Stochastic analysis, spring 2013, Exercises-9, 28.03.2013

1. Let $(B_t : t \ge 0)$ a Brownian motion in the filtration $\mathbb{F} = (\mathcal{F}_t : t \ge 0)$ which means that B_t and $(B_t^2 - t)$ are continuous \mathbb{F} -martingales.

Let $\tau(\omega)$ be a \mathbb{F} -stopping time with $E_P(\tau) < \infty$.

- (a) Let also $\tau_0 = 0$ and $\tau_n(\omega) = \tau(\omega) \wedge \inf\{t : |B_t(\omega)| > n\}, \quad n \in \mathbb{N}$. Show that these are \mathbb{F} -stopping times and $\tau_n(\omega) \uparrow \tau(\omega)$ as $n \uparrow \infty$.
- (b) Show that for fixed $n \in \mathbb{N}$, $(B_{t \wedge \tau_n}^2 t \wedge \tau_n) : t \geq 0)$ is an uniformly integrable \mathbb{F} -martingale.
- (c) Show that $(B_{\tau_n} : n \in \mathbb{N})$ and $((B_{\tau_n}^2 \tau_n : n \in \mathbb{N})$ are martingales in the discrete time filtration $(\mathcal{F}_{\tau_n} : n \in \mathbb{N})$.
- (d) Show that the telescopic sum $B_{\tau} = \sum_{n=1}^{\infty} (B_{\tau_n} B_{\tau_{n-1}})$ is convergent in $L^2(P)$.

Hint: by the discrete integration by parts formula

$$\left(B_{\tau_n} - B_{\tau_{n-1}}\right)^2 = B_{\tau_n}^2 - B_{\tau_{n-1}}^2 - 2B_{\tau_{n-1}}(B_{\tau_n} - B_{\tau_{n-1}})$$

then use the martingale properties.

- (e) Show that $E_P(B_\tau^2) = E_P(\tau)$.
- 2. We do the same exercise for a continuous local martingale.

Let $(M_t: t \geq 0)$ a continuous local \mathbb{F} -martingale with $M_0 = 0$ and predictable variation $\langle M \rangle_t$, which means that $\langle M \rangle_t$ is \mathbb{F} -adapted continuous and non-decreasing with

$$M_t^2 = N_t - \langle M \rangle_t$$

where N_t is a local martingale with $N_0 = \langle M \rangle_0 = 0$.

Let $\sigma_n(\omega) \uparrow \infty$ a localizing sequence of stopping times such that for each n, the stopped processes $(M_{t \land \sigma_n} : t \ge 0)$ and $(N_{t \land \sigma_n} : t \ge 0)$ are true \mathbb{F} -martingales.

Let $\tau(\omega)$ an \mathbb{F} -stopping time, with $E_P(\langle M \rangle_{\tau}) < \infty$.

For $n \in \mathbb{N}$ let $\tau_0 = 0$ and

$$\tau_n(\omega) = \tau(\omega) \wedge \sigma_n(\omega) \wedge \inf\{t : |M_t(\omega)| > n\}, \quad n \in \mathbb{N}.$$

- (a) Check that $\tau_n(\omega) \uparrow \tau(\omega)$.
- (b) Show that for fixed $n \in \mathbb{N}$, $(M_{t \wedge \tau_n}^2 \langle M \rangle_{t \wedge \tau_n}) : t \geq 0$ is an uniformly integrable \mathbb{F} -martingale.
- (c) Show that $(M_{\tau_n} : n \in \mathbb{N})$ and $((M_{\tau_n}^2 \langle M \rangle_{\tau_n} : n \in \mathbb{N})$ are martingales in the discrete time filtration $(\mathcal{F}_{\tau_n} : n \in \mathbb{N})$.
- (d) Show that the telescopic sum $M_{\tau} = \sum_{n=1}^{\infty} (M_{\tau_n} M_{\tau_{n-1}})$ is convergent in $L^2(P)$.

$$(M_{\tau_n} - M_{\tau_{n-1}})^2 = M_{\tau_n}^2 - M_{\tau_{n-1}}^2 - 2M_{\tau_{n-1}}(M_{\tau_n} - M_{\tau_{n-1}})$$

Hint: by the discrete integration by parts formula and the martingale properties.

- (e) Show that $E_P(M_\tau^2) = E_P(\langle M \rangle_\tau)$.
- 3. If $(M'_t: t \geq 0)$ is another continuous local martingale, with $M'_0 = 0$, and τ is a stopping time with $E(\tau) < \infty$, show that

$$E_P(M_\tau M_\tau') = E_P(\langle M, N \rangle_\tau) \tag{1}$$

where the predictable covariation $\langle M, N \rangle_t$ is the continuous \mathbb{F} -adapted process of finite variation on compacts such that

$$M_t M_t' - M_0 M_0' - \langle M, M' \rangle_t$$

is a \mathbb{F} -local martingale.

Hint: you can use polarization : $MM' = ((M + M')^2 - (M - M')^2)/4$.

4. (Martingale characterization) Let $M_t(\omega)$ adapted to the filtration $\mathbb{F} = (\mathcal{F}_t : t \in \mathbb{R}^+)$, with $E(|M_t|) < \infty \ \forall t$. Then (X_t) is an \mathbb{F} -martingale if and only if $\forall \mathbb{F}$ -stopping times $\tau(\omega)$ which can take at most two finite values

$$E(M_{\tau}) = E(M_0)$$

Hint: the necessity is just Doob optional sampling theorem, for sufficency for $s \leq t$ and $A \in \mathcal{F}_s$ define $\tau(\omega) = (t\mathbf{1}_A + s\mathbf{1}_{A^c})$ and show that it is a stopping time. Then show that $E((M_t - M_s)\mathbf{1}_A) = 0$.