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Exercise 1 LetO <s <t < u,and (B, : r > 0) a standard Brownian motion with

BO == 0
Compute the conditional distribution of B; conditionally on ¢ (B, B,,).

Solution1 Letfp be the probability density function of B,

x2
e 2s.

1
fg (x) = J2rs
Then the joint probability density of B, B; and B, is given by

st,Bt,B” (x,Y,2) =fs(x)fB[|BS:x (y)fB”\Bt:y(Z)

:fs(x)ft—s(y - x)fu—t(z -Y)
X2 (y—x)?%  (z—y)?

1 _
= \/2ns,/27r(t—s),/2n(u—t)e
The conditional probability density of B; given B; = S and B,, = U is

fBS,B,,BM(erru)
Jopi=sp,=u) = I Fow s, (S WA

By (2) we have

82 (x=5)2_ (U-x)?

! e 25 20-s) 2-b

stthfBu (S,x,U) = V2718271 (t—5) 27T (U—1)

_ 82 (x?-25x+5%) (u—H)+(x2-2Ux+U?) (t—5)
=, 25 2(t=s) (u~1)

V27827t (t—5) 27T (u—t)

82 (u=s)x2=2x(S(u—t)+U(t=5))+S2(u—t)+U>(t—s)

25 2(t-s) 2(u-f)

= ¢ 2s 2(t—s)(u—t)

V271827t (t—8) 27T (u—t)
SO

_(u=s)x2=2x(S(u—-H+U(t=s))
e 2(t—s)(u—t)
th|BS:S,B,,:U(x) = (u=s)y2 -2y (S(u—t)+U(t—s))

e 2(t—s) (u—t) dy

—oo

@

@)

®)



S(u—t)+U(t—s)
u—s

By making the change of variables yvu —s — = z we can compute

22 (S(u=t+U(t—s))?

o (u=s)y2-2y(S(u—t)+U(t—s)) o — =5
e 2(f—s)(u—t) dy = J‘ e 2(f—s) (u—1) dz
—s

(S(u—t)+U(t—s))?
= o 2(t=s)(u=t)(u—s) /27T (t —s)(u — t),

u—s
and hence

B (u—s)xz—Zx(S(u—i!)+l.l(t—s))+—(S(u_t()bj'_i)(t_s))2

e 2(t—s)(u—t)

27 (=9 (u=D)
u—s

2
(x— S(u—t)+U(t—s) )

_ U—s
1 5 (=) (u=b)

= frtune vs
u—s

Thus B; given B; = S, B, = U is normally distributed with mean
(t=s) (u—t)
u—s

fB,B.=5,B,=u (X)

S(u—t)+U(t—s) and
u-s

variance
Exercise 2 Let (a; : t € N), (b; : t € N) sequences. Denote Aa; = a; —a;_q,
Abt = bi‘ - bt—l'

Check Abel’s discrete integration by parts formula:

T

T
aTbT = aobo + Z ”t—lAbt + Z btAat
t=1 t=1

T T
=agby + Z a,Aby + Z by_1May
t=1 t=1
T T T

= ﬂobo + Z at—lAbt + Z bt—lAat + Z AatAbt.
t=1 t=1 t=1

Solution2 We have

T T
ﬂobo + Z ”t—lAbt + Z btAat
1 t=1

=
T

= agho + Z (a;1(by = by_1) + byay —a;_q))
t=1
T

= agbg + Z(at—lbt —a;_1b; 1 + by — by q)
=1

T
= ﬂobo - ﬂobo + aTbT + Z(_atbt + bt”t) = aTbT'
t=1

Similarly



T T
arbr = aghy + Y a,Aby+ Y b;_1Aa.
t=1 t=1

Finally
T T T
llobo + Z ”t—lAbt + Z bt_lAat + Z AﬂtAbt
t=1 t=1 t=1

T
= agby + Z (”t—lbt —ap_qbyq + b4y — by_qa; 4
t=1

+a:by —aby_q —a;_1b;y + ﬂt—lbt—l)

T
= apbo + Z (aiby —a;_1by_1) = arbr.
t=1

Exercise 3 Let x; be a continuous path with quadratic variation [x,x]; among the
dyadic sequence of partitions I1,,, and a; a continuous process with finite variation.

Use Ito formula to show the integration by parts formula:
t t
X4, = Xodg + j agdxg + J‘ xdag.
0 0
Solution3 Let F(x,a) = xa. Then F € C%! and we can use the extended Ito formula
t t t
F(x;,a;) —F(xq,a9) —j Fa(xs,as)das—%f F . (xg,a.)d[x,x]; = j F . (xg,a5)dx,, (4)
0 0 0
from the 1. exercise set to get
t t
X, = Xodg + j agdxg + f x.da.
0 0

Exercise 4 Let x; be a continuous path with quadratic variation [x, x]; among the

dyadic sequence of partitions I, and zy > 0.

Show that z; = zgexp(x; — %[x, x];) satisfies the linear pathwise differential equation
dz, = z,dx,,

which is understood in the integral sense

—

t
zt=20+fzsdxs.
0

Solution 4 Consider the function F(x,a) = zgexp(x — %a). It is clearly in C21 and
thus we can use the extended Ito formula (4) with a; = [x, x]; to get



t —
zp = zgexp(xg — %[x,x]o) + f Zgexp(xs — %[x,x]s) dx;
0

t

- % f Zo exp(xs — %[x,x]s)d[x,x]s
0
t

t «—
+ % f Zgexp(x — %[x,x]s)d[x,x]s =zy+ j Zg dx, .
0 0

Exercise 5 What is the quadratic variation of z;?

Solution 5 Clearly x; — %[x,x]t has quadratic variation [x,x];. Now z; = f(x; —

%[x, x];), where f (x) = zg exp(x). Thus z; has quadratic variation

t

t
(2,20 = [ f(x = 310, x10)%d0x = 31x,x],x = 2w 200, = [ 22d0x,x),
0 0

Exercise 6 Show thatz; ! = z5  exp(—x; + %[x,x]t) satisfies
¢ 1

7l =zt - f z Vdx, + f zd[x, x];.
0 0

Remarks: note that from the assumptions it follows that z; is bounded away from
zero on any compact interval, which means that 1/z; is bounded on compacts.

Note that by definition [x, x], = [—x, —x];.

Solution 6 Letting F(x,a) = z; 1 exp(—x + %a) and using the extended Ito formula
(4) with a; = [x,x]; we get

t —
-1 _ -1 -1 1
z; =z5 - f zg - exp(—xg + 5[x,x]5) dx,
0
t

+ 3 f 25t exp(—x, + 2[x, x]5)d[x, x];

- O

+1 f 25 exp(—x, + 3[x, x]5)d[x, X1
0
¢ -t
_ -1 -1 -1
=zy - f z7 dxg +f zd[x, x],
0 0
Exercise 7 Let a; be a continuous path with finite first variation, and z; as before.

Show that
¢
&= (1 + f ledas) Z

satisfies the linear inhomogeneous pathwise differential equation



d¢y = Gdx; +day, &y = zp.

t
Solution7 Letb; =1+ [ Zldas. Now by the integration by parts formula from 3.
0 s

exercise we have

t t
zb; = zgbg + j bedz, + j z.db,.
0 0
Clearly db, = %das and dz, = z.dx, by exercise 4. Thus

t t
ziby = zgbgy + f byzydx, + j da,,
0 0
or
t
G =280+ f Gsdxs + ay — ag,
0

implying that
dgf = gtdxt + dﬂt.

Exercise 8 Let g, be a continuous path with finite first variation and x; continuous
with quadratic variation [x, x]; among the dyadic sequence of partitions. Show that

f agdx, = ax, — agXy — f x,dag = lim Z g, (Xg, At — Xtnt)
5 AID=0
i

is well-defined independently of the sequence of partitions.

Solution 8 By Abel’s discrete integration by parts formula we have
Z Ay, (Xt nt = Xpa8) = 04X — ApXg — Z X, (g n¢ = A, A1)
t,ell t,ell
Because 4, has finite first variation, the Riemann-Stieltjes integral exists, and
t
A(lrilr{l»o Z X (@ p = pr) = j xsdas.
t;,ell 0
t
Exercise 9 Show that y, = [ a,dx, has quadratic variation among the dyadic se-
0
quence partitions given by

t

[yry]t = f aszd[x/x]S'
0

Solution 9 Let I1be a partition with largest element t. We have

ti+1
Z (yti+1 _yt1)2 = Z (f asdxs)
t,ell

t,ell t;

2



By 8. exercise we have

tit1 tit1 tiz1
j agdxs = ay  X;,  — 0% — j xgdag = ay (X, — X)) + j (xy,,, — Xs)dag,
£ £ £

SO

tz+l
Z Wty — yti)z = Z (utzf(xti+l - xti)z + 20, (X, — X)) ,[ (= xts)das

t,ell t,ell t;
ti+1

+ f(xtm—xts)daS
t;

t
2 2 2
Now as A(IT) — 0, we have ) tern 9t (Xe,, — X)) = g azd[x,x]5. Moreover

2

tip1
< [ ey, = %0, d0,(8) < 0t — 1) (@u(tiyr) = Ou(1)),
t;

tiv
j (X, — X )dag
t;

where 4 (¢) is such that |x, — x,| < d(¢) whenever 0 < u,v <, lu — v| < ¢. It follows
that as A(II) — 0 (so € — 0), the two other terms in the sum go to 0.



