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Exercise 1 Show that Z; is a martingale for 4 = 1, a supermartingale for # < 1 and
a submartingale for y > 1.

Solution1 We show that E(Z;) < oo for all t: By induction
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Clearly if y = 1, we have a martingale, if < 1, we have a supermartingale, and if
# =1, we have a submartingale.

Exercise 2 For y # 1, write the Doob decomposition of Z; and compute E(Z;).

Solution 2 The Doob decomposition can be defined as Z; = M, + A;, where
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We already calculated E(Z;) in the first exercise, but lets do it with the Doob decom-
position.
Now E(M;) = Zy = 1 for all t, because M is a martingale, and
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We will prove by induction that E(A;) = u! —1fort > 1. When t = 1, this is clearly
true, since
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Suppose that the claim holds for 1,2, ...,t — 1. Then
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so the claim holds for ¢, too. Therefore E(Z;) = E(M,) + E(A;) = u'.

Exercise 3 Assume that < 1, and that the offspring distribution is non-trivial,
meaning that 0 < P(Y = 1) < 1. The case P(Y = 1) = 1 is trivial, nothing happens,
the size of the population is constant.

Show that when y < 1 (subcritical and critical cases)

tlim Zi(w)=0 Pa.s.

Solution 3  Notice that Z; is a non-negative supermartingale. Therefore Doob’s
forward convergence theorem applies and there is a limit Z_, almost surely that is
integrable. Now

because for extinction we need all the descendants of the n individuals to become
extinct, and by independence the probability for that to happen for a single individual
is the same as that happening to the first individual. Let g = P(Z., = 0). Then by (1)
we have

P(Zs =010 (Z1)) = g%,
and hence, by taking expectation,
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where P(Y = n) = 7t(n). Because 4 < 1and P(Y = 1) < 1, we must have P(Y = 0) >
0. Therefore also g = P(Z,, = 0) > P(Y = 0) > 0. Clearly g = 1 satisfies the above
equation. We will show that there are no other solutions.

Notice that the function f (g, w) = qy(“’ ) is integrable for every g € (0,1), and it has
g-derivatives for almost every w, so that g—{;(q, w) = Y(w)qy(“’)_l. Moreover these

derivatives are bounded by the function Y (w), which is integrable. Therefore we can
differentiate under the sum, and get for ¢(q) = E(q¥) — ¢ that
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Now Z;ozl yqy—l T(y) < Z;ozl yrt(y) = u < 1, so ¢ is strictly decreasing. Therefore
¢(q) = 0ifand only if g = 1.

Exercise 4 In the critical case # = 1, show that the martingale (Z; : t € N) is not
uniformly integrable.



Solution4 Assume that Z, were UI. Then Z, — Z, in L'. But this is a contradiction,
since by above Z, = 0 almost everywhere and on the other hand E(Z;) = 1.

Exercise 5 The next exercises concern the supercritical case y € (1, o).
Show that
W, = Z(wyp™
is a martingale.
Solution 5 Notice that by the first exercise
EW{F_1) = p~ E(ZFyq) = ptpZyy = p=0Zy = Wiy
Exercise 6 Show that P almost surely lim,_, ., W, — W, with W, € L(P).

Solution 6  This follows from Doob’s martingale convergence theorem since the
martingale W, is non-negative.

Exercise 7 Show that
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Solution 7 Because the martingale differences are orthogonal, it is enough to show
that
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In particular it is enough to show that
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This follows by exchanging the order of summation:
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Exercise8 Show thatalso, when1l < E(Y) < oo, without any additional assumptions
Y P(W, # W) < o
t=1

and by Borel Cantelli lemma, with probability one W, # W, only for finitely many ¢.

Solution 8 Notice that
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Exercise 9 Show that the series
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converges in L! if and only if E(YlogY) < co.

Solution 9 Assume first that E(Y log Y) < co. Then
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converges in L1, since
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converges almost surely. Moreover
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converges, so we get the convergence also in L.

Suppose then that the martingale W, converges in L!. This is equivalent with
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converging in L!, since the other part
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converges in L? by part 7. In particular there is a subsequence that converges almost
surely, and because part 8 tells us that for almost every w we have Wt (w) = Wi_1(w)
fort > T(w), we get that Zil R; converges almost surely. If we now let W, (w) =
inf; W;(w), we have P(W, > 0) = P(W,, > 0) > 0, since E(W,,) = 1 by assumption.
Thus for almost every w
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so there must exist w such that W, (w) > 0 and the above inequality holds. Then also
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must hold. We saw above that this is equivalent with E(Ylog Y) < co.

Exercise 10 Show that when 1 < E(Y) < oo, W, is uniformly integrable if and only
if E(YlogY) < oo.

Solution 10  We know by parts 7 and 9 that W, converges in L! if and only if
E(YlogY) < co. Because convergence in Llis equivalent to uniform integrability for
martingales satisfying Doob’s martingale convergence theorem, the result follows.



