Stochastic analysis, 3. exercises

Janne Junnila

February 5, 2013

Exercise 1 Show that

$$
\sum_{n=0}^{\infty} P\left(\sup _{s, t \in[0,1]}\left|\Gamma_{n}(s, t)\right|>n^{-2}\right)<\infty
$$

where $\Gamma_{n}(s, t)=\sum_{\left(d, d^{\prime}\right) \in E_{n}^{(2)}} \eta_{d, d^{\prime}}(s, t) \xi_{d, d^{\prime}}$.
Solution 1 Because $\Gamma_{n}(s, t)$ is a piecewise linear function, the maximum is attained at one of the points in $E_{n}^{(2)}$. Let $(s, t) \in E_{n}^{(2)}$. Then

$$
\begin{aligned}
\Gamma_{n}(s, t) & =\sum_{\left(d, d^{\prime}\right) \in E_{n}^{(2)}} \eta_{d}(s) \eta_{d^{\prime}}(t) \xi_{d, d^{\prime}} \\
& =\sum_{d, d^{\prime} \in E_{n}} \eta_{d}(s) \eta_{d^{\prime}}(t) \xi_{d, d^{\prime}}+\sum_{k=0}^{n-1} \sum_{d \in E_{n}} \sum_{d^{\prime} \in E_{k}}\left(\eta_{d}(s) \eta_{d^{\prime}}(t) \xi_{d, d^{\prime}}+\eta_{d^{\prime}}(s) \eta_{d}(t) \xi_{d^{\prime}, d}\right) \\
& =\eta_{d_{n}}(s) \eta_{d^{\prime}{ }_{n}}(t) \xi_{d_{n}, d^{\prime}{ }_{n}}+\sum_{k=0}^{n-1}\left(\eta_{d_{n}}(s) \eta_{d^{\prime}{ }_{k}}(t) \xi_{d_{n}, d^{\prime}{ }_{k}}+\eta_{d_{k}}(s) \eta_{d^{\prime}{ }_{n}}(t) \xi_{d_{k}, d^{\prime}{ }_{n}}\right)
\end{aligned}
$$

Here $d_{k} \in E_{k}$ is the unique point at which $\eta_{d_{k}}(s) \neq 0$, if it exists, and any point in $E_{k}\left(\right.$ say $\left.2^{-k}\right)$ otherwise. Define similarly $d^{\prime}{ }_{k} \in E_{k}$ to be the point at which $\eta_{d_{k}}(t) \neq 0$. Then we have

$$
\Gamma_{n}(s, t)=\sum_{k=0}^{n} \eta_{d_{n}}(s) \eta_{d^{\prime}{ }_{k}}(t) \xi_{d_{n}, d^{\prime}{ }_{k}}+\sum_{k=0}^{n-1} \eta_{d_{k}}(s) \eta_{d^{\prime}{ }_{n}}(t) \xi_{d_{k}, d^{\prime}{ }_{n}} .
$$

This is a Gaussian random variable with mean 0 and variance

$$
\sum_{k=0}^{n} \eta_{d_{n}}(s)^{2} \eta_{d^{\prime} k}(t)^{2}+\sum_{k=0}^{n-1} \eta_{d_{k}}(s)^{2} \eta_{d^{\prime}}{ }_{n}(t)^{2}
$$

In particular the variance is bounded by

$$
\begin{aligned}
\sum_{k=0}^{n} 2^{-(n+1)} 2^{-(k+1)}+\sum_{k=0}^{n-1} 2^{-(k+1)} 2^{-(n+1)} & =2^{-(n+2)} \frac{1-2^{-(n+1)}}{1-2^{-1}}+2^{-(n+2)} \frac{1-2^{-n}}{1-2^{-1}} \\
& =2^{-(n+2)}\left(2-2^{-n}\right)+2^{-(n+2)}\left(2-2^{-n+1}\right) \\
& \leq 2^{-n}\left(1-2^{-n-2}-2^{-n-1}\right) \leq 2^{-n}
\end{aligned}
$$

We know that for a gaussian random variable X with mean 0 and variance σ^{2},

$$
P(|X|>\varepsilon)=2 \int_{\varepsilon}^{\infty} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2} \frac{x^{2}}{\sigma^{2}}} d x \leq 2 \int_{\varepsilon}^{\infty} \frac{x}{\varepsilon} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2} \frac{x^{2}}{\sigma^{2}}} d x=\sigma \frac{\sqrt{2}}{\varepsilon \sqrt{\pi}} e^{-\frac{1}{2} \frac{\varepsilon^{2}}{\sigma^{2}}}
$$

so $P\left(\left|\Gamma_{n}(s, t)\right|>n^{-2}\right) \leq 2^{-n / 2} n^{2} \sqrt{\frac{2}{\pi}} e^{-\frac{2^{-n+1}}{n^{4}}}$, which implies that

$$
\begin{aligned}
P\left(\sup _{s, t}\left|\Gamma_{n}(s, t)\right|>n^{-2}\right) & =P\left(\sup _{s, t \in E_{n}^{(2)}}\left|\Gamma_{n}(s, t)\right|>n^{-2}\right) \\
& \leq \sum_{(s, t) \in E_{n}^{(2)}} P\left(\left|\Gamma_{n}(s, t)\right|>n^{-2}\right) \leq 2^{2 n-n / 2} n^{2} \sqrt{\frac{2}{\pi}} e^{-\frac{2^{-n+1}}{n^{4}}}
\end{aligned}
$$

It follows that the sum

$$
\sum_{n=0}^{\infty} P\left(\sup _{s, t}\left|\Gamma_{n}(s, t)\right|>n^{-2}\right)
$$

converges.
Exercise 2 Show that the limiting process has the postulated covariance structure.
Solution 2 We have to show that $\operatorname{Cov}(B(s, t), B(u, v))=(s \wedge u)(t \wedge v)$. We have

$$
\begin{aligned}
E(B(s, t) B(u, v)) & =E\left(\left(\sum_{d \in D} \sum_{d^{\prime} \in D} \eta_{d, d^{\prime}}(s, t) \xi_{d, d^{\prime}}\right)\left(\sum_{e \in D} \sum_{e^{\prime} \in D} \eta_{e, e^{\prime}}(u, v) \xi_{e, e^{\prime}}\right)\right) \\
& =\sum_{d \in D} \sum_{d^{\prime} \in D} \sum_{e \in D} \sum_{e^{\prime} \in D} \eta_{d, d^{\prime}}(s, t) \eta_{e, e^{\prime}}(u, v) E\left(\xi_{d, d^{\prime}} \xi_{e, e^{\prime}}\right) \\
& =\sum_{d \in D} \sum_{d^{\prime} \in D} \eta_{d, d^{\prime}}(s, t) \eta_{d, d^{\prime}}(u, v) E\left(\xi_{d, d^{\prime}}^{2}\right) \\
& =\sum_{d \in D} \sum_{d^{\prime} \in D} \int_{[0, s] \times[0, t]} \ddot{\eta}_{d, d^{\prime}}(x, y) d x d y \int_{[0, u] \times[0, v]} \ddot{\eta}_{d, d^{\prime}}(x, y) d x d y \\
& =\sum_{d \in D} \sum_{d^{\prime} \in D}\left\langle\ddot{\eta}_{d, d^{\prime}}, \chi_{[0, s] \times[0, t]}\right\rangle\left\langle\ddot{\eta}_{d, d^{\prime}}, \chi_{[0, u] \times[0, v]}\right\rangle \\
& =\left\langle\chi_{\left.[0, s] \times[0, t], \chi_{[0, u] \times[0, v]}\right\rangle}\right. \\
& =|([0, s] \times[0, t]) \cap([0, u] \times[0, v])|=(s \wedge u)(t \wedge v) .
\end{aligned}
$$

Exercise 3 In fact the 2-dimensional Brownian sheet has also the α-Hölder continuity property with probability one. For which $\alpha>0$?

Solution 3 Let $s, t, u, v \in[0,1]$ and consider the increment $B(s, t, \omega)-B(u, v, \omega)=$ $X(\omega)$. We know that this is a Gaussian random variable with mean 0 and variance

$$
\begin{aligned}
\operatorname{Var}(X) & =\operatorname{Cov}(X, X) \\
& =\operatorname{Var}(B(s, t))+\operatorname{Var}(B(u, v))-2 \operatorname{Cov}(B(s, t), B(u, v)) \\
& =s t+u v-2(s \wedge u)(t \wedge v)
\end{aligned}
$$

Furthermore, if $p>0$, then

$$
\begin{aligned}
E\left(|X|^{p}\right) & =\int_{-\infty}^{\infty}|x|^{p} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x}{\sigma}\right)^{2}} d x \\
& =\int_{-\infty}^{\infty}|y \sigma|^{p} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} y^{2}} d y \\
& =\sigma^{p} \int_{-\infty}^{\infty}|y|^{p} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} y^{2}} d y \\
& =\sigma^{p} E\left(|N|^{p}\right) \leq C \sigma^{p} .
\end{aligned}
$$

Here N is a random variable with standard Gaussian distribution, $E\left(|N|^{p}\right) \leq C$. Thus we have

$$
E\left(|X|^{p}\right)=C(s t+u v-2(s \wedge u)(t \wedge v))^{p / 2}
$$

Next we have to relate the variance $\sigma^{2}=s t+u v-2(s \wedge u)(t \wedge v)$ to the distance $|(s, t)-(u, v)|$.

Lemma 1 Let $s, t, u, v \in[0,1]$. Then we have the inequality

$$
\begin{equation*}
s t+u v-2(s \wedge u)(t \wedge v) \leq|s-u|+|t-v|\left(\leq \sqrt{2} \sqrt{(s-u)^{2}+(t-v)^{2}}\right) . \tag{1}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
s t+u v-2(s \wedge u)(t \wedge v) \leq C\left((s-u)^{2}+(t-v)^{2}\right)^{p} \tag{2}
\end{equation*}
$$

does not hold for any $p>\frac{1}{2}$.
Proof. First notice that if $p>\frac{1}{2}$, then letting $s=0, t=v=1$ in (2) we have

$$
u \leq C u^{2 p}
$$

which cannot hold for u small enough.
To prove (1), we can consider a few cases. Suppose first that $s \leq u, t \leq v$. Then (1) becomes

$$
u v-s t \leq u-s+v-t .
$$

To check that this holds, we notice that it's linear in s, so we only have to check that it holds at $s=0$ and $s=u$. But this is trivial. On the other hand if $s \leq u, v \leq t$, we proceed similarly, getting

$$
s t+u v-2 s v \leq u-s+t-v,
$$

which we again check at $s=0$ and $s=u$. The rest of the cases are similar to the other two.

Using the lemma, we get that

$$
E\left(|X|^{p}\right) \leq C\left((s-u)^{2}+(t-v)^{2}\right)^{p / 4}=C\left((s-u)^{2}+(t-v)^{2}\right)^{2+(p / 4-2)}
$$

and Kolmogorov's continuity criterium now implies that the Brownian sheet is α-Hölder continuous for

$$
\alpha<\frac{p / 4-2}{p} \rightarrow \frac{1}{4} \quad(p \rightarrow \infty) .
$$

