
Stochastic analysis, spring 2013, Exercises-6, 28.02.2013
A branching process (Zt)t∈N with integer values, represents the size of a

population evolving randomly in discrete time.
We start with Z0(ω) = 1 individual at time t = 0.
Inductively each of the Zt−1(ω) individuals in the (t − 1) generation has a

random number of offspring Yi,t. These offspring numbers are independent and
identically distributed with law π = (π(n) : n = 0, 1, . . . ),

π(n) = P
(
Y = n

)
, Y = Y1,1.

The size of the new generation at time t is then

Zt(ω) =

Zt−1(ω)∑
i=1

Yi,t(ω)

We assume that the mean offspring number is finite

µ = Eπ(Y ) =

∞∑
n=0

nπ(n) <∞

Note that if Zt(ω) = 0, then Zu(ω) = 0 ∀u ≥ t. In this case we say that the
process is extinct. Clearly P (Zt = 0) ≤ P (Zu = 0) for t ≤ u.

Note also that P (Y = 0) > 0 implies P (Zt = 0) > 0, ∀t ≥ 1.

Consider the filtration F = (Ft : t ∈ N) with Ft = σ(Zs : 0 ≤ s ≤ t).
Actually we could consider the larger filtration F′ = (F ′t : t ∈ N) with

F ′t = σ
(
Z0, Ys,i1(Zs−1 ≥ i) : 0 ≤ s ≤ t, i ∈ N

)
.

or F′′ = (F ′′t : t ∈ N) with

F ′′t = σ
(
Z0, Ys,i : 0 ≤ s ≤ t, i ∈ N

)
.

Although Ft ⊂ F ′t ⊂ F ′′t , the martingale properties we use in this exercise for
all these filtrations.

1. Show that Zt(ω) is a F-martingale, (respectively supermartingale, sub-
martingale ) when µ = 1 (respectively 0 ≤ µ < 1, 1 < µ < ∞, in the
filtration generated by the process Z itself.

Solution Note that

E(Zt|Ft−1) = E

(Zt−1∑
i=1

Xi,t

∣∣∣∣Ft−1) =

∞∑
i=1

E

(
1(Zt−1 ≤ i)Xi,t

∣∣∣∣Ft−1) =

=

∞∑
i=1

1(Zt−1 ≤ i)E
(
Xi,t

∣∣∣∣Ft−1) =

∞∑
i=1

1(Zt−1 ≤ i)E(Xi,t) = µZt−1

where we used independence of Xi,t from Ft−1, and by monotone conver-
gence we can interchange sum and expectation.
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2. For µ 6= 1, write the Doob decomposition of the supermartingale (respec-
tively martingale) Zt as sum of a martingale and a non-increasing (re-
spectively non-decreasing ) F-predictable process, and compute the mean
E(Zt) for t ∈ N.
Solution

Zt = 1 +

t∑
s=1

Zs−1∑
i=1

(Xi,s − 1) =

1− (1− µ)
t∑

s=1

Zs−1 +

t∑
s=1

Zs−1∑
i=1

(Xi,s − µ)

and since the martingale part has zero mean

E(Zt) = 1 + (µ− 1)

t∑
s=1

E(Zs−1)

this linear difference equation has solution E(Zt) = µt.

3. Assume that µ ≤ 1, and that the offspring distribution is non-trivial,
meaning that 0 ≤ π(Y = 1) < 1. The case P (Y = 1) = 1 is trivial,
nothing happens, the size of the population is constant.

Show that when µ ≤ 1 (subcritical and critical cases)

lim
t→∞

Zt(ω) = 0 P a.s.

Hint: first show that a finite limit Z∞(ω) exists P a.s. with E(Z∞) <∞.
Use the indepdence of Y1,1 from (Yt,i : t ≥ 2, i ∈ N) to prove

P (Z∞ = 0|Z1 = n) = P (Z∞ = 0)n

where P (Z∞ = 0) is the probability that the descendance of a single indi-
vidual becomes extinct.

. Solution Zt is a non-negative martingale, by Doob’s martingale con-
vergence theorem it has P a.s. a finite limit Z∞.

By computing first the conditional probability P (Z∞ = 0|σ(Z1))(ω) and
taking expectation, show that the unknown q = P (Z∞ = 0) satisfies the
equation

q = EP (q
Y ), q ∈ [π(0), 1]

where P (Y = n) = π(n) is the offspring distribution.

Note that since µ = E(Y ) ≤ 1 and π(1) = P (Y = 1) < 1, necessarily
π(0) = P (Y = 0) > 0, and P (Z∞ = 0) ≥ P (Y = 0) > 0. Therefore q = 0
is not a solution.
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q = 1 is also a solution. We show that there are no other solutions.

Any 0 < q < 1 is not a solution since the derivative

d

dq
EP (q

Y ) = E

(
d

dq
qY
)

= E(Y qY−1) < E(Y ) ≤ 1

with strict inequality since P (Y = 1) < 1.

You need to check that it is allowed to take a derivative inside the expec-
tation.

Solution It is enough to check that the derivatives

{Y (ω)θY (ω)−1 : θ ∈ U}

have a common integrable upper bound in an open neighbourhood U 3 q.
Obviously Y (ω) is such uniform upper bound for all q ∈ (0, 1).

This is in contradiction with EP (qY ) = q with derivative ≡ 1.

4. In the critical case µ = 1, show that the martingale (Zt : t ∈ N) is not
uniformly integrable

Solution: Since 0 = E(Z∞) < E(Zt) = E(Z0) = 1, Zt(ω) → Z∞(ω) P
almost surely but not in L1(P ), therefore uniform integrability does not
hold.

Next we work with the supercritical case, with µ = EP (Y ) ∈ (1,∞).

5. Show that

Wt = Zt(ω)µ
−t

is a martingale.

Solution It follows from EP (Zt|Ft−1)(ω) = Zt−1µ.

6. Show that P almost surely limt→∞Wt →W∞ with W∞ ∈ L1(P ).

Solution Wt(ω) is a non-negative martingale, in particular it is a su-
permartingale bounded from below and Doob’s martingale convergence
theorem applies.

7. The next result is a theorem from Kesten and Stigum (1966) which states
that Wt is an uniformly integrable martingale if and only if the offspring
distribution satisfies

EP (Y log(Y )) = 0

where it is understood that 0 log(0) = limx↓0 x log(x) = 0.

Write the increments:

Wt −Wt−1 =
1

µt

Zt−i∑
i=1

(Yt,i − µ)
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and truncate them in the following way: for

W̃t =
1

µt

Zt−i∑
i=1

Yt,i1(Yt,i ≤ µt),

Rt =
1

µt

Zt−i∑
i=1

E

(
Y 1(Y > µt)

)
We decompose

Wt −Wt−1 =

(
Wt − W̃t −Rt

)
︸ ︷︷ ︸

I

+

(
W̃t +Rt −Wt−1

)
︸ ︷︷ ︸

II

=

1

µt

Zt−1∑
i=1

{
Yt,i1(Yt,i > µt)− E

(
Y 1(Y > µt)

)}
+

1

µt

Zt−1∑
i=1

{
Yt,i1(Yt,i ≤ µt)− E

(
Y 1(Y ≤ µt)

)}
where (I) and (II) are martingale differences.
Note that

E

({ ∞∑
t=1

1

µt

Zt−1∑
i=1

(
Yt,i1(Yt,i ≤ µt)− E

(
Y 1(Y > µt)

))}2)
=

∞∑
t=1

E(Zt−1)

µ2t

∫ µt

0

x2P (Y ∈ dx)

=
1

µ2

∫ ∞
0

( ∞∑
t=1

µ−t1(µt > x)

)
x2P (Y ∈ dx) ≤ µ

logµ

∫ ∞
0

xP (Y ∈ dx) = µ2

logµ
<∞

where
∞∑

t>log x/ log µ

µ−t ≤
∫
b log xlog µ c

exp(−s logµ)ds ≤ µ

x logµ

Therefore by summing the increments (I), we obtain a martingale bounded
in L2(P ) which is also uniformly integrable.
We show also that, when 1 < E(Y ) <∞, without any additional assump-
tions

∞∑
t=1

P (W̃t 6=Wt) <∞

In fact
∞∑
t=1

P (W̃t 6=Wt) =

∞∑
t=1

EP

(
P (W̃t 6=Wt|Zt−1)

)

≤
∞∑
t=1

EP (Zt−1)P (Y > µt) =
1

µ

∞∑
t=1

µtP (Y > µt)

=
1

µ

∫ ∞
0

( ∞∑
t=1

µt1(x > µt)

)
P (Y ∈ dx) ≤ 1

µ

∫ ∞
0

µx− 1

µ− 1
P (X ∈ dx) = 1 + µ−1 <∞

Therefore by Borel Cantelli lemma with probability one W̃t 6= Wt for at
most finitely many t.
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We show that the series

∞∑
t=1

µ−t
Zt−1∑
i=1

{
Yt,i1(Yt,i > µt)− EP

(
Y 1(Y > µt)

)}
converges in L1(P ) if and only if EP (Y log Y ) <∞.

In fact

∞∑
t=1

µ−tEP

(Zt−1∑
i=1

Yt,i1(Yt,i > µt)

)
=

∞∑
t=1

µ−tEP (Zt−1)EP
(
Y 1(Y > µt)

)
=

1

µ

∫ ∞
0

∞∑
t=1

1(x > µt)xP (Y ∈ dx) = 1

µ

∫ ∞
0

∞∑
t=1

1(t <
log x

logµ
)xP (Y ∈ dx)

≤ 1

µ logµ
E(Y log Y ) <∞

Next we show that when (Wt : t ∈ N) is uniformly integrable, then
EP (Y log Y ) <∞.

Since the series of martingale differences is bounded in L2(P ),

∞∑
t=1

(W̃t −Wt−1 +Rt)

it is converging P -almost surely and in L1(p), and W̃t 6= Wt for at most
finitely many t,

It follows that the series
∞∑
t=1

(Wt −Wt−1 +Rt)

is converging P -almost surely, and since the series

∞∑
t=1

(Wt −Wt−1)

is converging P -almost surely by Doob’s martingale convergence theorem,
we have also almost sure convergence for the series

∞∑
t=1

Rt =
1

µ

∞∑
t=1

Wt−1E(Y 1(Y > µt))

Let W (ω) = inftWt(ω). Note that W (ω) = 0⇐⇒W∞ = 0.

By the uniform integrability assumtionWt →W∞ converges also in L1(P )
with E(W∞) = 1, and necessarily P (W > 0) = P (W∞ > 0) > 0,

We have that P a.s.

∞ >

∞∑
t=1

Rt(ω) ≥
W (ω)

µ

∞∑
t=1

EP
(
Y 1(Y > µt)

)
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Therefore ∃ω such that W (ω) > 0 and

∞ >
µ

W (ω)

∞∑
t=1

Rt(ω) ≥
∫ ∞
0

( ∞∑
t=1

1(µt < x)

)
xP (Y ∈ dx) ≥ EP (Y log Y )

log(µ)
− µ

Last week we had this problem:
A generalization of a game by Jacob Bernoulli. In this game a fair die is

rolled, and if the result is Z1, then Z1 dice are rolled. If the total of the Z1 dice
is Z2, then Z2 dice are rolled. If the total of the Z2 dice is Z3, then Z3 dice are
rolled, and so on. Let Z0 ≡ 1.

In this case Yt,i(ω) are uniformly distributed in the set {1, 2, . . . , 6}, with
µ = EP (Y ) = 7/2 > 1. Since P (Y = 0) = 0, the branching processes never
dies.

The condition EP (Y log Y ) is fullfilled since Y is finite. So Wt = Ztµ
−t is

uniformly integrable and it is convergent both in L1(P ) and P -almost surely to
a random variable W∞ with EP (W∞) = 1.

6


