECE(f 1T )1 F5) = fie O
Lemma4 We havef; — 0 almost everywhere as k — —co.

Proof. For every x € RY,

1 1
fols Y 1<erk,z>@Q{ f@ldy < Il

z€Z4
The right hand side goes to 0 as k — —co. o
Lemma5 We havef, — f almost surely and in L' as n — co.

Proof. Almost surely convergence follows either by using Lebesgue differentiation
theorem, or by the martingale convergence theorem. To show convergence in L, we
split the integral into two parts. Let € > 0. Then there exists a (large) dyadic cube Q,
such that [ |f(x)ldx < ¢. Then also

RINQ

j [fie(x) — f(x)|dx < j [fe (Ol + If ()] dx < 2,
RI\Q RINQ

because [ [fi(x)ldx < [ |f(x)|dx when k is large enough so that the cubes on
RINQ RINQ
the level k tile the set R4 \ Q. (Itis enough to assume that k is at least the level on



which Q is.) On the other hand, Q has finite measure (which we can normalize to be
1), and £,|Q is uniformly integrable because f; = E(f|F;). Therefore f|Q — fIQ in L.
The result follows since ¢ > 0 was arbitrary, and

ffk(x) f(x)|dx<ffk(x) — foldx + f fio(x) — f(0)ldx < 3¢
RNQ

for k large enough. a

Notice that since f is a martingale, |f| is a submartingale. Define

£, = sup [l

ng<t<n
Then for all ny < n € Z, by Theorem 18,
P2, 2 0) SE(f1(D > 0)).

If we now let ny — —oo, we get

cP(fH o 2 €) < E(f,1(f2, > 0)). (1)
We can use Lemma 18 to get

p
IFEullp < PTlllfnllp,

and taking supremum on both sides leaves us with

IF eI, < sup Wfiell, < p— |f||p

Taking supremums in (1) gives us

cP(fP =) <supE(f,[1(f5, ,, > ©)) < supE(If,]) < E(IfD).
keZ keZ



