## Stochastic analysis, spring 2013, Exercises-6, 28.02.2013

A branching process  $(Z_t)_{t\in\mathbb{N}}$  with integer values, represents the size of a population evolving randomly in discrete time.

We start with  $Z_0(\omega) = 1$  individual at time t = 0.

Inductively each of the  $Z_{t-1}(\omega)$  individuals in the (t-1) generation has a random number of offspring  $Y_{i,t}$ . These offspring numbers are independent and identically distributed with law  $\pi = (\pi(n) : n = 0, 1, ...)$ ,

$$\pi(n) = P(Y = n), Y = Y_{1,1}.$$

The size of the new generation at time t is then

$$Z_t(\omega) = \sum_{i=1}^{Z_{t-1}(\omega)} Y_{i,t}(\omega)$$

We assume that the mean offspring number is finite

$$\mu = E_{\pi}(Y) = \sum_{n=0}^{\infty} n\pi(n) < \infty$$

Note that if  $Z_t(\omega) = 0$ , then  $Z_u(\omega) = 0 \ \forall u \geq t$ . In this case we say that the process is extinct. Clearly  $P(Z_t = 0) \leq P(Z_u = 0)$  for  $t \leq u$ .

Note also that P(Y=0) > 0 implies  $P(Z_t=0) > 0, \forall t \geq 1$ .

Consider the filtration  $\mathbb{F} = (\mathcal{F}_t : t \in \mathbb{N})$  with  $\mathcal{F}_t = \sigma(Z_s : 0 \le s \le t)$ . Actually we could consider the larger filtration  $\mathbb{F}' = (\mathcal{F}'_t : t \in \mathbb{N})$  with

$$\mathcal{F}'_t = \sigma(Z_0, Y_{s,i} \mathbf{1}(Z_{s-1} \ge i) : 0 \le s \le t, \ i \in \mathbb{N}).$$

or  $\mathbb{F}'' = (\mathcal{F}''_t : t \in \mathbb{N})$  with

$$\mathcal{F}_t'' = \sigma(Z_0, Y_{s,i} : 0 \le s \le t, \ i \in \mathbb{N}).$$

Although  $\mathcal{F}_t \subset \mathcal{F}'_t \subset \mathcal{F}''_t$ , the martingale properties we use in this exercise for all these filtrations.

1. Show that  $Z_t(\omega)$  is a  $\mathbb{F}$ -martingale, (respectively supermartingale, submartingale) when  $\mu = 1$  (respectively  $0 \le \mu < 1$ ,  $1 < \mu < \infty$ , in the filtration generated by the process Z itself.

Solution Note that

$$E(Z_{t}|\mathcal{F}_{t-1}) = E\left(\sum_{i=1}^{Z_{t-1}} X_{i,t} \middle| \mathcal{F}_{t-1}\right) = \sum_{i=1}^{\infty} E\left(\mathbf{1}(Z_{t-1} \le i) X_{i,t} \middle| \mathcal{F}_{t-1}\right) =$$

$$= \sum_{i=1}^{\infty} \mathbf{1}(Z_{t-1} \le i) E\left(X_{i,t} \middle| \mathcal{F}_{t-1}\right) = \sum_{i=1}^{\infty} \mathbf{1}(Z_{t-1} \le i) E(X_{i,t}) = \mu Z_{t-1}$$

where we used independence of  $X_{i,t}$  from  $\mathcal{F}_{t-1}$ , and by monotone convergence we can interchange sum and expectation.

2. For  $\mu \neq 1$ , write the Doob decomposition of the supermartingale (respectively martingale)  $Z_t$  as sum of a martingale and a non-increasing (respectively non-decreasing )  $\mathbb{F}$ -predictable process, and compute the mean  $E(Z_t)$  for  $t \in \mathbb{N}$ .

## Solution

$$Z_{t} = 1 + \sum_{s=1}^{t} \sum_{i=1}^{Z_{s-1}} (X_{i,s} - 1) = 1 - (1 - \mu) \sum_{s=1}^{t} Z_{s-1} + \sum_{s=1}^{t} \sum_{i=1}^{Z_{s-1}} (X_{i,s} - \mu)$$

and since the martingale part has zero mean

$$E(Z_t) = 1 + (\mu - 1) \sum_{s=1}^{t} E(Z_{s-1})$$

this linear difference equation has solution  $E(Z_t) = \mu^t$ .

3. Assume that  $\mu \leq 1$ , and that the offspring distribution is non-trivial, meaning that  $0 \leq \pi(Y=1) < 1$ . The case P(Y=1)=1 is trivial, nothing happens, the size of the population is constant.

Show that when  $\mu \leq 1$  (subcritical and critical cases)

$$\lim_{t \to \infty} Z_t(\omega) = 0 \quad P \text{ a.s.}$$

Hint: first show that a finite limit  $Z_{\infty}(\omega)$  exists P a.s. with  $E(Z_{\infty}) < \infty$ . Use the indepdence of  $Y_{1,1}$  from  $(Y_{t,i}: t \geq 2, i \in \mathbb{N})$  to prove

$$P(Z_{\infty} = 0|Z_1 = n) = P(Z_{\infty} = 0)^n$$

where  $P(Z_{\infty} = 0)$  is the probability that the descendance of a single individual becomes extinct.

. Solution  $Z_t$  is a non-negative martingale, by Doob's martingale convergence theorem it has P a.s. a finite limit  $Z_{\infty}$ .

By computing first the conditional probability  $P(Z_{\infty} = 0 | \sigma(Z_1))(\omega)$  and taking expectation, show that the unknown  $q = P(Z_{\infty} = 0)$  satisfies the equation

$$q = E_P(q^Y), \quad q \in [\pi(0), 1]$$

where  $P(Y = n) = \pi(n)$  is the offspring distribution.

Note that since  $\mu = E(Y) \le 1$  and  $\pi(1) = P(Y = 1) < 1$ , necessarily  $\pi(0) = P(Y = 0) > 0$ , and  $P(Z_{\infty} = 0) \ge P(Y = 0) > 0$ . Therefore q = 0 is not a solution.

q=1 is also a solution. We show that there are no other solutions.

Any 0 < q < 1 is not a solution since the derivative

$$\frac{d}{dq}E_P(q^Y) = E\left(\frac{d}{dq}q^Y\right) = E(Yq^{Y-1}) < E(Y) \le 1$$

with strict inequality since P(Y = 1) < 1.

You need to check that it is allowed to take a derivative inside the expectation.

Solution It is enough to check that the derivatives

$$\{Y(\omega)\theta^{Y(\omega)-1}:\theta\in U\}$$

have a common integrable upper bound in an open neighbourhood  $U \ni q$ . Obviously  $Y(\omega)$  is such uniform upper bound for all  $q \in (0,1)$ .

This is in contradiction with  $E_P(q^Y) = q$  with derivative  $\equiv 1$ .

4. In the critical case  $\mu = 1$ , show that the martingale  $(Z_t : t \in \mathbb{N})$  is not uniformly integrable

**Solution:** Since  $0 = E(Z_{\infty}) < E(Z_t) = E(Z_0) = 1$ ,  $Z_t(\omega) \to Z_{\infty}(\omega)$  P almost surely but not in  $L^1(P)$ , therefore uniform integrability does not hold.

Next we work with the supercritical case, with  $\mu = E_P(Y) \in (1, \infty)$ .

5. Show that

$$W_t = Z_t(\omega)\mu^{-t}$$

is a martingale.

**Solution** It follows from  $E_P(Z_t|\mathcal{F}_{t-1})(\omega) = Z_{t-1}\mu$ .

6. Show that P almost surely  $\lim_{t\to\infty} W_t \to W_\infty$  with  $W_\infty \in L^1(P)$ .

**Solution**  $W_t(\omega)$  is a non-negative martingale, in particular it is a supermartingale bounded from below and Doob's martingale convergence theorem applies.

7. The next result is a theorem from Kesten and Stigum (1966) which states that  $W_t$  is an uniformly integrable martingale if and only if the offspring distribution satisfies

$$E_P(Y \log(Y)) = 0$$

where it is understood that  $0 \log(0) = \lim_{x \downarrow 0} x \log(x) = 0$ .

Write the increments:

$$W_t - W_{t-1} = \frac{1}{\mu^t} \sum_{i=1}^{Z_{t-i}} (Y_{t,i} - \mu)$$

and truncate them in the following way: for

$$\widetilde{W}_t = \frac{1}{\mu^t} \sum_{i=1}^{Z_{t-i}} Y_{t,i} \mathbf{1}(Y_{t,i} \le \mu^t),$$

$$R_t = \frac{1}{\mu^t} \sum_{i=1}^{Z_{t-i}} E\left(Y \mathbf{1}(Y > \mu^t)\right)$$

We decompose

$$W_{t} - W_{t-1} = \underbrace{\left(W_{t} - \widetilde{W}_{t} - R_{t}\right)}_{\mathbf{I}} + \underbrace{\left(\widetilde{W}_{t} + R_{t} - W_{t-1}\right)}_{\mathbf{II}} = \underbrace{\frac{1}{\mu^{t}} \sum_{i=1}^{Z_{t-1}} \left\{ Y_{t,i} \mathbf{1}(Y_{t,i} > \mu^{t}) - E(Y \mathbf{1}(Y > \mu_{t})) \right\} + \frac{1}{\mu^{t}} \sum_{i=1}^{Z_{t-1}} \left\{ Y_{t,i} \mathbf{1}(Y_{t,i} \leq \mu^{t}) - E(Y \mathbf{1}(Y \leq \mu_{t})) \right\}}_{\mathbf{II}}$$

where (I) and (II) are martingale differences.

Note that

$$E\left(\left\{\sum_{t=1}^{\infty} \frac{1}{\mu^{t}} \sum_{i=1}^{Z_{t-1}} \left(Y_{t,i} \mathbf{1}(Y_{t,i} \leq \mu^{t}) - E\left(Y \mathbf{1}(Y > \mu^{t})\right)\right)\right\}^{2}\right) = \sum_{t=1}^{\infty} \frac{E(Z_{t-1})}{\mu^{2t}} \int_{0}^{\mu^{t}} x^{2} P(Y \in dx)$$

$$= \frac{1}{\mu^{2}} \int_{0}^{\infty} \left(\sum_{t=1}^{\infty} \mu^{-t} \mathbf{1}(\mu^{t} > x)\right) x^{2} P(Y \in dx) \leq \frac{\mu}{\log \mu} \int_{0}^{\infty} x P(Y \in dx) = \frac{\mu^{2}}{\log \mu} < \infty$$

where

$$\sum_{t>\log x/\log \mu}^{\infty} \mu^{-t} \le \int_{\lfloor \frac{\log x}{\log \mu} \rfloor} \exp(-s\log \mu) ds \le \frac{\mu}{x \log \mu}$$

Therefore by summing the increments (I), we obtain a martingale bounded in  $L^2(P)$  which is also uniformly integrable.

We show also that, when  $1 < E(Y) < \infty$ , without any additional assumptions

$$\sum_{t=1}^{\infty} P(\widetilde{W}_t \neq W_t) < \infty$$

In fact

$$\begin{split} & \sum_{t=1}^{\infty} P(\widetilde{W}_{t} \neq W_{t}) = \sum_{t=1}^{\infty} E_{P} \bigg( P(\widetilde{W}_{t} \neq W_{t} | Z_{t-1}) \bigg) \\ & \leq \sum_{t=1}^{\infty} E_{P}(Z_{t-1}) P(Y > \mu^{t}) = \frac{1}{\mu} \sum_{t=1}^{\infty} \mu^{t} P(Y > \mu^{t}) \\ & = \frac{1}{\mu} \int_{0}^{\infty} \bigg( \sum_{t=1}^{\infty} \mu^{t} \mathbf{1}(x > \mu^{t}) \bigg) P(Y \in dx) \leq \frac{1}{\mu} \int_{0}^{\infty} \frac{\mu x - 1}{\mu - 1} P(X \in dx) = 1 + \mu^{-1} < \infty \end{split}$$

Therefore by Borel Cantelli lemma with probability one  $\widetilde{W}_t \neq W_t$  for at most finitely many t.

We show that the series

$$\sum_{t=1}^{\infty} \mu^{-t} \sum_{i=1}^{Z_{t-1}} \left\{ Y_{t,i} \mathbf{1}(Y_{t,i} > \mu^t) - E_P (Y \mathbf{1}(Y > \mu^t)) \right\}$$

converges in  $L^1(P)$  if and only if  $E_P(Y \log Y) < \infty$ .

In fact

$$\sum_{t=1}^{\infty} \mu^{-t} E_{P} \left( \sum_{i=1}^{Z_{t-1}} Y_{t,i} \mathbf{1}(Y_{t,i} > \mu^{t}) \right) = \sum_{t=1}^{\infty} \mu^{-t} E_{P} (Z_{t-1}) E_{P} (Y \mathbf{1}(Y > \mu^{t}))$$

$$= \frac{1}{\mu} \int_{0}^{\infty} \sum_{t=1}^{\infty} \mathbf{1}(x > \mu^{t}) x P(Y \in dx) = \frac{1}{\mu} \int_{0}^{\infty} \sum_{t=1}^{\infty} \mathbf{1}(t < \frac{\log x}{\log \mu}) x P(Y \in dx)$$

$$\leq \frac{1}{\mu \log \mu} E(Y \log Y) < \infty$$

Next we show that when  $(W_t:t\in\mathbb{N})$  is uniformly integrable, then  $E_P(Y\log Y)<\infty$ .

Since the series of martingale differences is bounded in  $L^2(P)$ ,

$$\sum_{t=1}^{\infty} (\widetilde{W}_t - W_{t-1} + R_t)$$

it is converging P-almost surely and in  $L^1(p)$ , and  $\widetilde{W}_t \neq W_t$  for at most finitely many t,

It follows that the series

$$\sum_{t=1}^{\infty} (W_t - W_{t-1} + R_t)$$

is converging P-almost surely, and since the series

$$\sum_{t=1}^{\infty} (W_t - W_{t-1})$$

is converging P-almost surely by Doob's martingale convergence theorem, we have also almost sure convergence for the series

$$\sum_{t=1}^{\infty} R_t = \frac{1}{\mu} \sum_{t=1}^{\infty} W_{t-1} E(Y \mathbf{1}(Y > \mu^t))$$

Let  $\underline{W}(\omega) = \inf_t W_t(\omega)$ . Note that  $\underline{W}(\omega) = 0 \iff W_{\infty} = 0$ .

By the uniform integrability assumtion  $W_t \to W_\infty$  converges also in  $L^1(P)$  with  $E(W_\infty) = 1$ , and necessarily  $P(\underline{W} > 0) = P(W_\infty > 0) > 0$ ,

We have that P a.s.

$$\infty > \sum_{t=1}^{\infty} R_t(\omega) \ge \frac{\underline{W}(\omega)}{\mu} \sum_{t=1}^{\infty} E_P(Y \mathbf{1}(Y > \mu^t))$$

Therefore  $\exists \omega$  such that  $\underline{W}(\omega) > 0$  and

$$\infty > \frac{\mu}{\underline{W}(\omega)} \sum_{t=1}^{\infty} R_t(\omega) \ge \int_0^{\infty} \left( \sum_{t=1}^{\infty} \mathbf{1}(\mu^t < x) \right) x P(Y \in dx) \ge \frac{E_P(Y \log Y)}{\log(\mu)} - \mu$$

Last week we had this problem:

A generalization of a game by Jacob Bernoulli. In this game a fair die is rolled, and if the result is  $Z_1$ , then  $Z_1$  dice are rolled. If the total of the  $Z_1$  dice is  $Z_2$ , then  $Z_2$  dice are rolled. If the total of the  $Z_2$  dice is  $Z_3$ , then  $Z_3$  dice are rolled, and so on. Let  $Z_0 \equiv 1$ .

In this case  $Y_{t,i}(\omega)$  are uniformly distributed in the set  $\{1, 2, \dots, 6\}$ , with  $\mu = E_P(Y) = 7/2 > 1$ . Since P(Y = 0) = 0, the branching processes never dies.

The condition  $E_P(Y \log Y)$  is fullfilled since Y is finite. So  $W_t = Z_t \mu^{-t}$  is uniformly integrable and it is convergent both in  $L^1(P)$  and P-almost surely to a random variable  $W_{\infty}$  with  $E_P(W_{\infty}) = 1$ .