Stochastic analysis, spring 2013, Exercises-6, 28.02.2013

A branching process (Z;)icy with integer values, represents the size of a
population evolving randomly in discrete time.

We start with Zp(w) = 1 individual at time ¢ = 0.

Inductively each of the Z;_;(w) individuals in the (¢ — 1) generation has a
random number of offspring Y; ;. These offspring numbers are independent and
identically distributed with law 7 = (w(n) : n =0,1,...),

m(n)=P(Y =n),Y =Y.

The size of the new generation at time ¢ is then

thl(w)

> Yiulw)
i=1
We assume that the mean offspring number is finite
oo
= Z nm(n) < oo
n=0

Note that if Z;(w) = 0, then Z,, (w
process is extinct. Clearly P(Z; = 0)

) =0 Vu > t. In this case we say that the
< P(Z,=0) for t <u.

Note also that P(Y = 0) > 0 implies P(Z; = 0) > 0, V¢ > 1.

Consider the filtration F = (F; : t € N) with 7, = 0(Zs: 0 < s < t).
Actually we could consider the larger filtration F' = (F] : t € N) with

Fi=0(20,Ysi1(Zs—1 >1): 0< s <t, i €N).
or I = (F/' : t € N) with
}-t”:a(Zo,YS’i:Ogsgt7 iGN).

Although F; € F; C F/, the martingale properties we use in this exercise for
all these filtrations.

1. Show that Z;(w) is a F-martingale, (respectively supermartingale, sub-
martingale ) when pu = 1 (respectively 0 < p < 1, 1 < p < o0, in the
filtration generated by the process Z itself.

Solution Note that

Zy—1

E(Z|Fi-1) (Z Xie
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where we used independence of X, ; from F;_;, and by monotone conver-
gence we can interchange sum and expectation.

Fi— 1) ( (Zp—1 <0) X0 | Fee 1)—
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2. For u # 1, write the Doob decomposition of the supermartingale (respec-
tively martingale) Z; as sum of a martingale and a non-increasing (re-
spectively non-decreasing ) F-predictable process, and compute the mean
E(Zt) for t € N.

Solution
t Zs-1
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and since the martingale part has zero mean

BE(Z)=1+(u—1)Y E(Z. 1)

s=1

this linear difference equation has solution E(Z;) = ut.

3. Assume that g < 1, and that the offspring distribution is non-trivial,
meaning that 0 < 7(Y = 1) < 1. The case P(Y = 1) = 1 is trivial,
nothing happens, the size of the population is constant.

Show that when p < 1 (subcritical and critical cases)

lim Z;(w)=0 P as.

t—o00

Hint: first show that a finite limit Z (w) exists P a.s. with E(Z) < oo.
Use the indepdence of Y7 1 from (Y;; : t > 2,i € N) to prove

P(Zse = 0|2y = n) = P(Zoo = 0)"

where P(Z, = 0) is the probability that the descendance of a single indi-
vidual becomes extinct.

. Solution Z; is a non-negative martingale, by Doob’s martingale con-
vergence theorem it has P a.s. a finite limit Z..

By computing first the conditional probability P(Z. = 0|0(Z1))(w) and
taking expectation, show that the unknown ¢ = P(Z,, = 0) satisfies the
equation

q:EP(qY)’ qe [71—(0)71]

where P(Y = n) = w(n) is the offspring distribution.

1) < 1, necessarily
. Therefore ¢ =0

o

Note that since p = E(Y) < 1 and n(1) = P(Y =
7(0) = P(Y =0) >0, and P(Z, =0) > P(Y =0) >
is not a solution.



q =1 is also a solution. We show that there are no other solutions.

Any 0 < ¢ < 1 is not a solution since the derivative

S Erla") = E(;‘;qY) —Byg" Y < BY) <1

with strict inequality since P(Y =1) < 1.

You need to check that it is allowed to take a derivative inside the expec-
tation.

Solution It is enough to check that the derivatives
{Y(w)e¥@=1:.9c U}

have a common integrable upper bound in an open neighbourhood U > gq.
Obviously Y (w) is such uniform upper bound for all ¢ € (0, 1).

This is in contradiction with Ep(¢¥) = ¢ with derivative = 1.
. In the critical case u = 1, show that the martingale (Z; : t € N) is not
uniformly integrable

Solution: Since 0 = E(Z) < E(Zt) = E(Zp) =1, Zi(w) = Zoo(w) P
almost surely but not in L!(P), therefore uniform integrability does not
hold.

Next we work with the supercritical case, with u = Ep(Y) € (1, 00).

. Show that
Wy = Zy(w)p™

is a martingale.

Solution It follows from Ep(Z:|Fi—1)(w) = Zi—1p.

. Show that P almost surely lim;_,o, W; — W, with W, € L1(P).

Solution W;(w) is a non-negative martingale, in particular it is a su-
permartingale bounded from below and Doob’s martingale convergence
theorem applies.

. The next result is a theorem from Kesten and Stigum (1966) which states
that W, is an uniformly integrable martingale if and only if the offspring
distribution satisfies

Ep(Y log(Y)) = 0

where it is understood that 0log(0) = lim, o« log(x) = 0.

Write the increments:
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Wi Wi =5 (Yii—n)
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and truncate them in the following way: for
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We decompose

Wy =W = (Wt - Wt - Rt) + <Wf + Ry — Wt—l) =
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where (I) and (II) are martingale differences.

Note that
Z—1 2 00 t
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Therefore by summing the increments (I), we obtain a martingale bounded
in L?(P) which is also uniformly integrable.

We show also that, when 1 < E(Y') < oo, without any additional assump-
tions

oo
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In fact
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Therefore by Borel Cantelli lemma with probability one Wt #+ W, for at
most finitely many ¢.



We show that the series

Zt—1

Sty {1@,2—1(1471- > pt) — Ep(Y1(Y > ,f))}
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converges in L!(P) if and only if Ep(Y logY) < 0o

In fact

Zi—1
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Next we show that when (W; : ¢t € N) is uniformly integrable, then
Ep(YlogY) < cc.

Since the series of martingale differences is bounded in L?(P),

Z(Wf — Wi + Ry)

t=1
it is converging P-almost surely and in L!(p), and W, # W, for at most
finitely many ¢,
It follows that the series

Z — W,_ 1+Rt)

=1
is converging P-almost surely, and since the series
o
g —Wiq)
t=1

is converging P-almost surely by Doob’s martingale convergence theorem,
we have also almost sure convergence for the series

oo
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Let W (w) = inf; Wi (w). Note that W(w) =0 <= W, =

By the uniform integrability assumtion W; — W, converges also in L!(P)
with F(Ws) = 1, and necessarily P(IW > 0) = P(W > 0) > 0,

We have that P a.s.

0> Y Ri(w) >
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Therefore Jw such that W(w) > 0 and

o0

w log(1t)

3 h ¢ Ep(YlogY
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Last week we had this problem:

A generalization of a game by Jacob Bernoulli. In this game a fair die is
rolled, and if the result is Z7, then Z; dice are rolled. If the total of the Z; dice
is Zs, then Z5 dice are rolled. If the total of the Z5 dice is Z3, then Z3 dice are
rolled, and so on. Let Zy = 1.

In this case Y;;(w) are uniformly distributed in the set {1,2,...,6}, with
uw=Ep(Y)=7/2> 1. Since P(Y = 0) = 0, the branching processes never
dies.

The condition Ep(Y logY) is fullfilled since Y is finite. So W; = Z;u~t is
uniformly integrable and it is convergent both in L!(P) and P-almost surely to
a random variable W, with Ep (W) = 1.



