Stochastic analysis, spring 2013, Exercises-7, 14.03.2013

1. Suppose we have an urn which contains at time t=0 two balls, one black and one white. At each time $t\in N$ we draw uniformly at random from the urn one ball, and we put it back together with a new ball of the same colour.

We introduce the random variables

 $X_t(\omega) = \mathbf{1} \{ \text{ the ball drawn at time } t \text{ is black } \}$

and denote $S_t = (1 + X_1 + \dots + X_t),$

 $M_t = S_t/(t+2)$, the proportion of black balls in the urn.

We use the filtration $\{\mathcal{F}_n\}$ with $\mathcal{F}_n = \sigma\{X_s : s \in \mathbb{N}, s \leq t\}$.

- i) Compute the Doob decomposition of (S_t) , $S_t = S_0 + N_t + A_t$, where (N_t) is a martingale and (A_t) is predictable.
- ii) Show that (M_t) is a martingale and find the representation of (M_t) as a martingale transform $M_t = (C \cdot N)_t$, where (N_t) is the martingale part of (S_t) and (C_t) is predictable.
- iv) Note that the martingale $(M_t)_{t\geq 0}$ is uniformly integrable (Why?). Show that P a.s. and in L^1 exists $M_{\infty} = \lim_{t\to\infty} M_t$. Compute $E(M_{\infty})$.
- v) Show that $P(0 < M_{\infty} < 1) > 0$.

Since $M_{\infty}(\omega) \in [0,1]$, it is enough to show that $0 < E(M_{\infty}^2) < E(M_{\infty})$ with strict inequalities.

Hint: compute the Doob decomposition of the submartingale (M_t^2) , and than take expectations before going to the limit to find the value of $E(M_\infty^2)$.

2. Consider an i.i.d. random sequence $(U_t : t \in \mathbb{N})$ with uniform distribution on [0,1], $P(U_1 \in dx) = \mathbf{1}_{[0,1]}(x)dx$. Note that $E_P(U_t) = 1/2$.

Consider also the random variable $-\log(U_1(\omega))$ which is 1-exponential w.r.t. P.

$$P(-\log(U_1) > x) = \begin{cases} \exp(-x) & \text{kun } x \ge 0\\ 1 & \text{kun } x < 0 \end{cases}$$

 $-\log(U_1) \in L^1(P)$ with $E_P(-\log(U_1)) = 1$.

(a) Let $Z_0 = 1$, and

$$Z_t(\omega) = 2^t \prod_{s=1}^t U_s(\omega)$$

Show that (Z_t) is a martingale in the filtration $\mathbb{F} = (\mathcal{F}_t : t \in \mathbb{N})$, with $\mathcal{F}_t = \sigma(Z_1, Z_2, \dots, Z_t) = \sigma(U_1, U_2, \dots, U_t)$.

- (b) Show that $E_P(Z_t) = 1$.
- (c) Show that the limit $Z_{\infty}(\omega) = \lim_{t \to \infty} Z_t(\omega)$ exists P almost surely.
- (d) Show that

$$Z_{\infty}(\omega) = 0$$
 P-a.s.

Hint Compute first the P-a.s. limit

$$\lim_{t \to \infty} \frac{1}{t} \log(Z_t(\omega))$$

(remember Kolmogorov's strong law of large numbers!).

- (e) Show that the martingale $(Z_t(\omega): t \in \mathbb{N})$ is not uniformly integrable.
- (f) Show that $\log(Z_t(\omega))$ is a supermartingale, does it satisfy the assumptions of Doob's martingale convergence theorem?
- (g) At every time $t \in \mathbb{N}$, define the probability measure

$$Q_t(A) := E_P(Z_t \mathbf{1}_A) \qquad \forall A \in \mathcal{F}_t$$

on the probability space (Ω, \mathcal{F}) .

Show that the random variables (U_1, \ldots, U_t) are i.i.d. also under Q_t , compute their probability density under Q_t .

Hint: use Doob's maximal inequality.

3. (Paley's and Littlewood's maximal function) Consider a function in $f(x) \in L^1(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), dx)$.

Define the σ -algebra

$$\mathcal{F}_k = \sigma\{Q_{k,z} = (z2^{-k}, (z+1)2^{-k}], z \in \mathbb{Z}^d\} \subseteq \mathcal{B}(\mathbb{R}^d), \quad k \in \mathbb{Z}$$

and the two sided filtration $\mathbb{F} = (\mathcal{F}_k : k \in \mathbb{Z})$ where the dyadic cubes $(Q_{k,z} : z \in \mathbb{Z}^d)$ form a partition of \mathbb{R}^d , and the functions

$$f_k(x) = \sum_{z \in \mathbb{Z}^d} \mathbf{1}(x \in Q_{k,z}) \frac{1}{|Q_{k,z}|} \int_{Q_{k,z}} f(y) dy$$

where for $k\in\mathbb{Z},$ $|Q_{k,z}|=2^{-kd}$ is the Lebesgue measure of the d-dimensional dyadic cube

Show that $f_k(x)$ is an \mathbb{F} -martingale w.r.t. Lebesgue measure. Note that the definition of conditional expectation martingales extends directly to the case where we integrate with respect to σ -finite positive measures. To work with a probability measure, we could take instead with $f(x) \in L^1([0,1]^d, \mathcal{B}([0,1]^d), dx)$.

Show that $\lim_{k\to-\infty} f_k(x) = 0$ both almost surely w.r.t. the Lebesgue measure but not $L^1(\mathbb{R}^d)$ -sense.

Define the maximal function

$$f^{\square}(x) := \sup_{k \in \mathbb{Z}} f_k(x)$$

Show that for 1

$$\parallel f^{\square}(x) \parallel_{L^{p}(\mathbb{R}^{d})} \leq \frac{p}{p-1} \sup_{k \in \mathbb{Z}} \parallel f_{k} \parallel_{L^{p}(\mathbb{R}^{d})} \leq \frac{p}{p-1} \parallel f \parallel_{L^{p}(\mathbb{R}^{d})}$$

 $\quad \text{and} \quad$

$$cP(|f^{\square}(x)| > c) \le \sup_{k \in \mathbb{Z}} \parallel f_k \parallel_{L^1(\mathbb{R}^d)} \le \parallel f \parallel_{L^1(\mathbb{R}^d)}$$