Stochastic analysis, 1. exercises

Janne Junnila

Exercise1l Letx: R*™ — R bea function. Its total variation (or first-vari-
ation) is defined as

0(x) = sup Z et = Xty atl
I peln

where the supremum is over all finite partitions
[I={0<ty<t; <..<t,}

t A s = min(t,s).

Show that

Z’t‘(:’c)_ lim § |xif»/\i‘ Xt, /\t|
i i-1
AIT)-0 HelT

where A(IT) = max{|t; — t;_1] : t; € I} and Il is a finite partition. This
means that the limit exists for any sequence of partitions (I1,,) with
A(I11,) — 0 and the limiting value does not depend on the sequence.

Assume v (x) < oo forsome T € (0, o]. Fort € [0,T], let

@ _ Ui(x0)+x—xg e _ vi(x)—x;+x9
xt = xt =

Show that x® and x° are non-decreasing satisfying x$ = x§ = 0 and
xp=x0+x2—x°,0,(x) =x2 +x°. (1)
Show that if
Xy =%+ —yP )
with y® and y° non-decreasing satisfying y® = y° = 0, then
o (x) <yP +yP.

Show that the decomposition (1) is minimal among decompositions (2),
meaning that



— 1D _ 4B — 1,0 _ 406
at._yt Xt _yt xt

is non-decreasing.

Solution1 Suppose that x; is continuous. We wish to show that
Z X, — X,_,| = sup Z X, = Xt 1
t,ell,, I teln

where I1,, and IT are partitions of [0, t] such that A(I1,) — 0. To obtain
a contradiction, assume that there exists a partition Il and ¢ > 0 such

that
Z Ixti - xtz’71| < Z |x5i - x5i71| — £

t,EHn SiEH

for all n. Now x; is uniformly continuous on [0, t], and hence there
exists 6 > 0 such that |x, — x;| < % when |a — b| < §, where N is the
number of points in I1. For large enough n we then have

Z T Z Z e, = X, |

tiEHn SZ'EI_I tiEHn,Si_l <l’i§Si
£
> ) (g =%, =23) = ) b =%, —e
SI'EH SiEH

a contradiction.

Assuming that v1(x) < oo for some T € (0, o], we have

V(X)) +x—=x0 =0 (X)+X;—X(
2

] o _
x0+xt —xt —XO‘I‘

=X ¢
and similarly

0p(X)+x;—x0+0:(X) =X +X
2

x®4+xP = = v;(x).

Suppose then that x; = xo + y® — y° with y® and y° non-decreasing
satisfying y® = y° = 0. We want to show that x® —x® < y® —y®
and similarly x° —x2 < y° —y® for s < t. Once this is done, it clearly
follows that a; is non-decreasing and v;(x) = x® + x° < y® —y2® +
x®+y°P —yS+x° <y®+ypP because y® > x2® forall t.

Notice that v;(x) = v4(xg +y® —y?2) = v;(y® —yF°) and hence

x® _ x® = U0 0+x-% _ 0 y®-y) -0,y -y Y-y Py Ity >
t s 2 ) :




Now

wy® -y —o,y® -y =sup ) WP -y@ —yS+yl |

IT s<t,<ttell

<sup Y W =y, +YE — i)
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The other inequality is shown similarly.

Exercise 2 Assume that x; is a continuous path with quadratic varia-
tion [x]; among the sequence of partitions (I1,,),cn, and let 2, be a con-
tinuous function with finite first variation on compact intervals, that is
v;(a) < oo. Let F(x,a) be a C*!-function, with continuous partial de-
rivatives (x,a) — F,,.(x,a) and (x,a) - F,(x,a).

Use Taylor expansion, uniform continuity, and the weak convergence
definition of the quadratic variation to show in details the extended
Ito-Follmer formula

t t
F(x;,a;) — F(xq,a9) — f F,(xs,a5)dag — % j Fo (xg,a5)d[x]s =
0 0

t
«— .
f Fy(xs,a5)dx s = Jim Z Fy(xep,app) (Xen ar = Xepat)
0 trell,

where the last equality defines the pathwise integral.

Solution 2 We have

F(x;,a4) — F(xg,a9) = lim Z (F(xt;+1/at;’l+l) — F(xtin,lltin))

Nn—-oo

tl'ell,

= lim Z (F(xt;zﬂ,atfﬂ) — P(xtin,at;l+l) + F(xti"’affﬂ) — P(xtin,ﬂtin))

n—-o0
tl'ell,

= lim Z (Fa(xtanrl,aTin)(atlga+1 —app) + Fx(Xpp, ap0) (g — Xp)

1n— 00

tiell,

1 2,1 2
+ 5F(x,af) (tpn = %) + 5 (Fx (X, @yp) — Frx (X, apn)) (X — X))



t t t
= f F,(x;,a,)d% s + f F,(x;,a5)da, + 5 f F . (x,a,)d[x],
0 0 0
+ 3 lim ZH (Fax (X @) = Frx Xy, @) (Xpn | = xp7)2.
t/ell,

By uniform continuity we can find a sequence C,, — 0 as n — oo, such
that Fy, (xgn, apn) = Fyx (Xgn,a4n) < C,, forall n € N and hence

Y (FaxCegp agp) = Fop(yp, ap) (gn | — X0)* < Cplx], = 0
tIell,

as n — oo,

Exercise 3 Assume that x; is a continuous path with x; = 0, and qua-
dratic variation [x]; = ¢, among the dyadic sequence of partitions 1) =
(t¢ = k27" : k € N), ey, and let a, = exp(t). Use the change of vari-
ables formula of classical Riemann-Stieltjes integrals and Ito-Follmer
formula (?7) to compute the integral representation of

° Sin(at),
e sin(x;),
e sin (atxt) .

Solution 3 We have

t t
sin(a,) = sin(ay) + f cos(a,)da, + %f (—sin(a,))d[a],
0 0

t
= sin(1) + j cos(ag)dag,
0

since [a], = 0.

Also

t t t t
sin(x;) = sin(x0)+J’ cos(xs)dxs+%j (—sin(x,))d[x], = f cos(xs)dxs+%f (—sin(x,))ds
0 0 0 0

and if we let F(x,a) = sin(xa), then F, (x,,a,) = a, cos(asx,), F,(xs,a5) =
Xs cos(agxs) and F, . (x,,a5) = —asz sin(x4a,), so by (77)



t t t
sin(a,x;) = f F (xs,a5)d% , + f F,(x,,a5)dag + %f F o (xg,a5)d[x],
0 0 0
t t

t
= J acos(ax,)dx s + f X COS(agxs)dag — % f asz sin(xga,)ds.
0 0 0

Exercise 4 What is the first variation of sin(a;)?

What is the quadratic variation of sin(x;)?

What is the quadratic variation of sin(a;x;)?

Show that sin(x;) and sin(a,x;) have infinite first variation.

Solution 4 The first variation of f () = sin(a;) is given by

t
f If' (s)|ds.
0

We have f'(s) = cos(e®)e®, and f'(s) > 0 if and only if cos(e®) > 0, or
s € log[—7m/2 + 2kmt, 7t /2 + 2kmt] for some k € N. Thus

t M log(2kt+71/2) log(2kt+37/2)
f If'(s)lds = A + Z ( f'(s)ds — f f’(s)ds) + B
0 k=1 \log(2kt—7t/2) log(2k7t+7/2)

M
:A+B+Z4:A+B+4M,

k=1
where
log(377/2) log(71/2) log(377/2)
A= [ o= [ feds— [ feds=3-sin),
0 0 log(m/2)
M= £ —1/4)
and

B= f If (s)1ds.
log(2Mm+37/2)

Consider next the quadratic variation of sin(x;) along the sequence of
Dyadic partitions. It is



t t
f cos?(x,)d[x], = f cos? (x,)ds.
0 0

t
Next we notice that a,x; has quadratic variation [ax];, = [ a szd [x]s =
0
t
[ e?sds = eth_l This follows because
0

_ 2 _ _ _ 2
Z (atz'+1xti+1 atixti) - Z ( (atz‘+1 at, )xti+1 T ay, (xti+l Xt )

_ o \2.2 _ _ 2 N2
- Z(ati+1 ati) xtl-+1 + Zatixti+1 (ati+1 ati)(xti+1 xti) + afi(xti+1 xti)
t
2
- f azd[x]s.
0

Hence sin(a;x;) has quadratic variation

’ t
f cos? (azxg)d[ax], = f cos? (azx,)e2ds.

Neither sin(x;) or sin(a;x;) have finite first variation, because their qua-
dratic variations are strictly positive.



