
Stochastic analysis, spring 2013, Exercises-3, 07.02.13

We will construct a continuous Gaussian stochastic process

(B(s, t) : s, t ∈ [0, 1])

with 2-dimensional index such that

E(B(s, t)) = 0 and E
(
B(s, t)B(u, v)

)
= (s ∧ u)(t ∧ v)

Such process is called the 2-dimensional Brownian sheet or also Wiener-Chentsov
random field (this definition extends in any finite dimension).

We introduce the Cameron Martin space of the Brownian sheet

H =

{
h : [0, 1]2 → R, h(0, 0) = 0, h(s, t) =

∫
[0,t]×[0,s]

ḧ(x, y)dxdy, with
∫ 1

0

∫ 1

0

(
ḧ(x, y)

)2
dxdy <∞

}
where ḧ(x, y) = ∂2xyh(x, y) where we understand that the double derivative
exists in weak sense almost everywhere w.r.t. Lebesgue measure and it is a
Borel-measurable function.

Consider the dyadics D =
⋃
n∈N

Dn with Dn = (k2−n : k = 0, 1, . . . , 2n), and

the Haar system {η̇d(s) : d ∈ D} defined in the lecture notes which forms an
orthonormal basis in L2([0, 1],B, dt).

We denote also En = Dn \Dn−1, so that D =
⋃
n∈NEn is a disjoint union.

At the 0-dyadic level, η̇0(s) = 0 and η̇1(s) = 1.
It is not difficult to show that the product functions

η̈d,d′(s, t) := η̇d(s)η̇d′(t)

form an orthonormal basis of L2([0, 1]2,B⊗2, dt⊗ds) ' L2([0, 1],B, dt)⊗L2([0, 1],B, dt).
Define for s, t ∈ [0, 1], d, d′ ∈ D,

ηd,d′(s, t) =

∫
[0,s]×[0,t]

η̈d,d′(x, y)dxdy :=

∫ s

0

η̇d(x)dx

∫ t

0

η̇d′(y)dy = ηd(s)ηd′(s)

Given a sequence of i.i.d. standard Gaussian variables (ξd,d′(ω) : d, d′ ∈ D),
construct the sequence of random continuous functions in H

B(N)(s, t, ω) =
∑
d∈DN

∑
d′∈DN

ηd(s)ηd′(t)ξd,d′(ω)

We show that with probability P = 1 this is a Cauchy sequence in the space of
continuous functions C([0, 1]2;R) equipped with the supremum norm | · |∞.

This implies that with probability 1 there is a limit in supremum norm which
defines a continuous Gaussian process

B(s, t, ω) =
∑
d∈D

∑
d′∈D

ηd(s)ηd′(t)ξd,d′(ω)

In order to keep the notation simple, we use the same notation for subsets of
pairs of dyadic indexes and the corresponding subspaces of L2([0, 1]2, dt⊗2) and
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by isomorphism also the correponding subspaces of the Cameron Martin space
H, which are generated by basis functions corresponding to the index pairs.

For N ∈ N, let

D2
N = DN ⊗DN = {η̈d,d′ := η̇dη̇d′ : d, d′ ∈ DN}

Denote also

E
(2)
N = D2

N \D2
N−1 = EN ⊗DN−1 +DN−1 ⊗ EN + EN ⊗ EN

We have the decomposition

D2 = D ⊗D =

∞⊕
n=0

E(2)
n

where E(2)
n are finite and disjoint, and the corresponding finite dimensional

subspaces form an orthogonal decomposition of L2([0, 1]2, dt⊗2).
At each level n ∈ N, let

Γn(s, t, ω) =
∑

(d,d′)∈E(2)
n

ηd,d′(s, t)ξd,d′(ω) =
∑

(d,d′)∈E(2)
n

ηd(s)ηd′(t)ξd,d′(ω)

Here are the questions :

1. You have to show that the supremum norm is a Radonifying norm for this
process, which means

∞∑
n=0

P

(
sup

s,t∈[0,1]

∣∣Γn(s, t)
∣∣ > n−2

)
<∞

Then, by Borel Cantelli lemma it will follow from this that with probability
P = 1

B(N)(t, s, ω) =

N∑
n=0

Γn(s, t, ω)

is a Cauchy sequence in | · |∞ norm.
To show this basic step, write

Γn(s, t, ω) =
∑

(d,d′)∈E(2)
n

ηd(s)ηd′(t)ξd,d′(ω)

=
∑

d,d′∈En

ηd(s)ηd′(t)ξd,d′(ω) +

n−1∑
k=0

∑
d∈En

∑
d′∈Ek

(
ηd(s)ηd′(t)ξd,d′(ω) + ηd′(s)ηd(t)ξd′,d(ω)

)
and evaluate the supremum of |Γn(s, t, ω)| over s, t ∈ [0, 1].
Note the following facts:

• we have seen in the one-dimensional case that ηd(s) attains its max-
imum at s = d:

0 ≤ ηd(s) =

∫ s

0

η̇d(u)du ≤ ηd(d) = 2−(n+1)/2 for d ∈ En,
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• for each k and d′ 6= d′′ ∈ Ek ηd′ and ηd′′ have disjoint supports.

• for d in En and 0 ≤ k ≤ n there is only one dk ∈ Ek with ηdk(d) 6= 0.

• Note function Γn(s, t, ω) is piecewise linear which implies

sup
s,t∈[0,1]

|Γn(s, t)| = sup
s,t∈Dn

|Γn(s, t)| = sup
(d,d′)∈E(2)

n

|Γn(d, d′)|

Check that

sup
s,t
|Γn(s, t)| = sup

d,d′∈En

∣∣∣∣ηd′(d′)( n∑
k=0

ηdk(d){ξdk,d′(ω) + ξd′,dk(ω)
})∣∣∣∣

where dk ∈ Ek is unique at level k ≤ n such that ηdk(d) 6= 0.

Now use the fact that the sum of independent zero mean Gaussian vari-
ables is gaussian with zero mean and the variance is the sum of the vari-
ances.

2. Show that the limiting process has the postulated covariance structure.
Hint show the isometry

EP (B(s, t)2) = [0, s]× [0, t]

3. In fact the 2-dimensional Brownian sheet has also the α-Hölder continuity
property with probability one

sup
s,t,u,v∈[0,1]

{∣∣B(s, t, ω)−B(u, v, ω)
∣∣∣∣(s− u)2 + (t− v)2

∣∣α/2
}
≤ Kα(ω) :=

∣∣B(·, ·, ω)
∣∣
Cα

<∞ ,

but for which α > 0 ?

It is possible to proceed as in the one dimensional case. A more direct
proof comes by apply Kolmogorov’s continuity criterium (in the Lecture
notes) which is a general criterium for Hölder continuity using only the
covariance structure of the process (not necessarily Gaussian).
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