Stochastic analysis, spring 2013, Exercises-2, 31.01.13

1. Let $0<s<t<u$, and ($B_{r}: r \geq 0$) a standard Brownian motion with $B_{0}=0$.
Compute the conditional distribution of B_{t} conditionally on $\sigma\left(B_{s}, B_{u}\right)$. Hint: Use Bayes' formula.
2. Let $\left(a_{t}: t \in \mathbb{N}\right),\left(b_{t}: t \in \mathbb{N}\right)$ sequences. Denote $\Delta a_{t}=a_{t}-a_{t-1} \Delta b_{t}=$ $b_{t}-b_{t-1}$.
Check Abel's discrete integration by parts formula:

$$
\begin{array}{r}
a_{T} b_{T}=a_{0} b_{0}+\sum_{t=1}^{T} a_{t-1} \Delta b_{t}+\sum_{t=1}^{T} b_{t} \Delta a_{t} \\
=a_{0} b_{0}+\sum_{t=1}^{T} a_{t} \Delta b_{t}+\sum_{t=1}^{T} b_{t-1} \Delta a_{t} \\
=a_{0} b_{0}+\sum_{t=1}^{T} a_{t-1} \Delta b_{t}+\sum_{t=1}^{T} b_{t-1} \Delta a_{t}+\sum_{t=1}^{T} \Delta a_{t} \Delta b_{t}
\end{array}
$$

3. Let x_{t} a continuous path with quadratic variation $[x, x]_{t}$ among the dyadic sequence of partitions Π_{n}, and a_{t} a continuous process with finite variation.
Use Ito formula to show the integration by parts formula.

$$
x_{t} a_{t}=x_{0} a_{0}+\int_{0}^{t} a_{t} d x_{t}+\int_{0}^{t} x_{s} d a_{s}
$$

Hint: consider the function $F(x, a)=x a$.
4. Let x_{t} a continuous path with quadratic variation $[x, x]_{t}$ among the dyadic sequence of partitions Π_{n}, and $z_{0}>0$.
Show that $z_{t}=z_{0} \exp \left(x_{t}-\frac{1}{2}[x, x]_{t}\right)$ satisfies the linear pathwise differential equation

$$
d z_{t}=z_{t} d x_{t}
$$

which is understood in integral sense

$$
z_{t}=z_{0}+\int_{0}^{t} z_{s} \overleftarrow{d x_{t}}
$$

5. What is the quadratic variation of z_{t} ?
6. Show that $z_{t}^{-1}=z_{0}^{-1} \exp \left(-x_{t}+\frac{1}{2}[x, x]_{t}\right)$ satisfies

$$
z_{t}^{-1}=z_{0}^{-1}-\int_{0}^{t} z_{s}^{-1} d x_{s}+\int_{0}^{t} z_{s}^{-1} d[x, x]_{s}
$$

Remarks: note that from the assumptions it follows that z_{t} is bounded away from zero on any compact interval, which means $1 / z_{t}$ is bounded on compacts.
Note that by definition $[-x,-x]_{t}=[x, x]_{t}$.
7. Let a_{t} be a continuous path with finite first variation, and z_{t} as before.

Show that

$$
\xi_{t}=\left(1+\int_{0}^{t} \frac{1}{z_{s}} d a_{s}\right) z_{t}
$$

satisfies the linear inhomogeneous pathwise differential equation

$$
d \xi_{t}=\xi_{t} d x_{t}+d a_{t}, \quad \xi_{0}=z_{0}
$$

8. Let b_{t} a continuous path with finite first variation and x_{t} continuous with quadratic variation $[x, x]_{t}$ among the dyadic sequence of partitions. Show that
$\int_{0}^{t} a_{s} d x_{s}=a_{t} x_{t}-a_{0} x_{0}-\int_{0}^{t} x_{s} d a_{s}=\lim _{\Delta(\Pi) \rightarrow 0} \sum_{t_{i} \in \Pi} a_{t_{i}}\left(x_{t_{i+1} \wedge t}-x_{t_{i} \wedge t}\right)$
it is well defined independently of the sequence of partitions.
Hint: use Abel discrete integration by parts formula for a partition Π and take limit as $\Delta(\Pi) \rightarrow 0$.
9. Show that $y_{t}=\int_{0}^{t} a_{s} d x_{s}$ has quadratic variation among the dyadic sequence of partitions given by

$$
[y, y]_{t}=\int_{0}^{t} a_{s}^{2} d[x, x]_{s}
$$

Hint:

$$
\left(\int_{t_{i}}^{t_{i+1}} a_{s} d x_{s}\right)^{2}=\left(a_{t_{i}}\left(x_{t_{i+1}}-x_{t_{i}}\right)+\int_{t_{i}}^{t_{i+1}}\left(x_{t_{i+1}}-x_{s}\right) d a_{s}\right)^{2}
$$

develop the squares and take sum over $t_{i} \in \Pi \cap[0, t]$ and let $\Delta(\Pi) \rightarrow 0$.

