Stochastic analysis, spring 2013, Exercises-10, 11.04.2013

- 1. Consider a Brownian motion $(B_t : t \ge 0)$ in the filtration $\mathbb{F} = (\mathcal{F}_t)_{t\ge 0}$, which means that B_t is \mathbb{F} -adapted, time continuous, and for each $0 \le s \le t$, the conditional distribution of the increment $(B_t - B_s)$ given \mathcal{F}_s is a Gaussian with zero mean and variance (t - s).
 - (a) Show that the Brownian motion has the Markov property: $\forall s \leq t$ and bounded Borel function f(x),

$$E_P(f(B_t)|\mathcal{F}_s)(\omega) = E_P(f(B_t)|\sigma(B_s))(\omega) = E_P\left(f(x+B_t-B_s)\right)\Big|_{x=B_s(\omega)} = E_P\left(f(x+B_{t-s})\right)\Big|_{x=B_s(\omega)} = \varphi(B_s(\omega))$$

for some bounded Borel-measurable function $\varphi(x)$.

(b) Show also that for $0 \le t_0 \le t_1 \le \cdots \le t_d$ and $f(x_1, \ldots, x_d)$ bounded and Borel measurable,

$$E_P(f(B_{t_1}, \dots, B_{t_d}) | \mathcal{F}_{t_0})(\omega) = E_P(f(B_{t_1}, \dots, B_{t_d}) | \sigma(B_{t_0}))(\omega) =$$
$$E_P\left(f(x + B_{t_1 - t_0}, \dots, x + B_{t_d - t_0})\right) \Big|_{x = B_{t_0}(\omega)} = \psi(B_{t_0}(\omega))$$

for some Borel measurable function $\psi(x)$. Hint: use induction.

(c) Let $\tau(\omega)$ an \mathbb{F} -stopping time taking finitely many values. Show first the **strong Markov property** of Brownian motion: for f(x)bounded measurable function,

$$E_P(f(B_{\tau+t})|\mathcal{F}_{\tau})(\omega) = E_P(f(B_{\tau+t})|\sigma(B_{\tau}))(\omega) =$$
$$E_P(f(x+B_t))\Big|_{x=B_{\tau}(\omega)} = \varphi(B_{\tau}(\omega)$$

Hint: remember the definition of stopped σ -algebra \mathcal{F}_{τ} .

- (d) Show that $(B_{\tau+t} B_{\tau}) \stackrel{P}{\coprod} \mathcal{F}_{\tau}$, and the conditional distribution of $(B_{\tau+t} B_{\tau})$ given \mathcal{F}_{τ} is Gaussian with zero mean and variance t. This means that at every stopping time the Brownian motion restarts from the position B_{τ} independently of the past.
- (e) Show that the strong Markov property for a general \mathbb{F} -stopping time τ . Assume that the filtration \mathbb{F} is right continuous. We have shown that there is a sequence of \mathbb{F} -stopping times $\tau_n(\omega) \downarrow \tau$ approximating τ from above, with each τ_n taking only finitely many values. Note also that $\mathcal{F}_{\tau_n} \supseteq \mathcal{F}_{\tau}$.
- (f) Show that if τ is an \mathbb{F} -stoppping time $0 \leq t_1 \leq \cdots \leq t_d$ and $f(x_1, \ldots, x_d)$ bounded and Borel measurable,

$$E_P(f(B_{\tau+t_1}, \dots, B_{\tau+t_d}) | \mathcal{F}_{\tau})(\omega) = E_P(f(B_{\tau+t_1}, \dots, B_{\tau+t_d}) | \sigma(B_{\tau+t_0}))(\omega) = E_P(f(x + B_{t_1-t_0}, \dots, x + B_{t_d-t_0})) \Big|_{x = B_{\tau}(\omega)} = \psi(B_{\tau}(\omega))$$

for some Borel measurable function $\psi(x)$. Hint: use induction.

2. (Reflection priociple) Let

$$B_t^* = \max_{0 \le s \le t} B_s$$

the running maximum of Brownian motion.

We show that for x > 0, $P(B_t^* > x) = 2P(B_t > x)$. Consider the stopping time $\tau_x = \inf\{s : B_s > x\}$ and note that $\{B_t^* > x\} = \{\tau_x < t\}$.

Consider the process

$$\widetilde{B}_t = \begin{cases} B_t & t \leq \tau_x \\ 2x - B_t & t > \tau_x \end{cases}$$

which is Brownian motion reflected at level t.

- (a) Use the strong Markov property to show that \widetilde{B}_t is a Brownian motion in the filtration \mathbb{F} .
- (b) Note that

$$\{B_t^* > x\} = \{B_t \ge x\} \cup \{B_t > x\}$$
(1)

with $\{B_t \ge x\} \cap \{\widetilde{B}_t > x\} = \emptyset$, and $P(B_t = x) = 0$. Compute the probability density function of B_t^* .

(c) Compute

$$P(B_t^* > x, B_t > Y)$$

Hint: use (1).

- (d) Compute the joint probability density of (B_t^*, B_t) .
- (e) The running maximum $(B_t^*: t \ge 0)$ is not a Markov process. Show that the pair (B_t^*, B_t) is a strong Markov process, Hint: use the strong Markov property of Brownian motion.
- 3. The same reflection principle argument holds for a symmetric random walk on \mathbb{Z} . Consider a filtration $\mathbb{F} = (\mathcal{F}_n : n \in \mathbb{N})$ in discrete time. Let $(X_n : n \in \mathbb{N})$ an \mathbb{F} -adapted process with

$$P(X_n = 1 | \mathcal{F}_{n-1}) = P(X_n = -1 | \mathcal{F}_{n-1}) = 1/2$$

(which means X_n is independent from the past) and

$$S_n = X_1 + \dots + X_n$$

Note that the probability law of S_n is the binomial distribution

$$P(S_n = k) = \binom{n}{k} 2^{-r}$$

Let

$$S_n^* = \max_{1 \le k \le n} S_k$$

the running maximum of the random walk.

- (a) Show that $(S_n : n \in \mathbb{N})$ is a strong Markov process in the filtration \mathbb{F} .
- (b) Compute the joint probabiliy $P(S_n^* = \ell, S_n = k)$.
- (c) Show that $(S_n^*, S_n)_{n \in \mathbb{N}}$ is a strong Markov process in the filtration \mathbb{F} .