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Exercise 1 Consider a Brownian motion (B; : t > 0) in the filtration F = (F;) 507
which means that B; is F-adapted, time continuous, and for each 0 < s < ¢, the
conditional distribution of the increment (B; — B,) given F; is a Gaussian with zero
mean and variance (t — s).

(a) Show that the Brownian motion has the Markov property: Vs < t and bounded
Borel function f (x),

Ep(f (B)IT) (@) = Ep(f (Blo (B) (@) = Ep (fx + B =BJ)|

=Ep(fc+Bio)| = p(B(@))

for some bounded Borel-measurable function ¢(x).

(b) Show also that for 0 < t5 < t; < ... < t; and f(xq,...,x;) bounded and Borel
measurable,

Ep(f By, s By )1 F4)) (@) = Ep(f (By,, ..., By )lo (By ) ()

= Ep(f(x +By,_y, .. X + de—to))L:B oy = VB (@)
to W

for some Borel measurable function (x).

(c) Let T(w) be an F-stopping time taking finitely many values. Show first the strong
Markov property of Brownian motion: for f (x) bounded measurable function,

Ep(f (Bryp)|Fo) () = Ep(f (Bryp)lo(Br)) (w) = Ep(f(x + By))

= ¢(Br(w)).
x=B (w)
(d) Show that (B, ; —B,) 1L ¥, and the conditional distribution of (B,,; —B,) given
F is Gaussian with zero mean and variance t. This means that at every stopping
time the Brownian motion restarts from the position B, independently of the past.

(e) Show the strong Markov property for a general F-stopping time 7. Assume that
the filtration F is right continuous. We have shown that there is a sequence of F-stop-
ping times 7, (w) | T approximating T from above, with each 7, taking only finitely
many values. Note also that F; D F.

(f) Show that if T is an F-stopping time 0 < ty < t; < ... < tyand f(xq, ..., x;) bounded
and Borel measurable,



Ep(fBrstys oo Brat IF0) (@) = Ep(f (Brysys ooy Brag )T (Briyy)) (@)

=Ep(f(x + Byt X + By, 1)) By P(Br(w))

B (w
for some Borel measurable function (x).

Solution 1 (a) Because B, — B, has conditional distribution N (0, t — s) w.r.t. J, B,
has conditional distribution N (B,(w),t — s). Therefore

R 1 (¥=Bg(@))?
E(f (B)|Fs) (w) = (X) ———¢e~ "~ = dx.
(B —J;of V27T (t —s)

Similarly for a fixed w,

oo 1 L2
=E (Bs(w) + x) ———e" = dx)
(—'[of V27T (t —s)

= E(f (Bp)|Fs) (w)
and
E(f (Bs(w) + By_s)) = E(E(f (Bs(w) + By_s — Bo)|1Fg)) = E(f (By)|F5) (w).
In particular we see that E(f (B,)| ) is a ¢ (B,) measurable function, so that
E(f (By)lo(Bs)) = E(E(f (By)|F5)lo(Bs)) = E(f (By)| ).

(b) We have proven the result in the case d = 1. Assume that we have proven the
result for some d € N. Then

E(f(By,, By, - By, ) Fy,) (W) = E(E(f(By, By, ooy By, By, )1 I Fy) ()
= E(E(f (By, ("), By ("), e, By ("), By (') + By, | 4 ) F4) (@)
Letting g(xq,...,x3) = E(f (X1, X3, ..., X4, X4 + Btd+1—td)) we have by induction that
E(f(By,, - By, ) Fy,) (@) = E(§(By (w) + By 4, e By (W) + By, )
= E(f (By,(w) + By _y - By, (@) + By 4, By (W) + By g + By, )
= E(f (By,(w) + By, _ty, - By (W) + By 4, By (W) + By, )

(c) Assume that A € J.. We have to show that

| FBerr(@)) dP@) = [ E(f(Bo(w) + By)) dP(w).
A A

Let 71, T, ..., T,, be the values that T takes on. Then we can write

n
ff(BHt(w))dP(w) = Z f fBryi(w))dP(w).
A

k=1An{T=13}

Now A N {T = 74} € Fr, 50 by (a) we get



| fBep@)dP@ = [ EFB(w)+B))dPw)

AN{T=1¢) AN{T=14}
and the result follows.
(d) Suppose that F € F.. Then for any Borel set A C R we have
PFN{t =1} N{Bry — B €A} =P(FN{t =1 HP({By 4t — By €EAD.

Thus
P(FN {BT+t - BT EA}) = Z P(FN{t = Tk})P({BTk+t - BTk € A})
k=1
= P(Fn{t =1})P{B, € A})
k=1
= P(F)P({B; € A}).
Finally

P({Bry—B; €A} = Y PUT =1} N {Byyy — By, €A
k=1

= ) P{7=7hHP{B; € A})
k=1

= P({B; € A}).

The above calculation shows the independence and that P({B,,; — B, € A} F;) =
P({B; € A}), so the conditional distribution is Gaussian with zero mean and variance

t.

(e) Letnow 7 be a general stopping time and 7,, a sequence of stopping times approx-
imating T from above, with each 7, taking only finitely many distinct values. Then

for all n,
E(f(BTnH)D:Tn)(w) = E(f(BTn(CU) + By)).

Since 7,, approximate T from above, ., DO J.. Thus forany F € F,

[ FBesr(@) dP(@) = lim [ f(By 4(w)) dP(w)
F F
= lim [ E(f(B .| T (@) dP(w)
F

- &Lf{}of E(f (B, (w) + By) dP(w)
F

[ EfB-(w) +By) dP(w).
F

This implies that E(f (B,,;)|F;)(w) = E(f (BL(w) + By)).

(f) Analogous to what we did before...



Exercise2 Let

B*

;= max B

0<s<t

be the running maximum of Brownian motion.

We show that for x > 0, P(B} > x) = 2P(B; > x).

Consider the stopping time 7, = inf{s : B; > x} and note that {B; > x} = {7, < t}.
Consider the process

B — B;, t< T,
7 \2x—B,, t>T1,

which is Brownian motion reflected at level ¢.

(a) Use the strong Markov property to show that B, is a Brownian motion in the fil-
tration F.

(b) Note that
{Bf >x}={B; =x}U {B; > x}

with {B; > x} N {B, > x} = @, and P(B; = x) = 0. Compute the probability density
function of B;'.

(c) Compute
P(B} > x,B; > y).
(d) Compute the joint probability density of (B, B;).

(e) The running maximum (B} : ¢t > 0) is not a Markov process. Show that the pair
(B/,B;) is a strong Markov process.

Solution 2 (a) By the strong Markov property, W, = B, ,; — B, =B, ,; —xisa
Brownian motion. Similarly —W, is a Brownian motion. Now

B — Btr t S Txr
f 2x — Wy, t> T,

This is a Brownian motion since the conditional distribution of B, — B, is the same as
the conditional distribution of the original process

B = B;, t< T,
P x4+ W, t>1,.

(b) We have P(B;} > x) = P(B; > x) + P(B; > x), so

1 s2
e T ds.

P(Bf <x) =1-P(B;>x) —P(B; >x) =1-2
t =

This implies that the probability density function of B, is



(c)
=P({B; >xVy}) + PUB, >x} N {2x — B, > y})
=P({B; >xVy}) + P{x < B, <2x —y})

co1 0 _s? 1 _s2
= e 2 ds + e 2 ds.
xvy V27t (x,2x—y) 27t

(d) We wish to find a function f: R? — R such that

[e ol ] [ee] 52 52
j jf(u,v)dvdu = f e 2t ds+ e 2 ds. (1)
Xy xvy V27t (x,2x—y) V27t

Assume first that x > y. By differentiating (1) w.r.t. y, we get that

P _ @x-y)?
ff(u,y)du: ez,
x 27t
and after differentiating this w.r.t. x, we have
2(2x —y) _@x-p?
f(x’y) = —ye 2t (2)

Assume then that x < y. We can write (1) as

® 2

v o ‘
[ faoydu+ [ fouv)dudo= [ —e"5 as.
X v vy V27t

¥

Now if we use (2), we have

_o2
e Zf/

ff(u,v) du =
v 27t

so it makes sense to define

- 2
202x—y) —Zxw”
L e

, ifx>
f,y) =1 tont * nx=y
0, ifx<y

and check that this satisfies (1) for x > 0, y € R. Indeed



f f(u,v)dudo
Vo

2 2 - (2u—v)2
f ue_ 2t dud'()
\

1 _ (0=2(xvo))2
2t dz)

T Y
(=

1 w202 1 W2
e 2 do+ f e 2z du
27t xXVy \/27Tt

3

2 (xVy)—2x

f e_va dv +
xvy V27t y—2x V27t

$2
e 2t ds

X 52 52
e 2t ds+ e 2 (s.
xvy V27t (x,2x—y) V27t

(e) Let T be a stopping time. Notice that
1(B:,, > x) = 1(BX > x) + 1(B} < x)1(sup B, > X).

T+t =
0<s<t
By the strong Markov property of B, we thus see that
P(B* , > x,B.y 2ylJ) =P(Bi,, >x,By 2 ylo(BZ,B)).

T+t =— T+t =—

Therefore the conditional distribution of (B} +#rBr4t) given F, is the same as given

o (BZ,B;), which implies the strong Markov property.

Exercise 3 The same reflection principle holds for a symmetric random walk on Z.
Consider a filtration F = (F,, : n € N) in discrete time. Let (X,, : # € N) be an
F-adapted process with

P(X, =1F,_1) =P(X, = -11F,_1) =1/2
(which means that X, is independent from the past) and
S, =X1+..+X,

Note that the probability law of S, is the binomial distribution

P(S, = k) = (:)z—"

Let

S* = max S
n 1<k<n k

be the running maximum of the random walk.
(a) Show that (5, : n € N) is a strong Markov process in the filtration F.

(b) Compute the joint probability P(S; = (,S, = k).



(c) Show that (S}, S,)),en is a strong Markov process in the filtration F.

Solution 3 (a) We will prove the Markov property. The strong Markov property will
then follow the same way as in 1.c. Let s < t and f a bounded measurable function.
Then

P(S;=Ss = kIToy) (w) = P(Xgyq+-..+X; = kIF2) (w) = P(Xy+...+X;_s = k) = P(S;_g = k)

by independence. Hence

E(F(SHIF)(@) = ) flk+ S (@)P(S;—s = k) = E(f(Ss(w) + S;_5)).-

k=—o0

(b) Let S, be the process reflected after hitting ¢. Then for k < { (assuming n = k
modulo 2),

P(S: > 0,5, =k =P(S, =20—k) = P(S, =20—k) = (22’1_1()2—”.

Thus

P(S* =1(,S, =k) = P(S* >(,S, = k)—P(S* > (+1,S, = k) = (28”_ k)z—”—<22 +”2 ~ k)z—"

(c) Completely analogous to 2.e.



