Stochastic analysis, spring 2013, Exercises-8, 21.03.2013

1. Let $\tau(\omega) \in [0, +\infty]$ be a random time, $F(t) = P(\tau \le t)$ for $t \in [0, \infty)$. Consider the single jump counting process $\mathbf{1}(\tau(\omega) \le t)$ which generate

Consider the single jump counting process $\mathbf{1}(\tau(\omega) \leq t)$ which generates the filtration $\mathbb{F} = (\mathcal{F}_t)$ with $\mathcal{F}_t^N = \sigma(N_s : s \leq t)$.

- (a) Show that τ is a stopping time in the filtration \mathbb{F} .
- (b) Show that first that for every Borel function f(x), the random variable

$$f(\tau(\omega))\mathbf{1}(\tau(\omega) \le s)$$

is \mathcal{F}_s -measurable.

(c) Define the *cumulative hazard function*

$$\Lambda(t) = \int_0^t \frac{1}{1 - F(s-)} F(ds)$$

where $F(s-) = P(\tau < s)$ denotes the limit from the left. Show that

$$M_t = N_t - \Lambda_{t \wedge \tau}$$

is a an $\mathbb F\text{-martingale}.$

Hint: use the definition, and show that for $s \leq t$ and every $A \in \mathcal{F}_s$

$$E_P\left((N_t - N_s)\mathbf{1}_A\right) = E_P\left((\Lambda_{t\wedge\tau} - \Lambda_{s\wedge\tau})\mathbf{1}_A\right)$$

It turns out that it is enough to do the computation for $A = \{\omega : \tau(\omega) > s\}$ (why ?). Fubini's theorem may be also useful.

(d) Assume that $t \mapsto F(t)$ and therefore also $t \mapsto \Lambda(t)$ are continuous, which means $P(\tau = t) = 0 \ \forall t \in \mathbb{R}^+$.

Show that Λ_{τ} has 1-exponential distribution:

$$P(\Lambda_{\tau} > x) = \exp(-x), \quad x \ge 0$$

Hint: one line of proof compute the Laplace transform

$$\mathcal{L}(\theta) := E_P \left(\exp(-\theta \Lambda_{\tau}) \right) \quad \theta > 0$$

and compare it with the Laplace transform of the 1-exponential distribution.

- (e) Show that the martingale M_t is uniformly integrable, what is M_{∞} ?.
- 2. Let $(M_t : t \in \mathbb{R}^+)$ a F-martingale, and G a filtration with $\mathcal{G}_t \subseteq \mathcal{F}_t$ We assume that (M_t) is also G-adapted. Show that (M_t) is a martingale in the smaller filtration G.

3. Let $(M_t : t \in \mathbb{R})$ a *F*-martingale under *P*, and \mathcal{G}_t a filtration such that $\forall t \geq 0$, the σ -algebrae \mathcal{G}_t and $\sigma(M_s : s \leq t)$ are *P*-independent.

Show that under P, $(M_t : t \in \mathbb{R}^+)$ is a martingale in the enlarged filtration $(\mathcal{F}_t \vee \mathcal{G}_t : t \ge 0).$

Let $(B_t : t \ge 0)$ a Brownian motion in the filtration \mathbb{F} , which means

- $B_0(\omega) = 0$
- $t \mapsto B_t(\omega)$ is continuous
- $\forall 0 \leq s \leq t$, $(B_t B_s)$ is *P*-independent from \mathcal{F}_s , conditionally gaussian with conditional mean $E(B_t B_s | \mathcal{F}_s) = 0$ and conditional variance $E((B_t B_s)^2 | \mathcal{F}_s) = t s$
- 4. Show that for a > 0 the process $(a^{-1/2}B_{at} : t \in \mathbb{R}^+)$ is also a Brownian motion.
- 5. The process $W_0 = 0$, $W_t = tB_{1/t}$ is also a Brownian motion.
- 6. Let $\theta \in \mathbb{R}$, and $i = \sqrt{-1}$ the imaginary unit Show that

$$E_P(\exp(i\theta B_t)) = \exp(-\frac{1}{2}\theta^2 t)$$

Hint: Use complex integration over the rectangular contour delimited by in the complex plane by the points $R, (R+i\theta), (-R+i\theta), -R$ with $R \in \mathbb{R}$ and let $R \to \infty$.

7. For $\theta \in \mathbb{R}$, consider now

$$M_t = \exp\left(i\theta B_t + \frac{1}{2}\theta^2 t\right) = \left\{\exp\left(\frac{1}{2}\theta^2 t\right)\cos(\theta B_t) + \sqrt{-1}\exp\left(\frac{1}{2}\theta^2 t\right)\sin(\theta B_t)\right\} \in \mathbb{C}$$

where $i = \sqrt{-1}$ is the imaginary unit.

Recall that $E(\exp(i\theta G)) = \exp(-\theta^2 \sigma^2/2)$ when $G(\omega) \sim \mathcal{N}(0, \sigma^2)$.

- Show that M_t is complex valued \mathbb{F} -martingale, which means that real and imaginary parts are \mathbb{F} -martingales.
- Show that $\lim_{t\to\infty} |M_t(\omega)| = \infty$