Stochastic analysis, 10. exercises

Janne Junnila

April 11, 2013

Exercise 1 Consider a Brownian motion ($B_{t}: t \geq 0$) in the filtration $\mathbb{F}=\left(F_{t}\right)_{t \geq 0}$, which means that B_{t} is \mathbb{F}-adapted, time continuous, and for each $0 \leq s \leq t$, the conditional distribution of the increment $\left(B_{t}-B_{s}\right)$ given \mathcal{F}_{s} is a Gaussian with zero mean and variance $(t-s)$.
(a) Show that the Brownian motion has the Markov property: $\forall s \leq t$ and bounded Borel function $f(x)$,

$$
\begin{aligned}
E_{P}\left(f\left(B_{t}\right) \mid F_{s}\right)(\omega) & =E_{P}\left(f\left(B_{t}\right) \mid \sigma\left(B_{s}\right)\right)(\omega)=\left.E_{P}\left(f\left(x+B_{t}-B_{s}\right)\right)\right|_{x=B_{s}(\omega)} \\
& =\left.E_{P}\left(f\left(x+B_{t-s}\right)\right)\right|_{x=B_{s}(\omega)}=\varphi\left(B_{s}(\omega)\right)
\end{aligned}
$$

for some bounded Borel-measurable function $\varphi(x)$.
(b) Show also that for $0 \leq t_{0} \leq t_{1} \leq \ldots \leq t_{d}$ and $f\left(x_{1}, \ldots, x_{d}\right)$ bounded and Borel measurable,

$$
\begin{aligned}
E_{P}\left(f\left(B_{t_{1}}, \ldots, B_{t_{d}}\right) \mid F_{t_{0}}\right)(\omega) & =E_{P}\left(f\left(B_{t_{1}}, \ldots, B_{t_{d}}\right) \mid \sigma\left(B_{t_{0}}\right)\right)(\omega) \\
& =\left.E_{P}\left(f\left(x+B_{t_{1}-t_{0}}, \ldots, x+B_{t_{d}-t_{0}}\right)\right)\right|_{x=B_{t_{0}}(\omega)}=\psi\left(B_{t_{0}}(\omega)\right)
\end{aligned}
$$

for some Borel measurable function $\psi(x)$.
(c) Let $\tau(\omega)$ be an \mathbb{F}-stopping time taking finitely many values. Show first the strong Markov property of Brownian motion: for $f(x)$ bounded measurable function,

$$
E_{P}\left(f\left(B_{\tau+t}\right) \mid F_{\tau}\right)(\omega)=E_{P}\left(f\left(B_{\tau+t}\right) \mid \sigma\left(B_{\tau}\right)\right)(\omega)=\left.E_{P}\left(f\left(x+B_{t}\right)\right)\right|_{x=B_{\tau}(\omega)}=\varphi\left(B_{\tau}(\omega)\right)
$$

(d) Show that $\left(B_{\tau+t}-B_{\tau}\right) \Perp \mathcal{F}_{\tau}$, and the conditional distribution of $\left(B_{\tau+t}-B_{\tau}\right)$ given \mathcal{F}_{τ} is Gaussian with zero mean and variance t. This means that at every stopping time the Brownian motion restarts from the position B_{τ} independently of the past.
(e) Show the strong Markov property for a general \mathbb{F}-stopping time τ. Assume that the filtration \mathbb{F} is right continuous. We have shown that there is a sequence of \mathbb{F}-stopping times $\tau_{n}(\omega) \downarrow \tau$ approximating τ from above, with each τ_{n} taking only finitely many values. Note also that $\mathcal{F}_{\tau_{n}} \supset \mathcal{F}_{\tau}$.
(f) Show that if τ is an \mathbb{F}-stopping time $0 \leq t_{0} \leq t_{1} \leq \ldots \leq t_{d}$ and $f\left(x_{1}, \ldots, x_{d}\right)$ bounded and Borel measurable,

$$
\begin{aligned}
E_{P}\left(f\left(B_{\tau+t_{1}}, \ldots, B_{\tau+t_{d}}\right) \mid F_{\tau}\right)(\omega) & =E_{P}\left(f\left(B_{\tau+t_{1}}, \ldots, B_{\tau+t_{d}}\right) \mid \sigma\left(B_{\tau+t_{0}}\right)\right)(\omega) \\
& =\left.E_{P}\left(f\left(x+B_{t_{1}-t_{0}}, \ldots, x+B_{t_{d}-t_{0}}\right)\right)\right|_{x=B_{\tau}(\omega)}=\psi\left(B_{\tau}(\omega)\right)
\end{aligned}
$$

for some Borel measurable function $\psi(x)$.
Solution 1 (a) Because $B_{t}-B_{s}$ has conditional distribution $N(0, t-s)$ w.r.t. Fes, B_{t} has conditional distribution $N\left(B_{s}(\omega), t-s\right)$. Therefore

$$
E\left(f\left(B_{t}\right) \mid F_{s}\right)(\omega)=\int_{-\infty}^{\infty} f(x) \frac{1}{\sqrt{2 \pi(t-s)}} e^{-\frac{\left(x-B_{s}(\omega)\right)^{2}}{t-s}} d x
$$

Similarly for a fixed ω,

$$
\begin{aligned}
E\left(f\left(B_{s}(\omega)+B_{t}-B_{s}\right)\right) & =E\left(E\left(f\left(B_{s}(\omega)+B_{t}-B_{s}\right) \mid F_{s}\right)\right) \\
& =E\left(\int_{-\infty}^{\infty} f\left(B_{s}(\omega)+x\right) \frac{1}{\sqrt{2 \pi(t-s)}} e^{-\frac{x^{2}}{t-s}} d x\right) \\
& =E\left(f\left(B_{t}\right) \mid F_{s}\right)(\omega)
\end{aligned}
$$

and

$$
E\left(f\left(B_{s}(\omega)+B_{t-s}\right)\right)=E\left(E\left(f\left(B_{s}(\omega)+B_{t-s}-B_{0}\right) \mid F_{0}\right)\right)=E\left(f\left(B_{t}\right) \mid F_{s}\right)(\omega)
$$

In particular we see that $E\left(f\left(B_{t}\right) \mid F_{s}\right)$ is a $\sigma\left(B_{s}\right)$ measurable function, so that

$$
E\left(f\left(B_{t}\right) \mid \sigma\left(B_{s}\right)\right)=E\left(E\left(f\left(B_{t}\right) \mid F_{s}\right) \mid \sigma\left(B_{s}\right)\right)=E\left(f\left(B_{t}\right) \mid F_{s}\right) .
$$

(b) We have proven the result in the case $d=1$. Assume that we have proven the result for some $d \in \mathbb{N}$. Then

$$
\begin{aligned}
E\left(f\left(B_{t_{1}}, B_{t_{2}}, \ldots, B_{t_{d+1}}\right) \mid F_{t_{0}}\right)(\omega) & =E\left(E\left(f\left(B_{t_{1}}, B_{t_{2}}, \ldots, B_{t_{d^{\prime}}}, B_{t_{d+1}}\right) \mid F_{t_{d}}\right) \mid F_{t_{0}}\right)(\omega) \\
& =E\left(E\left(f\left(B_{t_{1}}\left(\omega^{\prime}\right), B_{t_{2}}\left(\omega^{\prime}\right), \ldots, B_{t_{d}}\left(\omega^{\prime}\right), B_{t_{d}}\left(\omega^{\prime}\right)+B_{t_{d+1}-t_{d}}\right)\right) \mid F_{t_{0}}\right)(\omega)
\end{aligned}
$$

Letting $g\left(x_{1}, \ldots, x_{d}\right)=E\left(f\left(x_{1}, x_{2}, \ldots, x_{d}, x_{d}+B_{t_{d+1}-t_{d}}\right)\right)$ we have by induction that

$$
\begin{aligned}
E\left(f\left(B_{t_{1}}, \ldots, B_{t_{d+1}}\right) \mid F_{t_{0}}\right)(\omega) & =E\left(g\left(B_{t_{0}}(\omega)+B_{t_{1}-t_{0}}, \ldots, B_{t_{0}}(\omega)+B_{t_{d}-t_{0}}\right)\right) \\
& =E\left(f\left(B_{t_{0}}(\omega)+B_{t_{1}-t_{0}}, \ldots, B_{t_{0}}(\omega)+B_{t_{d}-t_{0}}, B_{t_{0}}(\omega)+B_{t_{d}-t_{0}}+B_{t_{d+1}-t_{d}}\right)\right) \\
& =E\left(f\left(B_{t_{0}}(\omega)+B_{t_{1}-t_{0}}, \ldots, B_{t_{0}}(\omega)+B_{t_{d}-t_{0}}, B_{t_{0}}(\omega)+B_{t_{d+1}-t_{0}}\right)\right)
\end{aligned}
$$

(c) Assume that $A \in F_{\tau}$. We have to show that

$$
\int_{A} f\left(B_{\tau+t}(\omega)\right) d P(\omega)=\int_{A} E\left(f\left(B_{\tau}(\omega)+B_{t}\right)\right) d P(\omega) .
$$

Let $\tau_{1}, \tau_{2}, \ldots, \tau_{n}$ be the values that τ takes on. Then we can write

$$
\int_{A} f\left(B_{\tau+t}(\omega)\right) d P(\omega)=\sum_{k=1}^{n} \int_{A \cap\left\{\tau=\tau_{k}\right\}} f\left(B_{\tau+t}(\omega)\right) d P(\omega)
$$

Now $A \cap\left\{\tau=\tau_{k}\right\} \in \mathcal{F}_{\tau_{k}}$, so by (a) we get

$$
\int_{A \cap\left\{\tau=\tau_{k}\right\}} f\left(B_{\tau+t}(\omega)\right) d P(\omega)=\int_{A \cap\left\{\tau=\tau_{k}\right\}} E\left(f\left(B_{\tau}(\omega)+B_{t}\right)\right) d P(\omega)
$$

and the result follows.
(d) Suppose that $F \in \mathcal{F}_{\tau}$. Then for any Borel set $A \subset \mathbb{R}$ we have

$$
P\left(F \cap\left\{\tau=\tau_{k}\right\} \cap\left\{B_{\tau+t}-B_{\tau} \in A\right\}\right)=P\left(F \cap\left\{\tau=\tau_{k}\right\}\right) P\left(\left\{B_{\tau_{k}+t}-B_{\tau_{k}} \in A\right\}\right)
$$

Thus

$$
\begin{aligned}
P\left(F \cap\left\{B_{\tau+t}-B_{\tau} \in A\right\}\right) & =\sum_{k=1}^{n} P\left(F \cap\left\{\tau=\tau_{k}\right\}\right) P\left(\left\{B_{\tau_{k}+t}-B_{\tau_{k}} \in A\right\}\right) \\
& =\sum_{k=1}^{n} P\left(F \cap\left\{\tau=\tau_{k}\right\}\right) P\left(\left\{B_{t} \in A\right\}\right) \\
& =P(F) P\left(\left\{B_{t} \in A\right\}\right)
\end{aligned}
$$

Finally

$$
\begin{aligned}
P\left(\left\{B_{\tau+t}-B_{\tau} \in A\right\}\right) & =\sum_{k=1}^{n} P\left(\left\{\tau=\tau_{k}\right\} \cap\left\{B_{\tau_{k}+t}-B_{\tau_{k}} \in A\right\}\right) \\
& =\sum_{k=1}^{n} P\left(\left\{\tau=\tau_{k}\right\}\right) P\left(\left\{B_{t} \in A\right\}\right) \\
& =P\left(\left\{B_{t} \in A\right\}\right) .
\end{aligned}
$$

The above calculation shows the independence and that $P\left(\left\{B_{\tau+t}-B_{\tau} \in A\right\} \mid F_{\tau}\right)=$ $P\left(\left\{B_{t} \in A\right\}\right)$, so the conditional distribution is Gaussian with zero mean and variance t.
(e) Let now τ be a general stopping time and τ_{n} a sequence of stopping times approximating τ from above, with each τ_{n} taking only finitely many distinct values. Then for all n,

$$
E\left(f\left(B_{\tau_{n}+t}\right) \mid \mathcal{F}_{\tau_{n}}\right)(\omega)=E\left(f\left(B_{\tau_{n}}(\omega)+B_{t}\right)\right)
$$

Since τ_{n} approximate τ from above, $\mathcal{F}_{\tau_{n}} \supset \mathcal{F}_{\tau}$. Thus for any $F \in \mathcal{F}_{\tau}$,

$$
\begin{aligned}
\int_{F} f\left(B_{\tau+t}(\omega)\right) d P(\omega) & =\lim _{n \rightarrow \infty} \int_{F} f\left(B_{\tau_{n}+t}(\omega)\right) d P(\omega) \\
& =\lim _{n \rightarrow \infty} \int_{F} E\left(f\left(B_{\tau_{n}+t}\right) \mid F_{\tau_{n}}\right)(\omega) d P(\omega) \\
& =\lim _{n \rightarrow \infty} \int_{F} E\left(f\left(B_{\tau_{n}}(\omega)+B_{t}\right)\right) d P(\omega) \\
& =\int_{F} E\left(f\left(B_{\tau}(\omega)+B_{t}\right)\right) d P(\omega)
\end{aligned}
$$

This implies that $E\left(f\left(B_{\tau+t}\right) \mid F_{\tau}\right)(\omega)=E\left(f\left(B_{\tau}(\omega)+B_{t}\right)\right)$.
(f) Analogous to what we did before...

Exercise 2 Let

$$
B_{t}^{*}=\max _{0 \leq s \leq t} B_{s}
$$

be the running maximum of Brownian motion.
We show that for $x>0, P\left(B_{t}^{*}>x\right)=2 P\left(B_{t}>x\right)$.
Consider the stopping time $\tau_{x}=\inf \left\{s: B_{s}>x\right\}$ and note that $\left\{B_{t}^{*}>x\right\}=\left\{\tau_{x}<t\right\}$.
Consider the process

$$
\tilde{B}_{t}= \begin{cases}B_{t}, & t \leq \tau_{x} \\ 2 x-B_{t}, & t>\tau_{x}\end{cases}
$$

which is Brownian motion reflected at level t.
(a) Use the strong Markov property to show that \tilde{B}_{t} is a Brownian motion in the filtration \mathbb{F}.
(b) Note that

$$
\left\{B_{t}^{*}>x\right\}=\left\{B_{t} \geq x\right\} \cup\left\{\tilde{B}_{t}>x\right\}
$$

with $\left\{B_{t} \geq x\right\} \cap\left\{\tilde{B}_{t}>x\right\}=\emptyset$, and $P\left(B_{t}=x\right)=0$. Compute the probability density function of B_{t}^{*}.
(c) Compute

$$
P\left(B_{t}^{*}>x, B_{t}>y\right) .
$$

(d) Compute the joint probability density of $\left(B_{t}^{*}, B_{t}\right)$.
(e) The running maximum ($B_{t}^{*}: t \geq 0$) is not a Markov process. Show that the pair $\left(B_{t}^{*}, B_{t}\right)$ is a strong Markov process.

Solution 2 (a) By the strong Markov property, $W_{t}=B_{\tau_{x}+t}-B_{\tau_{x}}=B_{\tau_{x}+t}-x$ is a Brownian motion. Similarly $-W_{t}$ is a Brownian motion. Now

$$
\tilde{B}_{t}= \begin{cases}B_{t}, & t \leq \tau_{x} \\ 2 x-W_{t}, & t>\tau_{x}\end{cases}
$$

This is a Brownian motion since the conditional distribution of $\tilde{B}_{t}-\tilde{B}_{s}$ is the same as the conditional distribution of the original process

$$
B_{t}= \begin{cases}B_{t}, & t \leq \tau_{x} \\ x+W_{t}, & t>\tau_{x}\end{cases}
$$

(b) We have $P\left(B_{t}^{*}>x\right)=P\left(B_{t}>x\right)+P\left(\tilde{B}_{t}>x\right)$, so

$$
P\left(B_{t}^{*} \leq x\right)=1-P\left(B_{t}>x\right)-P\left(\tilde{B}_{t}>x\right)=1-2 \int_{x}^{\infty} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{\mathrm{s}^{2}}{t}} d s .
$$

This implies that the probability density function of B_{t}^{*} is

$$
\frac{2}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{t}}
$$

(c)

$$
\begin{aligned}
P\left(B_{t}^{*}>x, B_{t}>y\right) & =P\left(\left\{B_{t}>x\right\} \cap\left\{B_{t}>y\right\}\right)+P\left(\left\{\tilde{B}_{t}>x\right\} \cap\left\{B_{t}>y\right\}\right) \\
& =P\left(\left\{B_{t}>x \vee y\right\}\right)+P\left(\left\{\tilde{B}_{t}>x\right\} \cap\left\{2 x-\tilde{B}_{t}>y\right\}\right) \\
& =P\left(\left\{B_{t}>x \vee y\right\}\right)+P\left(\left\{x<\tilde{B}_{t}<2 x-y\right\}\right) \\
& =\int_{x \vee y}^{\infty} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{s^{2}}{2 t}} d s+\int_{(x, 2 x-y)} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{s^{2}}{2 t}} d s .
\end{aligned}
$$

(d) We wish to find a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\int_{x}^{\infty} \int_{y}^{\infty} f(u, v) d v d u=\int_{x \vee y}^{\infty} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{s^{2}}{2 t}} d s+\int_{(x, 2 x-y)} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{s^{2}}{2 t}} d s \tag{1}
\end{equation*}
$$

Assume first that $x>y$. By differentiating (1) w.r.t. y, we get that

$$
\int_{x}^{\infty} f(u, y) d u=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{(2 x-y)^{2}}{2 t}}
$$

and after differentiating this w.r.t. x, we have

$$
\begin{equation*}
f(x, y)=\frac{2(2 x-y)}{t \sqrt{2 \pi t}} e^{-\frac{(2 x-y)^{2}}{2 t}} \tag{2}
\end{equation*}
$$

Assume then that $x<y$. We can write (1) as

$$
\int_{y}^{\infty} \int_{x}^{v} f(u, v) d u+\int_{v}^{\infty} f(u, v) d u d v=\int_{y}^{\infty} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{s^{2}}{2 t}} d s
$$

Now if we use (2), we have

$$
\int_{v}^{\infty} f(u, v) d u=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{v^{2}}{2 t}}
$$

so it makes sense to define

$$
f(x, y):= \begin{cases}\frac{2(2 x-y)}{t \sqrt{2 \pi t}} e^{-\frac{(2 x-y)^{2}}{2 t}}, & \text { if } x \geq y \\ 0, & \text { if } x \leq y\end{cases}
$$

and check that this satisfies (1) for $x>0, y \in \mathbb{R}$. Indeed

$$
\begin{aligned}
\int_{y}^{\infty} \int_{x}^{\infty} f(u, v) d u d v & =\int_{y}^{\infty} \int_{x \vee v}^{\infty} f(u, v) d u d v \\
& =\int_{y}^{\infty} \int_{x \vee v}^{\infty} \frac{2(2 u-v)}{t \sqrt{2 \pi t}} e^{-\frac{(2 u-v)^{2}}{2 t}} d u d v \\
& =\int_{y}^{\infty} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{(v-2(x \vee v))^{2}}{2 t}} d v \\
& =\int_{y}^{x \vee y} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{(v-2 x)^{2}}{2 t}} d v+\int_{x \vee y}^{\infty} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{v^{2}}{2 t}} d v \\
& =\int_{x \vee y}^{\infty} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{v^{2}}{2 t}} d v+\int_{y-2 x}^{(x \vee y)-2 x} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{s^{2}}{2 t}} d s \\
& =\int_{x \vee y}^{\infty} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{s^{2}}{2 t}} d s+\int_{(x, 2 x-y)} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{s^{2}}{2 t}} d s .
\end{aligned}
$$

(e) Let τ be a stopping time. Notice that

$$
\mathbf{1}\left(B_{\tau+t}^{*} \geq x\right)=\mathbf{1}\left(B_{\tau}^{*} \geq x\right)+\mathbf{1}\left(B_{\tau}^{*}<x\right) \mathbf{1}\left(\sup _{0 \leq s \leq t} B_{\tau+s} \geq x\right)
$$

By the strong Markov property of B_{t}, we thus see that

$$
P\left(B_{\tau+t}^{*} \geq x, B_{\tau+t} \geq y \mid F_{\tau}\right)=P\left(B_{\tau+t}^{*} \geq x, B_{\tau+t} \geq y \mid \sigma\left(B_{\tau}^{*}, B_{\tau}\right)\right)
$$

Therefore the conditional distribution of ($B_{\tau+t^{\prime}}^{*} B_{\tau+t}$) given \mathcal{F}_{τ} is the same as given $\sigma\left(B_{\tau}^{*}, B_{\tau}\right)$, which implies the strong Markov property.

Exercise 3 The same reflection principle holds for a symmetric random walk on \mathbb{Z}. Consider a filtration $\mathbb{F}=\left(\mathcal{F}_{n}: n \in \mathbb{N}\right)$ in discrete time. Let $\left(X_{n}: n \in \mathbb{N}\right)$ be an \mathbb{F}-adapted process with

$$
P\left(X_{n}=1 \mid F_{n-1}\right)=P\left(X_{n}=-1 \mid F_{n-1}\right)=1 / 2
$$

(which means that X_{n} is independent from the past) and

$$
S_{n}=X_{1}+\ldots+X_{n}
$$

Note that the probability law of S_{n} is the binomial distribution

$$
P\left(S_{n}=k\right)=\binom{n}{k} 2^{-n}
$$

Let

$$
S_{n}^{*}=\max _{1 \leq k \leq n} S_{k}
$$

be the running maximum of the random walk.
(a) Show that ($S_{n}: n \in \mathbb{N}$) is a strong Markov process in the filtration \mathbb{F}.
(b) Compute the joint probability $P\left(S_{n}^{*}=\ell, S_{n}=k\right)$.
(c) Show that $\left(S_{n}^{*}, S_{n}\right)_{n \in \mathbb{N}}$ is a strong Markov process in the filtration \mathbb{F}.

Solution 3 (a) We will prove the Markov property. The strong Markov property will then follow the same way as in 1.c. Let $s<t$ and f a bounded measurable function. Then
$P\left(S_{t}-S_{s}=k \mid F_{s}\right)(\omega)=P\left(X_{s+1}+\ldots+X_{t}=k \mid F_{s}\right)(\omega)=P\left(X_{1}+\ldots+X_{t-s}=k\right)=P\left(S_{t-s}=k\right)$
by independence. Hence

$$
E\left(f\left(S_{t}\right) \mid F_{s}\right)(\omega)=\sum_{k=-\infty}^{\infty} f\left(k+S_{s}(\omega)\right) P\left(S_{t-s}=k\right)=E\left(f\left(S_{s}(\omega)+S_{t-s}\right)\right)
$$

(b) Let \tilde{S}_{n} be the process reflected after hitting ℓ. Then for $k \leq \ell$ (assuming $n \equiv k$ modulo 2),

$$
P\left(S_{n}^{*} \geq \ell, S_{n}=k\right)=P\left(\tilde{S}_{n}=2 \ell-k\right)=P\left(S_{n}=2 \ell-k\right)=\binom{n}{2 \ell-k} 2^{-n}
$$

Thus
$P\left(S_{n}^{*}=\ell, S_{n}=k\right)=P\left(S_{n}^{*} \geq \ell, S_{n}=k\right)-P\left(S_{n}^{*} \geq \ell+1, S_{n}=k\right)=\binom{n}{2 \ell-k} 2^{-n}-\binom{n}{2 \ell+2-k} 2^{-n}$
(c) Completely analogous to 2.e.

