Stochastic analysis, spring 2013, Exercises-1, 24.01.13

1. Let $x: \mathbb{R}^{+} \rightarrow \mathbb{R}$ a function. Its total variation (or first-variation) is defined as

$$
\begin{equation*}
v_{t}(x)=\sup _{\Pi} \sum_{t_{i} \in \Pi}\left|x_{t_{i} \wedge t}-x_{t_{i-1} \wedge t}\right| \tag{1}
\end{equation*}
$$

where the supremum is over all finite partitions

$$
\Pi=\left\{0 \leq t_{0}<t_{1}<\cdots<t_{n}\right\}
$$

$t \wedge s=\min \{s, t\}$.
Assume that $s \rightarrow x_{t}$ is right continuous with left limits at all points $s \in[0, t]$. We say that x_{s} is cadlag from the french Continue a Droite, avec Limite A Gauche.

We decompose $x_{s}=x_{s}^{c}+\sum_{r \leq s} \Delta x_{r}$ where the path x_{s}^{c} is continuous and there are at most countably many jumps, since $\forall n$ the set

$$
\begin{equation*}
\left\{s \in[0, t]:\left|\Delta x_{s}\right|>1 / n\right\} \tag{2}
\end{equation*}
$$

is finite, otherwise there would be an accumulation point, and the function x_{s} would not have left or right limit at that point.
We can show that

$$
\begin{equation*}
v_{t}(x)=v_{t}\left(x^{c}\right)+\sum_{r \leq t}\left|\Delta x_{r}\right| \tag{3}
\end{equation*}
$$

Show that

$$
v_{t}(x)=\lim _{\Delta(\Pi) \rightarrow 0} \sum_{t_{i} \in \Pi}\left|x_{t_{i} \wedge t}-x_{t_{i-1} \wedge t}\right|
$$

where $\Delta(\Pi)=\max \left\{\left|t_{i}-t_{i-1}\right|: t_{i} \in \Pi\right\}$ and Π is a finite partition. This means that the limits exists for any sequence of partitions $\left(\Pi_{n}\right)$ with $\Delta\left(\Pi_{n}\right) \rightarrow 0$ and the limiting value does not depende on the sequence.

Hint: by triangular inequality, when we refine the partition by adding a point the approximation on the right hand side of (1) does not decrease.
Show the results first for a continuous path (which will be absolutely continuous on the compact interval) .
Assume $v_{T}(x)<\infty$, for some $T \in(0, \infty]$. For $t \in[0, T]$, let

$$
x_{t}^{\oplus}=\frac{v_{t}(x)+x_{t}-x_{0}}{2}, \quad x_{t}^{\ominus}=\frac{v_{t}(x)-x_{t}+x_{0}}{2}
$$

Show that x_{t}^{\oplus} and x_{t}^{\ominus} are non-decreasing satisfying $x_{0}^{\oplus}=x_{0}^{\ominus}=0$ and

$$
\begin{equation*}
x_{t}=x_{0}+x_{t}^{\oplus}-x_{t}^{\ominus}, \quad v_{t}(x)=x_{t}^{\oplus}+x_{t}^{\ominus} \tag{4}
\end{equation*}
$$

Show that if

$$
\begin{equation*}
x_{t}=x_{0}+y_{t}^{\oplus}-y_{t}^{\ominus} \tag{5}
\end{equation*}
$$

with y_{t}^{\oplus} and y_{t}^{\ominus} non-decreasing satisfying $y_{0}^{\oplus}=y_{0}^{\ominus}=0$, then

$$
v_{t} \leq y_{t}^{\oplus}+y_{t}^{\ominus}
$$

Show that the decomposition (4) is minimal among the decompositions (5), meaning that

$$
a_{t}:=y_{t}^{\oplus}-x_{t}^{\oplus}=y_{t}^{\ominus}-x_{t}^{\ominus}
$$

is non-decreasing.
2. Assume that x_{t} is continuous a path with quadratic variation $[x]_{t}$ among the sequence of partitions $\left(\Pi_{n}\right)_{n \in \mathbb{N}}$, and let a_{t} a continuous function with finite first variation on compact intervals, that is $v_{t}(a)<\infty$. Let $F(x, a)$ a $C^{2,1}$ function, with continuous partial derivatives $(x, a) \rightarrow F_{x x}(x, a)$ and $(x, a) \rightarrow F_{a}(x, a)$.
Use Taylor expansion, uniform continuity, and the vague convergence definition of the quadratic variation to show in details the extended ItoFöllmer formula

$$
\begin{align*}
& F\left(x_{t}, a_{t}\right)-F\left(x_{0}, a_{0}\right)-\int_{0}^{t} F_{a}\left(x_{s}, a_{s}\right) d a_{s}-\frac{1}{2} \int_{0}^{t} F_{x x}\left(x_{s}, a_{s}\right) d[x]_{s}= \\
& =\int_{0}^{t} F_{x}\left(x_{s}\right) d \overleftarrow{x}_{s}=\lim _{n \rightarrow \infty} \sum_{t_{i}^{n} \in \Pi_{n}} F_{x}\left(x_{t_{i}^{n}}\right)\left(x_{t_{i+1}^{n} \wedge t}-x_{t_{i}^{n} \wedge t}\right) \tag{6}
\end{align*}
$$

where the last equality defines the pathwise integral.
Hint: Write the telescopic sum with and use Taylor

$$
\begin{aligned}
& F\left(x_{t_{i+1}}, a_{t_{i+1}}\right)-F\left(x_{t_{i}}, a_{t_{i}}\right)= \\
& F\left(x_{t_{i+1}}, a_{t_{i+1}}\right)-F\left(x_{t_{i+1}}, a_{t_{i}}\right)+F\left(x_{t_{i+1}}, a_{t_{i}}\right)-F\left(x_{t_{i}}, a_{t_{i}}\right)= \\
& F_{a}\left(x_{t_{i+1}}, a_{\tau_{i}}\right)\left(a_{t_{i+1}}-a_{t_{i}}\right)+F_{x}\left(x_{t_{i}}, a_{t_{i}}\right)\left(x_{t_{i+1}}-x_{t_{i}}\right)+\frac{1}{2} F_{x x}\left(x_{t_{i}}, a_{t_{i}}\right)\left(x_{t_{i+1}}-x_{t_{i}}\right)^{2} \\
& +\frac{1}{2}\left(F_{x x}\left(x_{\sigma_{i}}, a_{t_{i}}\right)-F_{x x}\left(x_{t_{i}}, a_{t_{i}}\right)\right)\left(x_{t_{i+1}}-x_{t_{i}}\right)^{2}
\end{aligned}
$$

for some $t_{i} \leq \tau_{i} \leq t_{i+1}, \quad t_{i} \leq \sigma_{i} \leq t_{i+1}$ which exist by the mid-point theorem of elementary analysis.
3. Assume that x_{t} is a continuous path with $x_{0}=0$, and quadratic variation $[x]_{t}=t$, among the dyadic sequence of partitions $\mathcal{D}=\left(t_{k}^{n}=k 2^{-n}: k \in\right.$ $\mathbb{N})_{n \in \mathbb{N}}$, and let $a_{t}=\exp (t)$. Use the change of variable formula of classical Riemann-Stieltjes integrals and Ito-Föllmer formula (6) to compute the integral representation of

- $\sin \left(a_{t}\right)$,
- $\sin \left(x_{t}\right)$,
- $\sin \left(a_{t} x_{t}\right)$.

4. What is the first variation of $\sin \left(a_{t}\right)$?

What is the quadratic variation of $\sin \left(x_{t}\right)$?
What is the quadratic variation of $\sin \left(a_{t} x_{t}\right)$?
Show that $\sin \left(x_{t}\right)$ and $\sin \left(a_{t} x_{t}\right)$ have infinite first variation.

