## Stochastic analysis, 10. exercises

Janne Junnila

April 11, 2013

**Exercise 1** Consider a Brownian motion  $(B_t: t \ge 0)$  in the filtration  $\mathbb{F} = (\mathcal{F}_t)_{t \ge 0}$ , which means that  $B_t$  is  $\mathbb{F}$ -adapted, time continuous, and for each  $0 \le s \le t$ , the conditional distribution of the increment  $(B_t - B_s)$  given  $\mathcal{F}_s$  is a Gaussian with zero mean and variance (t - s).

(a) Show that the Brownian motion has the Markov property:  $\forall s \leq t$  and bounded Borel function f(x),

$$\begin{split} E_P(f(B_t)|\mathcal{F}_s)(\omega) &= E_P(f(B_t)|\sigma(B_s))(\omega) = E_P\left(f(x+B_t-B_s)\right)\Big|_{x=B_s(\omega)} \\ &= E_P\left(f(x+B_{t-s})\right)\Big|_{x=B_s(\omega)} = \varphi(B_s(\omega)) \end{split}$$

for some bounded Borel-measurable function  $\varphi(x)$ .

(b) Show also that for  $0 \le t_0 \le t_1 \le ... \le t_d$  and  $f(x_1,...,x_d)$  bounded and Borel measurable,

$$\begin{split} E_P(f(B_{t_1},...,B_{t_d})|\mathcal{F}_{t_0})(\omega) &= E_P(f(B_{t_1},...,B_{t_d})|\sigma(B_{t_0}))(\omega) \\ &= E_P(f(x+B_{t_1-t_0},...,x+B_{t_d-t_0}))\Big|_{x=B_{t_0}(\omega)} = \psi(B_{t_0}(\omega)) \end{split}$$

for some Borel measurable function  $\psi(x)$ .

(c) Let  $\tau(\omega)$  be an  $\mathbb{F}$ -stopping time taking finitely many values. Show first the **strong Markov property** of Brownian motion: for f(x) bounded measurable function,

$$E_P(f(B_{\tau+t})|\mathcal{F}_\tau)(\omega) = E_P(f(B_{\tau+t})|\sigma(B_\tau))(\omega) = E_P(f(x+B_t))\Big|_{x=B_\tau(\omega)} = \varphi(B_\tau(\omega)).$$

- (d) Show that  $(B_{\tau+t}-B_{\tau}) \perp \!\!\! \perp \!\!\! \mathcal{F}_{\tau}$ , and the conditional distribution of  $(B_{\tau+t}-B_{\tau})$  given  $\mathcal{F}_{\tau}$  is Gaussian with zero mean and variance t. This means that at every stopping time the Brownian motion restarts from the position  $B_{\tau}$  independently of the past.
- (e) Show the strong Markov property for a general  $\mathbb{F}$ -stopping time  $\tau$ . Assume that the filtration  $\mathbb{F}$  is right continuous. We have shown that there is a sequence of  $\mathbb{F}$ -stopping times  $\tau_n(\omega) \downarrow \tau$  approximating  $\tau$  from above, with each  $\tau_n$  taking only finitely many values. Note also that  $\mathcal{F}_{\tau_n} \supset \mathcal{F}_{\tau}$ .
- (f) Show that if  $\tau$  is an  $\mathbb{F}$ -stopping time  $0 \le t_0 \le t_1 \le ... \le t_d$  and  $f(x_1,...,x_d)$  bounded and Borel measurable,

$$\begin{split} E_P(f(B_{\tau+t_1},...,B_{\tau+t_d})|\mathcal{F}_{\tau})(\omega) &= E_P(f(B_{\tau+t_1},...,B_{\tau+t_d})|\sigma(B_{\tau+t_0}))(\omega) \\ &= E_P(f(x+B_{t_1-t_0},...,x+B_{t_d-t_0}))\Big|_{r=B_{\tau}(\omega)} = \psi(B_{\tau}(\omega)) \end{split}$$

for some Borel measurable function  $\psi(x)$ .

**Solution 1** (a) Because  $B_t - B_s$  has conditional distribution N(0, t - s) w.r.t.  $\mathcal{F}_s$ ,  $B_t$  has conditional distribution  $N(B_s(\omega), t - s)$ . Therefore

$$E(f(B_t)|\mathcal{F}_s)(\omega) = \int_{-\infty}^{\infty} f(x) \frac{1}{\sqrt{2\pi(t-s)}} e^{-\frac{(x-B_s(\omega))^2}{t-s}} dx.$$

Similarly for a fixed  $\omega$ ,

$$\begin{split} E(f(B_s(\omega)+B_t-B_s)) &= E(E(f(B_s(\omega)+B_t-B_s)|\mathcal{F}_s)) \\ &= E\left(\int_{-\infty}^{\infty} f(B_s(\omega)+x) \frac{1}{\sqrt{2\pi(t-s)}} e^{-\frac{x^2}{t-s}} \, dx\right) \\ &= E(f(B_t)|\mathcal{F}_s)(\omega) \end{split}$$

and

$$E(f(B_s(\omega) + B_{t-s})) = E(E(f(B_s(\omega) + B_{t-s} - B_0)|\mathcal{F}_0)) = E(f(B_t)|\mathcal{F}_s)(\omega).$$

In particular we see that  $E(f(B_t)|\mathcal{F}_s)$  is a  $\sigma(B_s)$  measurable function, so that

$$E(f(B_t)|\sigma(B_s)) = E(E(f(B_t)|\mathcal{F}_s)|\sigma(B_s)) = E(f(B_t)|\mathcal{F}_s).$$

(b) We have proven the result in the case d=1. Assume that we have proven the result for some  $d \in \mathbb{N}$ . Then

$$\begin{split} E(f(B_{t_1},B_{t_2},...,B_{t_{d+1}})|\mathcal{F}_{t_0})(\omega) &= E(E(f(B_{t_1},B_{t_2},...,B_{t_d},B_{t_{d+1}})|\mathcal{F}_{t_d})|\mathcal{F}_{t_0})(\omega) \\ &= E(E(f(B_{t_1}(\omega'),B_{t_2}(\omega'),...,B_{t_d}(\omega'),B_{t_d}(\omega')+B_{t_{d+1}-t_d}))|\mathcal{F}_{t_0})(\omega) \end{split}$$

Letting  $g(x_1, ..., x_d) = E(f(x_1, x_2, ..., x_d, x_d + B_{t_{d+1} - t_d}))$  we have by induction that

$$\begin{split} E(f(B_{t_1},...,B_{t_{d+1}})|\mathcal{F}_{t_0})(\omega) &= E(g(B_{t_0}(\omega)+B_{t_1-t_0},...,B_{t_0}(\omega)+B_{t_d-t_0})) \\ &= E(f(B_{t_0}(\omega)+B_{t_1-t_0},...,B_{t_0}(\omega)+B_{t_d-t_0},B_{t_0}(\omega)+B_{t_d-t_0}+B_{t_{d+1}-t_d})) \\ &= E(f(B_{t_0}(\omega)+B_{t_1-t_0},...,B_{t_0}(\omega)+B_{t_d-t_0},B_{t_0}(\omega)+B_{t_{d+1}-t_0})) \end{split}$$

(c) Assume that  $A \in \mathcal{F}_{\tau}$ . We have to show that

$$\int\limits_A f(B_{\tau+t}(\omega))\,dP(\omega) = \int\limits_A \, E(f(B_\tau(\omega)+B_t))\,dP(\omega).$$

Let  $\tau_1, \tau_2, ..., \tau_n$  be the values that  $\tau$  takes on. Then we can write

$$\int\limits_A f(B_{\tau+t}(\omega))\,dP(\omega) = \sum_{k=1}^n \int\limits_{A\cap \{\tau=\tau_k\}} f(B_{\tau+t}(\omega))\,dP(\omega).$$

Now  $A \cap \{\tau = \tau_k\} \in \mathcal{F}_{\tau_k}$ , so by (a) we get

$$\int\limits_{A\cap\{\tau=\tau_k\}} f(B_{\tau+t}(\omega))\,dP(\omega) = \int\limits_{A\cap\{\tau=\tau_k\}} E(f(B_{\tau}(\omega)+B_t))\,dP(\omega)$$

and the result follows.

(d) Suppose that  $F \in \mathcal{F}_{\tau}$ . Then for any Borel set  $A \subset \mathbb{R}$  we have

$$P(F \cap \{\tau = \tau_k\} \cap \{B_{\tau + t} - B_{\tau} \in A\}) = P(F \cap \{\tau = \tau_k\})P(\{B_{\tau_k + t} - B_{\tau_k} \in A\}).$$

Thus

$$\begin{split} P(F \cap \{B_{\tau+t} - B_{\tau} \in A\}) &= \sum_{k=1}^{n} P(F \cap \{\tau = \tau_{k}\}) P(\{B_{\tau_{k}+t} - B_{\tau_{k}} \in A\}) \\ &= \sum_{k=1}^{n} P(F \cap \{\tau = \tau_{k}\}) P(\{B_{t} \in A\}) \\ &= P(F) P(\{B_{t} \in A\}). \end{split}$$

Finally

$$\begin{split} P(\{B_{\tau+t} - B_{\tau} \in A\}) &= \sum_{k=1}^{n} P(\{\tau = \tau_k\} \cap \{B_{\tau_k+t} - B_{\tau_k} \in A\}) \\ &= \sum_{k=1}^{n} P(\{\tau = \tau_k\}) P(\{B_t \in A\}) \\ &= P(\{B_t \in A\}). \end{split}$$

The above calculation shows the independence and that  $P(\{B_{\tau+t} - B_{\tau} \in A\}|\mathcal{F}_{\tau}) = P(\{B_t \in A\})$ , so the conditional distribution is Gaussian with zero mean and variance t

(e) Let now  $\tau$  be a general stopping time and  $\tau_n$  a sequence of stopping times approximating  $\tau$  from above, with each  $\tau_n$  taking only finitely many distinct values. Then for all n,

$$E(f(B_{\tau_n+t})|\mathcal{F}_{\tau_n})(\omega) = E(f(B_{\tau_n}(\omega) + B_t)).$$

Since  $\tau_n$  approximate  $\tau$  from above,  $\mathcal{F}_{\tau_n} \supset \mathcal{F}_{\tau}$ . Thus for any  $F \in \mathcal{F}_{\tau}$ ,

$$\begin{split} \int_F f(B_{\tau+t}(\omega)) \, dP(\omega) &= \lim_{n \to \infty} \int_F f(B_{\tau_n+t}(\omega)) \, dP(\omega) \\ &= \lim_{n \to \infty} \int_F E(f(B_{\tau_n+t}) | \mathcal{F}_{\tau_n})(\omega) \, dP(\omega) \\ &= \lim_{n \to \infty} \int_F E(f(B_{\tau_n}(\omega) + B_t)) \, dP(\omega) \\ &= \int_F E(f(B_{\tau}(\omega) + B_t)) \, dP(\omega). \end{split}$$

This implies that  $E(f(B_{\tau+t})|\mathcal{F}_{\tau})(\omega) = E(f(B_{\tau}(\omega) + B_t)).$ 

(f) Analogous to what we did before...

## Exercise 2 Let

$$B_t^* = \max_{0 \le s \le t} B_s$$

be the running maximum of Brownian motion.

We show that for x > 0,  $P(B_t^* > x) = 2P(B_t > x)$ .

Consider the stopping time  $\tau_x = \inf\{s : B_s > x\}$  and note that  $\{B_t^* > x\} = \{\tau_x < t\}$ .

Consider the process

$$\tilde{B}_t = \begin{cases} B_t, & t \le \tau_x \\ 2x - B_t, & t > \tau_x \end{cases}$$

which is Brownian motion reflected at level t.

- (a) Use the strong Markov property to show that  $\tilde{B}_t$  is a Brownian motion in the filtration  $\mathbb{F}$ .
- (b) Note that

$$\{B_t^* > x\} = \{B_t \ge x\} \cup \{\tilde{B}_t > x\}$$

with  $\{B_t \ge x\} \cap \{\tilde{B}_t > x\} = \emptyset$ , and  $P(B_t = x) = 0$ . Compute the probability density function of  $B_t^*$ .

(c) Compute

$$P(B_t^* > x, B_t > y).$$

- (d) Compute the joint probability density of  $(B_t^*, B_t)$ .
- (e) The running maximum  $(B_t^*: t \ge 0)$  is not a Markov process. Show that the pair  $(B_t^*, B_t)$  is a strong Markov process.

**Solution 2** (a) By the strong Markov property,  $W_t = B_{\tau_x + t} - B_{\tau_x} = B_{\tau_x + t} - x$  is a Brownian motion. Similarly  $-W_t$  is a Brownian motion. Now

$$\tilde{B}_t = \begin{cases} B_t, & t \leq \tau_x, \\ 2x - W_t, & t > \tau_x. \end{cases}$$

This is a Brownian motion since the conditional distribution of  $\tilde{B}_t - \tilde{B}_s$  is the same as the conditional distribution of the original process

$$B_t = \begin{cases} B_t, & t \le \tau_x, \\ x + W_t, & t > \tau_x. \end{cases}$$

(b) We have  $P(B_t^* > x) = P(B_t > x) + P(\tilde{B}_t > x)$ , so

$$P(B_t^* \le x) = 1 - P(B_t > x) - P(\tilde{B}_t > x) = 1 - 2\int_{x}^{\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{s^2}{t}} ds.$$

4

This implies that the probability density function of  $B_t^*$  is

$$\frac{2}{\sqrt{2\pi t}}e^{-\frac{x^2}{t}}$$
.

(c)

$$\begin{split} P(B_t^* > x, B_t > y) &= P(\{B_t > x\} \cap \{B_t > y\}) + P(\{\tilde{B}_t > x\} \cap \{B_t > y\}) \\ &= P(\{B_t > x \lor y\}) + P(\{\tilde{B}_t > x\} \cap \{2x - \tilde{B}_t > y\}) \\ &= P(\{B_t > x \lor y\}) + P(\{x < \tilde{B}_t < 2x - y\}) \\ &= \int\limits_{x \lor y}^{\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{s^2}{2t}} \, ds + \int\limits_{(x, 2x - y)} \frac{1}{\sqrt{2\pi t}} e^{-\frac{s^2}{2t}} \, ds. \end{split}$$

(d) We wish to find a function  $f: \mathbb{R}^2 \to \mathbb{R}$  such that

$$\int_{x}^{\infty} \int_{y}^{\infty} f(u, v) \, dv \, du = \int_{x \vee y}^{\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{s^2}{2t}} \, ds + \int_{(x, 2x - y)} \frac{1}{\sqrt{2\pi t}} e^{-\frac{s^2}{2t}} \, ds. \tag{1}$$

Assume first that x > y. By differentiating (1) w.r.t. y, we get that

$$\int_{x}^{\infty} f(u,y) \, du = \frac{1}{\sqrt{2\pi t}} e^{-\frac{(2x-y)^2}{2t}},$$

and after differentiating this w.r.t. x, we have

$$f(x,y) = \frac{2(2x-y)}{t\sqrt{2\pi t}}e^{-\frac{(2x-y)^2}{2t}}.$$
 (2)

Assume then that x < y. We can write (1) as

$$\int\limits_{u}^{\infty}\int\limits_{x}^{v}f(u,v)\,du+\int\limits_{v}^{\infty}f(u,v)\,du\,dv=\int\limits_{u}^{\infty}\frac{1}{\sqrt{2\pi t}}e^{-\frac{s^{2}}{2t}}\,ds.$$

Now if we use (2), we have

$$\int_{v}^{\infty} f(u,v) du = \frac{1}{\sqrt{2\pi t}} e^{-\frac{v^2}{2t}},$$

so it makes sense to define

$$f(x,y) := \begin{cases} \frac{2(2x-y)}{t\sqrt{2\pi t}} e^{-\frac{(2x-y)^2}{2t}}, & \text{if } x \ge y\\ 0, & \text{if } x \le y \end{cases}$$

and check that this satisfies (1) for x > 0,  $y \in \mathbb{R}$ . Indeed

$$\begin{split} \int_{y}^{\infty} \int_{x}^{\infty} f(u, v) \, du \, dv &= \int_{y}^{\infty} \int_{x \vee v}^{\infty} f(u, v) \, du \, dv \\ &= \int_{y}^{\infty} \int_{x \vee v}^{\infty} \frac{2(2u - v)}{t\sqrt{2\pi t}} e^{-\frac{(2u - v)^{2}}{2t}} \, du \, dv \\ &= \int_{y}^{\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(v - 2(x \vee v))^{2}}{2t}} \, dv \\ &= \int_{y}^{x \vee y} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(v - 2x)^{2}}{2t}} \, dv + \int_{x \vee y}^{\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{v^{2}}{2t}} \, dv \\ &= \int_{x \vee y}^{\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{v^{2}}{2t}} \, dv + \int_{y - 2x}^{(x \vee y) - 2x} \frac{1}{\sqrt{2\pi t}} e^{-\frac{s^{2}}{2t}} \, ds \\ &= \int_{x \vee y}^{\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{s^{2}}{2t}} \, ds + \int_{(x, 2x - y)}^{\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{s^{2}}{2t}} \, ds. \end{split}$$

(e) Let  $\tau$  be a stopping time. Notice that

$$\mathbf{1}(B^*_{\tau+t} \geq x) = \mathbf{1}(B^*_{\tau} \geq x) + \mathbf{1}(B^*_{\tau} < x)\mathbf{1}(\sup_{0 \leq s \leq t} B_{\tau+s} \geq x).$$

By the strong Markov property of  $B_t$ , we thus see that

$$P(B^*_{\tau+t} \geq x, B_{\tau+t} \geq y | \mathcal{F}_\tau) = P(B^*_{\tau+t} \geq x, B_{\tau+t} \geq y | \sigma(B^*_\tau, B_\tau)).$$

Therefore the conditional distribution of  $(B_{\tau+t}^*, B_{\tau+t})$  given  $\mathcal{F}_{\tau}$  is the same as given  $\sigma(B_{\tau}^*, B_{\tau})$ , which implies the strong Markov property.

**Exercise 3** The same reflection principle holds for a symmetric random walk on  $\mathbb{Z}$ . Consider a filtration  $\mathbb{F}=(\mathcal{F}_n:n\in\mathbb{N})$  in discrete time. Let  $(X_n:n\in\mathbb{N})$  be an  $\mathbb{F}$ -adapted process with

$$P(X_n = 1 | \mathcal{F}_{n-1}) = P(X_n = -1 | \mathcal{F}_{n-1}) = 1/2$$

(which means that  $X_n$  is independent from the past) and

$$S_n = X_1 + \dots + X_n$$

Note that the probability law of  $S_n$  is the binomial distribution

$$P(S_n = k) = \binom{n}{k} 2^{-n}$$

Let

$$S_n^* = \max_{1 \le k \le n} S_k$$

be the running maximum of the random walk.

- (a) Show that  $(S_n : n \in \mathbb{N})$  is a strong Markov process in the filtration  $\mathbb{F}$ .
- (b) Compute the joint probability  $P(S_n^* = \ell, S_n = k)$ .

(c) Show that  $(S_n^*, S_n)_{n \in \mathbb{N}}$  is a strong Markov process in the filtration  $\mathbb{F}$ .

**Solution 3** (a) We will prove the Markov property. The strong Markov property will then follow the same way as in 1.c. Let s < t and f a bounded measurable function. Then

$$P(S_t - S_s = k | \mathcal{F}_s)(\omega) = P(X_{s+1} + \ldots + X_t = k | \mathcal{F}_s)(\omega) = P(X_1 + \ldots + X_{t-s} = k) = P(S_{t-s} = k)$$

by independence. Hence

$$E(f(S_t)|\mathcal{F}_s)(\omega) = \sum_{k=-\infty}^{\infty} f(k+S_s(\omega)) P(S_{t-s}=k) = E(f(S_s(\omega)+S_{t-s})).$$

(b) Let  $\tilde{S}_n$  be the process reflected after hitting  $\ell$ . Then for  $k \leq \ell$  (assuming  $n \equiv k$  modulo 2),

$$P(S_n^* \geq \ell, S_n = k) = P(\tilde{S}_n = 2\ell - k) = P(S_n = 2\ell - k) = \binom{n}{2\ell - k} 2^{-n}.$$

Thus

$$P(S_n^* = \ell, S_n = k) = P(S_n^* \ge \ell, S_n = k) - P(S_n^* \ge \ell + 1, S_n = k) = \binom{n}{2\ell - k} 2^{-n} - \binom{n}{2\ell + 2 - k} 2^{-n}$$

(c) Completely analogous to 2.e.