Stochastic analysis, 2. exercises

Janne Junnila

January 28, 2013

Exercise 1 Let $0<s<t<u$, and ($B_{r}: r \geq 0$) a standard Brownian motion with $B_{0}=0$.

Compute the conditional distribution of B_{t} conditionally on $\sigma\left(B_{s}, B_{u}\right)$.
Solution 1 Let $f_{B_{s}}$ be the probability density function of B_{s},

$$
\begin{equation*}
f_{s}(x)=\frac{1}{\sqrt{2 \pi s}} e^{-\frac{x^{2}}{2 s}} \tag{1}
\end{equation*}
$$

Then the joint probability density of B_{s}, B_{t} and B_{u} is given by

$$
\begin{align*}
f_{B_{s}, B_{t}, B_{u}}(x, y, z) & =f_{s}(x) f_{B_{t} \mid B_{s}=x}(y) f_{B_{u} \mid B_{t}=y}(z) \\
& =f_{s}(x) f_{t-s}(y-x) f_{u-t}(z-y) \\
& =\frac{1}{\sqrt{2 \pi s} \sqrt{2 \pi(t-s)} \sqrt{2 \pi(u-t)}} e^{-\frac{x^{2}}{2 s}-\frac{(y-x)^{2}}{2(t-s)}-\frac{(z-y)^{2}}{2(u-t)}} \tag{2}
\end{align*}
$$

The conditional probability density of B_{t} given $B_{s}=S$ and $B_{u}=U$ is

$$
\begin{equation*}
f_{B_{t} \mid B_{s}=S, B_{u}=U}(x)=\frac{f_{B_{s}, B_{t}, B_{u}}(S, x, U)}{\int_{-\infty}^{\infty} f_{B_{s}, B_{t}, B_{u}}(S, t, U) d t} . \tag{3}
\end{equation*}
$$

By (2) we have

$$
\begin{aligned}
f_{B_{s}, B_{t}, B_{u}}(S, x, U) & =\frac{1}{\sqrt{2 \pi s} \sqrt{2 \pi(t-s)} \sqrt{2 \pi(u-t)}} e^{-\frac{S^{2}}{2 s}-\frac{(x-S)^{2}}{2(t-s)}-\frac{(U-x)^{2}}{2(u-t)}} \\
& =\frac{e^{-\frac{S^{2}}{2 s}-\frac{\left(x^{2}-2 S x+S^{2}\right)(u-t)+\left(x^{2}-2 U x+U^{2}\right)(t-s)}{2(t-s)(u-t)}}}{\sqrt{2 \pi s} \sqrt{2 \pi(t-s)} \sqrt{2 \pi(u-t)}} \\
& =\frac{e^{-\frac{S^{2}}{2 s}-\frac{(u-s) x^{2}-2 x(S(u-t)+U(t-s))+S^{2}(u-t)+U^{2}(t-s)}{2(t-s)(u-t)}}}{\sqrt{2 \pi s} \sqrt{2 \pi(t-s)} \sqrt{2 \pi(u-t)}}
\end{aligned}
$$

so

$$
f_{B_{t} \mid B_{s}=S, B_{u}=U}(x)=\frac{e^{-\frac{(u-s) x^{2}-2 x(S(u-t)+U(t-s))}{2(t-s)(u-t)}}}{\int_{-\infty}^{\infty} e^{-\frac{(u-s) y^{2}-2 y(S(u-t)+U(t-s))}{2(t-s)(u-t)}} d y}
$$

By making the change of variables $y \sqrt{u-s}-\frac{S(u-t)+U(t-s)}{\sqrt{u-s}}=z$ we can compute

$$
\begin{aligned}
\int_{-\infty}^{\infty} e^{-\frac{(u-s) y^{2}-2 y(S(u-t)+U(t-s))}{2(t-s)(u-t)}} d y & =\int_{-\infty}^{\infty} e^{-\frac{z^{2}-\frac{(S(u-t)+U(t-s))^{2}}{u-s}}{2(t-s)(u-t)}} \frac{d z}{\sqrt{u-s}} \\
& =\frac{e^{\frac{(S(u-t)+U(t-s))^{2}}{2(t-s)(u-t)(u-s)}} \sqrt{2 \pi(t-s)(u-t)}}{\sqrt{u-s}}
\end{aligned}
$$

and hence

$$
\begin{aligned}
f_{B_{t} \mid B_{s}=S, B_{u}=U}(x) & =\frac{e^{-\frac{(u-s) x^{2}-2 x(S(u-t)+U(t-s))+\frac{(S(u-t)+U(t-s))^{2}}{(u-s)}}{2(t-s)(u-t)}}}{\sqrt{2 \pi \frac{(t-s)(u-t)}{u-s}}} \\
& =\frac{1}{\sqrt{2 \pi \frac{(t-s)(u-t)}{u-s}}} e^{-\frac{\left(x-\frac{S(u-t)+U(t-s)}{u-s}\right)^{2}}{2 \frac{(t-s)(u-t)}{u-s}}} .
\end{aligned}
$$

Thus B_{t} given $B_{s}=S, B_{u}=U$ is normally distributed with mean $\frac{S(u-t)+U(t-s)}{u-s}$ and variance $\frac{(t-s)(u-t)}{u-s}$.

Exercise 2 Let $\left(a_{t}: t \in \mathbb{N}\right)$, $\left(b_{t}: t \in \mathbb{N}\right)$ sequences. Denote $\Delta a_{t}=a_{t}-a_{t-1}$, $\Delta b_{t}=b_{t}-b_{t-1}$.

Check Abel's discrete integration by parts formula:

$$
\begin{aligned}
a_{T} b_{T} & =a_{0} b_{0}+\sum_{t=1}^{T} a_{t-1} \Delta b_{t}+\sum_{t=1}^{T} b_{t} \Delta a_{t} \\
& =a_{0} b_{0}+\sum_{t=1}^{T} a_{t} \Delta b_{t}+\sum_{t=1}^{T} b_{t-1} \Delta a_{t} \\
& =a_{0} b_{0}+\sum_{t=1}^{T} a_{t-1} \Delta b_{t}+\sum_{t=1}^{T} b_{t-1} \Delta a_{t}+\sum_{t=1}^{T} \Delta a_{t} \Delta b_{t} .
\end{aligned}
$$

Solution 2 We have

$$
\begin{aligned}
& a_{0} b_{0}+\sum_{t=1}^{T} a_{t-1} \Delta b_{t}+\sum_{t=1}^{T} b_{t} \Delta a_{t} \\
= & a_{0} b_{0}+\sum_{t=1}^{T}\left(a_{t-1}\left(b_{t}-b_{t-1}\right)+b_{t}\left(a_{t}-a_{t-1}\right)\right) \\
= & a_{0} b_{0}+\sum_{t=1}^{T}\left(a_{t-1} b_{t}-a_{t-1} b_{t-1}+b_{t} a_{t}-b_{t} a_{t-1}\right) \\
= & a_{0} b_{0}-a_{0} b_{0}+a_{T} b_{T}+\sum_{t=1}^{T}\left(-a_{t} b_{t}+b_{t} a_{t}\right)=a_{T} b_{T}
\end{aligned}
$$

Similarly

$$
a_{T} b_{T}=a_{0} b_{0}+\sum_{t=1}^{T} a_{t} \Delta b_{t}+\sum_{t=1}^{T} b_{t-1} \Delta a_{t}
$$

Finally

$$
\begin{aligned}
& a_{0} b_{0}+\sum_{t=1}^{T} a_{t-1} \Delta b_{t}+\sum_{t=1}^{T} b_{t-1} \Delta a_{t}+\sum_{t=1}^{T} \Delta a_{t} \Delta b_{t} \\
= & a_{0} b_{0}+\sum_{t=1}^{T}\left(a_{t-1} b_{t}-a_{t-1} b_{t-1}+b_{t-1} a_{t}-b_{t-1} a_{t-1}\right. \\
& \left.+a_{t} b_{t}-a_{t} b_{t-1}-a_{t-1} b_{t}+a_{t-1} b_{t-1}\right) \\
= & a_{0} b_{0}+\sum_{t=1}^{T}\left(a_{t} b_{t}-a_{t-1} b_{t-1}\right)=a_{T} b_{T} .
\end{aligned}
$$

Exercise 3 Let x_{t} be a continuous path with quadratic variation $[x, x]_{t}$ among the dyadic sequence of partitions Π_{n}, and a_{t} a continuous process with finite variation.

Use Ito formula to show the integration by parts formula:

$$
x_{t} a_{t}=x_{0} a_{0}+\int_{0}^{t} a_{s} d x_{s}+\int_{0}^{t} x_{s} d a_{s}
$$

Solution 3 Let $F(x, a)=x a$. Then $F \in C^{2,1}$ and we can use the extended Ito formula

$$
\begin{equation*}
F\left(x_{t}, a_{t}\right)-F\left(x_{0}, a_{0}\right)-\int_{0}^{t} F_{a}\left(x_{s}, a_{s}\right) d a_{s}-\frac{1}{2} \int_{0}^{t} F_{x x}\left(x_{s}, a_{s}\right) d[x, x]_{s}=\int_{0}^{t} F_{x}\left(x_{s}, a_{s}\right) d x_{s} \tag{4}
\end{equation*}
$$

from the 1. exercise set to get

$$
x_{t} a_{t}=x_{0} a_{0}+\int_{0}^{t} a_{s} d x_{s}+\int_{0}^{t} x_{s} d a_{s}
$$

Exercise 4 Let x_{t} be a continuous path with quadratic variation $[x, x]_{t}$ among the dyadic sequence of partitions Π_{n}, and $z_{0}>0$.

Show that $z_{t}=z_{0} \exp \left(x_{t}-\frac{1}{2}[x, x]_{t}\right)$ satisfies the linear pathwise differential equation

$$
d z_{t}=z_{t} d x_{t}
$$

which is understood in the integral sense

$$
z_{t}=z_{0}+\int_{0}^{t} z_{s} \overleftarrow{d x_{s}}
$$

Solution 4 Consider the function $F(x, a)=z_{0} \exp \left(x-\frac{1}{2} a\right)$. It is clearly in $C^{2,1}$ and thus we can use the extended Ito formula (4) with $a_{t}=[x, x]_{t}$ to get

$$
\begin{aligned}
z_{t}= & z_{0} \exp \left(x_{0}-\frac{1}{2}[x, x]_{0}\right)+\int_{0}^{t} z_{0} \exp \left(x_{s}-\frac{1}{2}[x, x]_{s}\right) \overleftarrow{d x_{s}} \\
& -\frac{1}{2} \int_{0}^{t} z_{0} \exp \left(x_{s}-\frac{1}{2}[x, x]_{s}\right) d[x, x]_{s} \\
& +\frac{1}{2} \int_{0}^{t} z_{0} \exp \left(x-\frac{1}{2}[x, x]_{s}\right) d[x, x]_{s}=z_{0}+\int_{0}^{t} z_{s} \overleftarrow{d x_{s}}
\end{aligned}
$$

Exercise 5 What is the quadratic variation of z_{t} ?
Solution 5 Clearly $x_{t}-\frac{1}{2}[x, x]_{t}$ has quadratic variation $[x, x]_{t}$. Now $z_{t}=f\left(x_{t}-\right.$ $\left.\frac{1}{2}[x, x]_{t}\right)$, where $f(x)=z_{0} \exp (x)$. Thus z_{t} has quadratic variation

$$
[z, z]_{t}=\int_{0}^{t} f^{\prime}\left(x_{s}-\frac{1}{2}[x, x]_{S}\right)^{2} d\left[x-\frac{1}{2}[x, x], x-\frac{1}{2}[x, x]\right]_{s}=\int_{0}^{t} z_{s}^{2} d[x, x]_{s}
$$

Exercise 6 Show that $z_{t}^{-1}=z_{0}^{-1} \exp \left(-x_{t}+\frac{1}{2}[x, x]_{t}\right)$ satisfies

$$
z_{t}^{-1}=z_{0}^{-1}-\int_{0}^{t} z_{s}^{-1} d x_{s}+\int_{0}^{1} z_{s}^{-1} d[x, x]_{s}
$$

Remarks: note that from the assumptions it follows that z_{t} is bounded away from zero on any compact interval, which means that $1 / z_{t}$ is bounded on compacts.

Note that by definition $[x, x]_{t}=[-x,-x]_{t}$.
Solution 6 Letting $F(x, a)=z_{0}^{-1} \exp \left(-x+\frac{1}{2} a\right)$ and using the extended Ito formula (4) with $a_{t}=[x, x]_{t}$ we get

$$
\begin{aligned}
z_{t}^{-1}= & z_{0}^{-1}-\int_{0}^{t} z_{0}^{-1} \exp \left(-x_{s}+\frac{1}{2}[x, x]_{s}\right) \overleftarrow{d x_{s}} \\
& +\frac{1}{2} \int_{0}^{t} z_{0}^{-1} \exp \left(-x_{s}+\frac{1}{2}[x, x]_{s}\right) d[x, x]_{s} \\
& +\frac{1}{2} \int_{0}^{t} z_{0}^{-1} \exp \left(-x_{s}+\frac{1}{2}[x, x]_{s}\right) d[x, x]_{s} \\
= & z_{0}^{-1}-\int_{0}^{t} z_{s}^{-1} \overleftarrow{d x_{s}}+\int_{0}^{t} z_{s}^{-1} d[x, x]_{s}
\end{aligned}
$$

Exercise 7 Let a_{t} be a continuous path with finite first variation, and z_{t} as before Show that

$$
\xi_{t}=\left(1+\int_{0}^{t} \frac{1}{z_{s}} d a_{s}\right) z_{t}
$$

satisfies the linear inhomogeneous pathwise differential equation

$$
d \xi_{t}=\xi_{t} d x_{t}+d a_{t}, \quad \xi_{0}=z_{0}
$$

Solution 7 Let $b_{t}=1+\int_{0}^{t} \frac{1}{z_{s}} d a_{s}$. Now by the integration by parts formula from 3 . exercise we have

$$
z_{t} b_{t}=z_{0} b_{0}+\int_{0}^{t} b_{s} d z_{s}+\int_{0}^{t} z_{s} d b_{s}
$$

Clearly $d b_{s}=\frac{1}{z_{s}} d a_{s}$ and $d z_{s}=z_{s} d x_{s}$ by exercise 4 . Thus

$$
z_{t} b_{t}=z_{0} b_{0}+\int_{0}^{t} b_{s} z_{s} d x_{s}+\int_{0}^{t} d a_{s}
$$

or

$$
\xi_{t}=\xi_{0}+\int_{0}^{t} \xi_{s} d x_{s}+a_{t}-a_{0}
$$

implying that

$$
d \xi_{t}=\xi_{t} d x_{t}+d a_{t}
$$

Exercise 8 Let a_{t} be a continuous path with finite first variation and x_{t} continuous with quadratic variation $[x, x]_{t}$ among the dyadic sequence of partitions. Show that

$$
\int_{0}^{t} a_{s} d x_{s}=a_{t} x_{t}-a_{0} x_{0}-\int_{0}^{t} x_{s} d a_{s}=\lim _{\Delta(\Pi) \rightarrow 0} \sum_{t_{i} \in \Pi} a_{t_{i}}\left(x_{t_{i+1} \wedge t}-x_{t_{i} \wedge t}\right)
$$

is well-defined independently of the sequence of partitions.
Solution 8 By Abel's discrete integration by parts formula we have

$$
\sum_{t_{i} \in \Pi} a_{t_{i}}\left(x_{t_{i+1} \wedge t}-x_{t_{i} \wedge t}\right)=a_{t} x_{t}-a_{0} x_{0}-\sum_{t_{i} \in \Pi} x_{t_{i}}\left(a_{t_{i} \wedge t}-a_{t_{i-1} \wedge t}\right) .
$$

Because a_{t} has finite first variation, the Riemann-Stieltjes integral exists, and

$$
\lim _{\Delta(\Pi) \rightarrow 0} \sum_{t_{i} \in \Pi} x_{t_{i}}\left(a_{t_{i} \wedge}-a_{t_{i-1} \wedge t}\right)=\int_{0}^{t} x_{s} d a_{s} .
$$

Exercise 9 Show that $y_{t}=\int_{0}^{t} a_{s} d x_{s}$ has quadratic variation among the dyadic sequence partitions given by

$$
[y, y]_{t}=\int_{0}^{t} a_{s}^{2} d[x, x]_{s}
$$

Solution 9 Let Π be a partition with largest element t. We have

$$
\sum_{t_{i} \in \Pi}\left(y_{t_{i+1}}-y_{t_{i}}\right)^{2}=\sum_{t_{i} \in \Pi}\left(\int_{t_{i}}^{t_{i+1}} a_{s} d x_{s}\right)^{2}
$$

By 8. exercise we have

$$
\int_{t_{i}}^{t_{i+1}} a_{s} d x_{s}=a_{t_{i+1}} x_{t_{i+1}}-a_{t_{i}} x_{t_{i}}-\int_{t_{i}}^{t_{i+1}} x_{s} d a_{s}=a_{t_{i}}\left(x_{t_{i+1}}-x_{t_{i}}\right)+\int_{t_{i}}^{t_{i+1}}\left(x_{t_{i+1}}-x_{s}\right) d a_{s}
$$

so

$$
\begin{aligned}
\sum_{t_{i} \in \Pi}\left(y_{t_{i+1}}-y_{t_{i}}\right)^{2}= & \sum_{t_{i} \in \Pi}\left(a_{t_{i}}^{2}\left(x_{t_{i+1}}-x_{t_{i}}\right)^{2}+2 a_{t_{i}}\left(x_{t_{i+1}}-x_{t_{i}}\right) \int_{t_{i}}^{t_{i+1}}\left(x_{t_{i+1}}-x_{t_{s}}\right) d a_{s}\right. \\
& \left.+\left(\int_{t_{i}}^{t_{i+1}}\left(x_{t_{i+1}}-x_{t_{s}}\right) d a_{s}\right)^{2}\right) .
\end{aligned}
$$

Now as $\Delta(\Pi) \rightarrow 0$, we have $\sum_{t_{i} \in \Pi} a_{t_{i}}^{2}\left(x_{t_{i+1}}-x_{t_{i}}\right)^{2} \rightarrow \int_{0}^{t} a_{s}^{2} d[x, x]_{s}$. Moreover

$$
\left|\int_{t_{i}}^{t_{i+1}}\left(x_{t_{i+1}}-x_{t_{s}}\right) d a_{s}\right| \leq \int_{t_{i}}^{t_{i+1}}\left|x_{t_{i+1}}-x_{t_{s}}\right| d v_{a}(s) \leq \delta\left(t_{i+1}-t_{i}\right)\left(v_{a}\left(t_{i+1}\right)-v_{a}\left(t_{i}\right)\right)
$$

where $\delta(\varepsilon)$ is such that $\left|x_{u}-x_{v}\right|<\delta(\varepsilon)$ whenever $0 \leq u, v \leq t,|u-v| \leq \varepsilon$. It follows that as $\Delta(\Pi) \rightarrow 0$ (so $\varepsilon \rightarrow 0$), the two other terms in the sum go to 0 .

