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Stochastic analysis, 6. exercises
Janne Junnila

February 28, 2013

Exercise 1 Show that 𝑍u� is a martingale for 𝜇 = 1, a supermartingale for 𝜇 < 1 and
a submartingale for 𝜇 > 1.

Solution 1 We show that 𝐸(𝑍u�) < ∞ for all 𝑡: By induction

𝐸(𝑍u�) = ∫
Ω

𝑍u�(𝜔) 𝑑𝑃 = ∫
Ω

u�u�−1(u�)
∑
u�=1

𝑌u�,u�(𝜔) 𝑑𝑃 =
∞
∑
u�=0

∫
{u�u�−1(u�)=u�}

u�
∑
u�=1

𝑌u�,u�(𝜔) 𝑑𝑃

=
∞
∑
u�=0

𝑘𝜇𝑃(𝑍u�−1 = 𝑘) = 𝜇𝐸(𝑍u�−1) < ∞.

By definition

𝐸(𝑍u�+1|ℱu�) = 𝐸(
u�u�

∑
u�=1

𝑌u�,u�+1|ℱu�) =
u�u�

∑
u�=1

𝐸(𝑌u�,u�+1|ℱu�) =
u�u�

∑
u�=1

𝐸(𝑌u�,u�+1) = 𝜇𝑍u�.

Clearly if 𝜇 = 1, we have a martingale, if 𝜇 ≤ 1, we have a supermartingale, and if
𝜇 ≥ 1, we have a submartingale.

Exercise 2 For 𝜇 ≠ 1, write the Doob decomposition of 𝑍u� and compute 𝐸(𝑍u�).

Solution 2 The Doob decomposition can be defined as 𝑍u� = 𝑀u� + 𝐴u�, where

𝑀u� = 𝑍0 +
u�

∑
u�=1

(𝑍u� − 𝐸(𝑍u�|ℱu�−1)) = 𝑍0 +
u�

∑
u�=1

(𝑍u� − 𝜇𝑍u�−1)

𝐴u� =
u�

∑
u�=1

(𝐸(𝑍u�|ℱu�−1) − 𝑍u�−1) =
u�

∑
u�=1

(𝜇 − 1)𝑍u�−1.

We already calculated 𝐸(𝑍u�) in the first exercise, but lets do it with the Doob decom-
position.

Now 𝐸(𝑀u�) = 𝑍0 = 1 for all 𝑡, because 𝑀 is a martingale, and

𝐸(𝐴u�) =
u�

∑
u�=1

(𝜇 − 1)𝐸(𝑍u�−1) =
u�

∑
u�=1

(𝜇 − 1)(1 + 𝐸(𝐴u�−1)).

We will prove by induction that 𝐸(𝐴u�) = 𝜇u� − 1 for 𝑡 ≥ 1. When 𝑡 = 1, this is clearly
true, since
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𝐸(𝐴1) = 𝐸((𝜇 − 1)(1 + 𝐸(𝐴0))) = 𝐸(𝜇 − 1) = 𝜇 − 1.

Suppose that the claim holds for 1, 2, …, 𝑡 − 1. Then

𝐸(𝐴u�) = (𝜇 − 1)
u�

∑
u�=1

(1 + 𝜇u�−1 − 1) = (𝜇 − 1)u�u�−1
u�−1 = 𝜇u� − 1,

so the claim holds for 𝑡, too. Therefore 𝐸(𝑍u�) = 𝐸(𝑀u�) + 𝐸(𝐴u�) = 𝜇u�.

Exercise 3 Assume that 𝜇 ≤ 1, and that the offspring distribution is non-trivial,
meaning that 0 ≤ 𝑃(𝑌 = 1) < 1. The case 𝑃(𝑌 = 1) = 1 is trivial, nothing happens,
the size of the population is constant.

Show that when 𝜇 ≤ 1 (subcritical and critical cases)

lim
u�→∞

𝑍u�(𝜔) = 0 𝑃 a.s.

Solution 3 Notice that 𝑍u� is a non-negative supermartingale. Therefore Doob’s
forward convergence theorem applies and there is a limit 𝑍∞ almost surely that is
integrable. Now

𝑃(𝑍∞ = 0|𝑍1 = 𝑛) = 𝑃(𝑍∞ = 0)u�, (1)

because for extinction we need all the descendants of the 𝑛 individuals to become
extinct, and by independence the probability for that to happen for a single individual
is the same as that happening to the first individual. Let 𝑞 = 𝑃(𝑍∞ = 0). Then by (1)
we have

𝑃(𝑍∞ = 0|𝜎(𝑍1)) = 𝑞u�1,

and hence, by taking expectation,

𝑞 = 𝐸(𝑞u�1) = 𝐸(𝑞u�),

where 𝑃(𝑌 = 𝑛) = 𝜋(𝑛). Because 𝜇 ≤ 1 and 𝑃(𝑌 = 1) < 1, we must have 𝑃(𝑌 = 0) >
0. Therefore also 𝑞 = 𝑃(𝑍∞ = 0) ≥ 𝑃(𝑌 = 0) > 0. Clearly 𝑞 = 1 satisfies the above
equation. We will show that there are no other solutions.

Notice that the function 𝑓 (𝑞, 𝜔) = 𝑞u�(u�) is integrable for every 𝑞 ∈ (0, 1), and it has
𝑞-derivatives for almost every 𝜔, so that u�u�

u�u�(𝑞, 𝜔) = 𝑌(𝜔)𝑞u�(u�)−1. Moreover these
derivatives are bounded by the function 𝑌(𝜔), which is integrable. Therefore we can
differentiate under the sum, and get for 𝜑(𝑞) = 𝐸(𝑞u�) − 𝑞 that

𝜑′(𝑞) = −1 +
∞
∑
u�=1

𝑦𝑞u�−1𝜋(𝑦).

Now ∑∞
u�=1 𝑦𝑞u�−1𝜋(𝑦) ≤ ∑∞

u�=1 𝑦𝜋(𝑦) = 𝜇 < 1, so 𝜑 is strictly decreasing. Therefore
𝜑(𝑞) = 0 if and only if 𝑞 = 1.

Exercise 4 In the critical case 𝜇 = 1, show that the martingale (𝑍u� : 𝑡 ∈ ℕ) is not
uniformly integrable.
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Solution 4 Assume that 𝑍u� were U.I. Then 𝑍u� → 𝑍∞ in 𝐿1. But this is a contradiction,
since by above 𝑍∞ = 0 almost everywhere and on the other hand 𝐸(𝑍u�) = 1.

Exercise 5 The next exercises concern the supercritical case 𝜇 ∈ (1, ∞).

Show that

𝑊u� = 𝑍u�(𝜔)𝜇−u�

is a martingale.

Solution 5 Notice that by the first exercise

𝐸(𝑊u�|ℱu�−1) = 𝜇−u�𝐸(𝑍u�|ℱu�−1) = 𝜇−u�𝜇𝑍u�−1 = 𝜇−(u�−1)𝑍u�−1 = 𝑊u�−1.

Exercise 6 Show that 𝑃 almost surely limu�→∞ 𝑊u� → 𝑊∞ with 𝑊∞ ∈ 𝐿1(𝑃).

Solution 6 This follows from Doob’s martingale convergence theorem since the
martingale 𝑊u� is non-negative.

Exercise 7 Show that

𝐸 ⎛⎜⎜⎜
⎝

⎧{
⎨{⎩

∞
∑
u�=1

1
u�u�

u�u�−1

∑
u�=1

(𝑌u�,u�𝟏(𝑌u�,u� ≤ 𝜇u�) − 𝐸(𝑌𝟏(𝑌 ≤ 𝜇u�)))
⎫}
⎬}⎭

2
⎞⎟⎟⎟
⎠

< ∞.

Solution 7 Because the martingale differences are orthogonal, it is enough to show
that

∞
∑
u�=1

1
u�2u� 𝐸 ⎛⎜⎜

⎝

u�u�−1

∑
u�=1

(𝑌u�,u�𝟏(𝑌u�,u� ≤ 𝜇u�) − 𝐸(𝑌𝟏(𝑌 ≤ 𝜇u�)))⎞⎟⎟
⎠

2

< ∞.

Now let 𝑎u� = 𝐸(𝑌𝟏(𝑌 ≤ 𝜇u�)). Then

𝐸 ⎛⎜⎜⎜
⎝

⎧{
⎨{⎩

u�u�−1

∑
u�=1

(𝑌u�,u�𝟏(𝑌u�,u� ≤ 𝜇u�) − 𝐸(𝑌𝟏(𝑌 ≤ 𝜇u�)))
⎫}
⎬}⎭

2
⎞⎟⎟⎟
⎠

=

𝐸(𝑍u�−1)𝐸 ((𝑌u�,u�𝟏(𝑌u�,u� ≤ 𝜇u�) − 𝑎u�)2) −

𝐸(𝑍u�−1)(𝐸(𝑍u�−1) − 1) ∑
1≤u�<u�≤u�u�−1

𝐸 ((𝑌u�,u�𝟏(𝑌u�,u� ≤ 𝜇u�) − 𝑎u�)(𝑌u�,u�𝟏(𝑌u�,u� ≤ 𝜇u�) − 𝑎u�)) =

𝜇u�−1 Var(𝑌𝟏(𝑌 ≤ 𝜇u�)).

Thus we just have to show that

∞
∑
u�=1

Var(u�𝟏(u�≤u�u�))
u�u� =

∞
∑
u�=1

1
u�u�

⎛⎜
⎝

∞
∑
u�=0

𝑃(𝑌 = 𝑖)𝑖2 − ⎛⎜
⎝

∞
∑
u�=0

𝑃(𝑌 = 𝑖)𝑖⎞⎟
⎠

2
⎞⎟
⎠

< ∞.

In particular it is enough to show that
∞
∑
u�=1

∞
∑
u�=0

𝑃(𝑌 = 𝑖) u�2

u�u� < ∞.
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This follows by exchanging the order of summation:
∞
∑
u�=1

∞
∑
u�=0

𝑃(𝑌 = 𝑖) u�2

u�u� ≤
∞
∑
u�=0

∞
∑

u�=⌊logu� u�⌋
𝑃(𝑌 = 𝑖) u�2

u�u� =
∞
∑
u�=0

𝑃(𝑌 = 𝑖)𝑖2 u�−⌊logu� u�⌋

1−u�−1
≤

u�
1−u�−1

∞
∑
u�=0

𝑃(𝑌 = 𝑖)𝑖 < ∞.

Exercise 8 Show that also, when 1 < 𝐸(𝑌) < ∞, without any additional assumptions
∞
∑
u�=1

𝑃(𝑊u� ≠ 𝑊u�) < ∞

and by Borel Cantelli lemma, with probability one 𝑊u� ≠ 𝑊u� only for finitely many 𝑡.

Solution 8 Notice that

𝑃(𝑊u� ≠ 𝑊u�) = 𝑃 ⎛⎜⎜
⎝

u�u�−1

∑
u�=1

𝑌u�,u�𝟏(𝑌u�,u� ≤ 𝜇u�) ≠
u�u�−1

∑
u�=1

𝑌u�,u�
⎞⎟⎟
⎠

≤ 𝑃 (𝑌u�,u� > 𝜇u� for some 𝑖 ∈ [1, 𝑍u�−1])

≤
∞
∑
u�=0

𝑃(𝑍u�−1 = 𝑧)𝑧𝑃(𝑌 > 𝜇u�).

Therefore
∞
∑
u�=1

𝑃(𝑊u� ≠ 𝑊u�) ≤
∞
∑
u�=1

∞
∑
u�=0

𝑃(𝑍u�−1 = 𝑧)𝑧𝑃(𝑌 > 𝜇u�)

=
∞
∑
u�=1

𝑃(𝑌 > 𝜇u�)𝐸(𝑍u�−1) = 1
u�

∞
∑
u�=1

𝑃(𝑌 > 𝜇u�)𝜇u�.

But notice that
∞
∑
u�=1

𝑃(𝑌 > 𝜇u�)𝜇u� =
∞
∑
u�=1

∞
∑

u�=⌊u�u�⌋+1
𝑃(𝑌 = 𝑖)𝜇u�

≤ ∑
u�=⌊u�⌋+1

⌊
log u�
log u� ⌋+1

∑
u�=1

𝑃(𝑌 = 𝑖)𝜇u�

= ∑
u�=⌊u�⌋+1

𝑃(𝑌 = 𝑖) ⎛⎜⎜⎜
⎝

𝜇 + 𝜇2 + … + 𝜇
⌊

log u�
log u� ⌋+1⎞⎟⎟⎟

⎠

= ∑
u�=⌊u�⌋+1

𝑃(𝑌 = 𝑖) u�
u�−1

⎛⎜⎜⎜
⎝

𝜇
⌊

log u�
log u� ⌋+1

− 1⎞⎟⎟⎟
⎠

≤ u�
u�−1 ∑

u�=⌊u�⌋+1
𝑃(𝑌 = 𝑖)(𝜇𝑖 − 1) < ∞.

Exercise 9 Show that the series

∞
∑
u�=1

𝜇−u�
u�u�−1

∑
u�=1

{𝑌u�,u�𝟏(𝑌u�,u� > 𝜇u�) − 𝐸(𝑌𝟏(𝑌 > 𝜇u�))}
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converges in 𝐿1 if and only if 𝐸(𝑌 log 𝑌) < ∞.

Solution 9 Assume first that 𝐸(𝑌 log 𝑌) < ∞. Then

∞
∑
u�=1

𝜇−u�
u�u�−1

∑
u�=1

𝐸(𝑌𝟏(𝑌 > 𝜇u�))

converges in 𝐿1, since

∞
∑
u�=1

𝜇−u�𝐸 ⎛⎜⎜
⎝

u�u�−1

∑
u�=1

𝐸(𝑌𝟏(𝑌 > 𝜇u�))⎞⎟⎟
⎠

=
∞
∑
u�=1

𝜇−u�𝐸(𝑍u�−1)𝐸(𝑌𝟏(𝑌 > 𝜇u�)) = 1
u�

∞
∑
u�=1

𝐸(𝑌𝟏(𝑌 > 𝜇u�)),

and

∞
∑
u�=1

𝐸(𝑌𝟏(𝑌 > 𝜇u�)) =
∞
∑
u�=1

∞
∑

u�=⌊u�u�⌋+1
𝑃(𝑌 = 𝑦)𝑦 ≈ ∑

u�=⌊u�⌋

⌊
log u�
log u� ⌋

∑
u�=1

𝑃(𝑌 = 𝑦)𝑦 ≈ 𝐸(𝑌 log 𝑌).

Now part 8 implies that

∞
∑
u�=1

(𝑊u� − 𝑊u�) =
∞
∑
u�=1

1
u�u�

u�u�−1

∑
u�=1

𝑌u�,u�𝟏(𝑌u�,u� > 𝜇u�)

converges almost surely. Moreover

∞
∑
u�=1

1
u�u� 𝐸 ⎛⎜⎜

⎝

u�u�−1

∑
u�=1

𝑌u�,u�𝟏(𝑌u�,u� > 𝜇u�)⎞⎟⎟
⎠

= 1
u�

∞
∑
u�=1

𝐸(𝑌𝟏(𝑌 > 𝜇u�))

converges, so we get the convergence also in 𝐿1.

Suppose then that the martingale 𝑊u� converges in 𝐿1. This is equivalent with

∞
∑
u�=1

(𝑊u� − 𝑊u� − 𝑅u�) =
∞
∑
u�=1

1
u�u�

u�u�−1

∑
u�=1

{𝑌u�,u�𝟏(𝑌u�,u� > 𝜇u�) − 𝐸(𝑌𝟏(𝑌 > 𝜇u�))}

converging in 𝐿1, since the other part
∞
∑
u�=1

(𝑊u� − 𝑊u�−1 + 𝑅u�)

converges in 𝐿2 by part 7. In particular there is a subsequence that converges almost
surely, and because part 8 tells us that for almost every 𝜔 we have 𝑊u�(𝜔) = 𝑊u�−1(𝜔)
for 𝑡 > 𝑇(𝜔), we get that ∑∞

u�=1 𝑅u� converges almost surely. If we now let 𝑊∗(𝜔) =
infu� 𝑊u�(𝜔), we have 𝑃(𝑊∗ > 0) = 𝑃(𝑊∞ > 0) > 0, since 𝐸(𝑊∞) = 1 by assumption.
Thus for almost every 𝜔

∞ >
∞
∑
u�=1

𝑅u�(𝜔) =
∞
∑
u�=1

1
u�u� 𝑍u�−1(𝜔)𝐸(𝑌𝟏(𝑌 > 𝜇u�)) ≥ u�∗(u�)

u�

∞
∑
u�=1

𝐸(𝑌𝟏(𝑌 > 𝜇u�)),

so there must exist 𝜔 such that 𝑊∗(𝜔) > 0 and the above inequality holds. Then also
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∞
∑
u�=1

𝐸(𝑌𝟏(𝑌 > 𝜇u�)) < ∞

must hold. We saw above that this is equivalent with 𝐸(𝑌 log 𝑌) < ∞.

Exercise 10 Show that when 1 < 𝐸(𝑌) < ∞, 𝑊u� is uniformly integrable if and only
if 𝐸(𝑌 log 𝑌) < ∞.

Solution 10 We know by parts 7 and 9 that 𝑊u� converges in 𝐿1 if and only if
𝐸(𝑌 log 𝑌) < ∞. Because convergence in 𝐿1 is equivalent to uniform integrability for
martingales satisfying Doob’s martingale convergence theorem, the result follows.


