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Stochastic analysis, 10. exercises
Janne Junnila

April 11, 2013

Exercise 1 Consider a Brownian motion (𝐵u� : 𝑡 ≥ 0) in the filtration 𝔽 = (ℱu�)u�≥0,
which means that 𝐵u� is 𝔽-adapted, time continuous, and for each 0 ≤ 𝑠 ≤ 𝑡, the
conditional distribution of the increment (𝐵u� − 𝐵u�) given ℱu� is a Gaussian with zero
mean and variance (𝑡 − 𝑠).

(a) Show that the Brownian motion has the Markov property: ∀𝑠 ≤ 𝑡 and bounded
Borel function 𝑓 (𝑥),

𝐸u�(𝑓 (𝐵u�)|ℱu�)(𝜔) = 𝐸u�(𝑓 (𝐵u�)|𝜎(𝐵u�))(𝜔) = 𝐸u� (𝑓 (𝑥 + 𝐵u� − 𝐵u�)) ∣
u�=u�u�(u�)

= 𝐸u� (𝑓 (𝑥 + 𝐵u�−u�)) ∣
u�=u�u�(u�)

= 𝜑(𝐵u�(𝜔))

for some bounded Borel-measurable function 𝜑(𝑥).

(b) Show also that for 0 ≤ 𝑡0 ≤ 𝑡1 ≤ … ≤ 𝑡u� and 𝑓 (𝑥1, …, 𝑥u�) bounded and Borel
measurable,

𝐸u�(𝑓 (𝐵u�1
, …, 𝐵u�u�

)|ℱu�0
)(𝜔) = 𝐸u�(𝑓 (𝐵u�1

, …, 𝐵u�u�
)|𝜎(𝐵u�0

))(𝜔)

= 𝐸u�(𝑓 (𝑥 + 𝐵u�1−u�0
, …, 𝑥 + 𝐵u�u�−u�0

))∣
u�=u�u�0(u�)

= 𝜓(𝐵u�0
(𝜔))

for some Borel measurable function 𝜓(𝑥).

(c) Let 𝜏(𝜔) be an 𝔽-stopping time taking finitely many values. Show first the strong
Markov property of Brownian motion: for 𝑓 (𝑥) bounded measurable function,

𝐸u�(𝑓 (𝐵u�+u�)|ℱu�)(𝜔) = 𝐸u�(𝑓 (𝐵u�+u�)|𝜎(𝐵u�))(𝜔) = 𝐸u�(𝑓 (𝑥 + 𝐵u�))∣
u�=u�u�(u�)

= 𝜑(𝐵u�(𝜔)).

(d) Show that (𝐵u�+u� −𝐵u�)⫫ℱu� , and the conditional distribution of (𝐵u�+u� −𝐵u�) given
ℱu� is Gaussian with zero mean and variance 𝑡. This means that at every stopping
time the Brownian motion restarts from the position 𝐵u� independently of the past.

(e) Show the strong Markov property for a general 𝔽-stopping time 𝜏 . Assume that
the filtration 𝔽 is right continuous. We have shown that there is a sequence of 𝔽-stop-
ping times 𝜏u�(𝜔) ↓ 𝜏 approximating 𝜏 from above, with each 𝜏u� taking only finitely
many values. Note also that ℱu�u�

⊃ ℱu� .

(f) Show that if 𝜏 is an 𝔽-stopping time 0 ≤ 𝑡0 ≤ 𝑡1 ≤ … ≤ 𝑡u� and 𝑓 (𝑥1, …, 𝑥u�) bounded
and Borel measurable,
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𝐸u�(𝑓 (𝐵u�+u�1
, …, 𝐵u�+u�u�

)|ℱu�)(𝜔) = 𝐸u�(𝑓 (𝐵u�+u�1
, …, 𝐵u�+u�u�

)|𝜎(𝐵u�+u�0
))(𝜔)

= 𝐸u�(𝑓 (𝑥 + 𝐵u�1−u�0
, …, 𝑥 + 𝐵u�u�−u�0

))∣
u�=u�u�(u�)

= 𝜓(𝐵u�(𝜔))

for some Borel measurable function 𝜓(𝑥).

Solution 1 (a) Because 𝐵u� − 𝐵u� has conditional distribution 𝑁(0, 𝑡 − 𝑠) w.r.t. ℱu�, 𝐵u�
has conditional distribution 𝑁(𝐵u�(𝜔), 𝑡 − 𝑠). Therefore

𝐸(𝑓 (𝐵u�)|ℱu�)(𝜔) =
∞
∫

−∞
𝑓 (𝑥)

1
√2𝜋(𝑡 − 𝑠)

𝑒− (u�−u�u�(u�))2
u�−u� 𝑑𝑥.

Similarly for a fixed 𝜔,

𝐸(𝑓 (𝐵u�(𝜔) + 𝐵u� − 𝐵u�)) = 𝐸(𝐸(𝑓 (𝐵u�(𝜔) + 𝐵u� − 𝐵u�)|ℱu�))

= 𝐸 ⎛⎜
⎝

∞
∫

−∞
𝑓 (𝐵u�(𝜔) + 𝑥)

1
√2𝜋(𝑡 − 𝑠)

𝑒− u�2
u�−u� 𝑑𝑥⎞⎟

⎠
= 𝐸(𝑓 (𝐵u�)|ℱu�)(𝜔)

and

𝐸(𝑓 (𝐵u�(𝜔) + 𝐵u�−u�)) = 𝐸(𝐸(𝑓 (𝐵u�(𝜔) + 𝐵u�−u� − 𝐵0)|ℱ0)) = 𝐸(𝑓 (𝐵u�)|ℱu�)(𝜔).

In particular we see that 𝐸(𝑓 (𝐵u�)|ℱu�) is a 𝜎(𝐵u�) measurable function, so that

𝐸(𝑓 (𝐵u�)|𝜎(𝐵u�)) = 𝐸(𝐸(𝑓 (𝐵u�)|ℱu�)|𝜎(𝐵u�)) = 𝐸(𝑓 (𝐵u�)|ℱu�).

(b) We have proven the result in the case 𝑑 = 1. Assume that we have proven the
result for some 𝑑 ∈ ℕ. Then

𝐸(𝑓 (𝐵u�1
, 𝐵u�2

, …, 𝐵u�u�+1
)|ℱu�0

)(𝜔) = 𝐸(𝐸(𝑓 (𝐵u�1
, 𝐵u�2

, …, 𝐵u�u�
, 𝐵u�u�+1

)|ℱu�u�
)|ℱu�0

)(𝜔)

= 𝐸(𝐸(𝑓 (𝐵u�1
(𝜔′), 𝐵u�2

(𝜔′), …, 𝐵u�u�
(𝜔′), 𝐵u�u�

(𝜔′) + 𝐵u�u�+1−u�u�
))|ℱu�0

)(𝜔)

Letting 𝑔(𝑥1, …, 𝑥u�) = 𝐸(𝑓 (𝑥1, 𝑥2, …, 𝑥u�, 𝑥u� + 𝐵u�u�+1−u�u�
)) we have by induction that

𝐸(𝑓 (𝐵u�1
, …, 𝐵u�u�+1

)|ℱu�0
)(𝜔) = 𝐸(𝑔(𝐵u�0

(𝜔) + 𝐵u�1−u�0
, …, 𝐵u�0

(𝜔) + 𝐵u�u�−u�0
))

= 𝐸(𝑓 (𝐵u�0
(𝜔) + 𝐵u�1−u�0

, …, 𝐵u�0
(𝜔) + 𝐵u�u�−u�0

, 𝐵u�0
(𝜔) + 𝐵u�u�−u�0

+ 𝐵u�u�+1−u�u�
))

= 𝐸(𝑓 (𝐵u�0
(𝜔) + 𝐵u�1−u�0

, …, 𝐵u�0
(𝜔) + 𝐵u�u�−u�0

, 𝐵u�0
(𝜔) + 𝐵u�u�+1−u�0

))

(c) Assume that 𝐴 ∈ ℱu� . We have to show that

∫
u�

𝑓 (𝐵u�+u�(𝜔)) 𝑑𝑃(𝜔) = ∫
u�

𝐸(𝑓 (𝐵u�(𝜔) + 𝐵u�)) 𝑑𝑃(𝜔).

Let 𝜏1, 𝜏2, …, 𝜏u� be the values that 𝜏 takes on. Then we can write

∫
u�

𝑓 (𝐵u�+u�(𝜔)) 𝑑𝑃(𝜔) =
u�

∑
u�=1

∫
u�∩{u�=u�u�}

𝑓 (𝐵u�+u�(𝜔)) 𝑑𝑃(𝜔).

Now 𝐴 ∩ {𝜏 = 𝜏u�} ∈ ℱu�u�
, so by (a) we get
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∫
u�∩{u�=u�u�}

𝑓 (𝐵u�+u�(𝜔)) 𝑑𝑃(𝜔) = ∫
u�∩{u�=u�u�}

𝐸(𝑓 (𝐵u�(𝜔) + 𝐵u�)) 𝑑𝑃(𝜔)

and the result follows.

(d) Suppose that 𝐹 ∈ ℱu� . Then for any Borel set 𝐴 ⊂ ℝ we have

𝑃(𝐹 ∩ {𝜏 = 𝜏u�} ∩ {𝐵u�+u� − 𝐵u� ∈ 𝐴}) = 𝑃(𝐹 ∩ {𝜏 = 𝜏u�})𝑃({𝐵u�u�+u� − 𝐵u�u�
∈ 𝐴}).

Thus

𝑃(𝐹 ∩ {𝐵u�+u� − 𝐵u� ∈ 𝐴}) =
u�

∑
u�=1

𝑃(𝐹 ∩ {𝜏 = 𝜏u�})𝑃({𝐵u�u�+u� − 𝐵u�u�
∈ 𝐴})

=
u�

∑
u�=1

𝑃(𝐹 ∩ {𝜏 = 𝜏u�})𝑃({𝐵u� ∈ 𝐴})

= 𝑃(𝐹)𝑃({𝐵u� ∈ 𝐴}).

Finally

𝑃({𝐵u�+u� − 𝐵u� ∈ 𝐴}) =
u�

∑
u�=1

𝑃({𝜏 = 𝜏u�} ∩ {𝐵u�u�+u� − 𝐵u�u�
∈ 𝐴})

=
u�

∑
u�=1

𝑃({𝜏 = 𝜏u�})𝑃({𝐵u� ∈ 𝐴})

= 𝑃({𝐵u� ∈ 𝐴}).

The above calculation shows the independence and that 𝑃({𝐵u�+u� − 𝐵u� ∈ 𝐴}|ℱu�) =
𝑃({𝐵u� ∈ 𝐴}), so the conditional distribution is Gaussian with zero mean and variance
𝑡.

(e) Let now 𝜏 be a general stopping time and 𝜏u� a sequence of stopping times approx-
imating 𝜏 from above, with each 𝜏u� taking only finitely many distinct values. Then
for all 𝑛,

𝐸(𝑓 (𝐵u�u�+u�)|ℱu�u�
)(𝜔) = 𝐸(𝑓 (𝐵u�u�

(𝜔) + 𝐵u�)).

Since 𝜏u� approximate 𝜏 from above, ℱu�u�
⊃ ℱu� . Thus for any 𝐹 ∈ ℱu� ,

∫
u�

𝑓 (𝐵u�+u�(𝜔)) 𝑑𝑃(𝜔) = limu�→∞ ∫
u�

𝑓 (𝐵u�u�+u�(𝜔)) 𝑑𝑃(𝜔)

= limu�→∞ ∫
u�

𝐸(𝑓 (𝐵u�u�+u�)|ℱu�u�
)(𝜔) 𝑑𝑃(𝜔)

= limu�→∞ ∫
u�

𝐸(𝑓 (𝐵u�u�
(𝜔) + 𝐵u�)) 𝑑𝑃(𝜔)

= ∫
u�

𝐸(𝑓 (𝐵u�(𝜔) + 𝐵u�)) 𝑑𝑃(𝜔).

This implies that 𝐸(𝑓 (𝐵u�+u�)|ℱu�)(𝜔) = 𝐸(𝑓 (𝐵u�(𝜔) + 𝐵u�)).

(f) Analogous to what we did before…
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Exercise 2 Let

𝐵∗
u� = max

0≤u�≤u�
𝐵u�

be the running maximum of Brownian motion.

We show that for 𝑥 > 0, 𝑃(𝐵∗
u� > 𝑥) = 2𝑃(𝐵u� > 𝑥).

Consider the stopping time 𝜏u� = inf{𝑠 : 𝐵u� > 𝑥} and note that {𝐵∗
u� > 𝑥} = {𝜏u� < 𝑡}.

Consider the process

𝐵̃u� = { 𝐵u�, 𝑡 ≤ 𝜏u�
2𝑥 − 𝐵u�, 𝑡 > 𝜏u�

which is Brownian motion reflected at level 𝑡.

(a) Use the strong Markov property to show that 𝐵̃u� is a Brownian motion in the fil-
tration 𝔽.

(b) Note that

{𝐵∗
u� > 𝑥} = {𝐵u� ≥ 𝑥} ∪ {𝐵̃u� > 𝑥}

with {𝐵u� ≥ 𝑥} ∩ {𝐵̃u� > 𝑥} = ∅, and 𝑃(𝐵u� = 𝑥) = 0. Compute the probability density
function of 𝐵∗

u� .

(c) Compute

𝑃(𝐵∗
u� > 𝑥, 𝐵u� > 𝑦).

(d) Compute the joint probability density of (𝐵∗
u� , 𝐵u�).

(e) The running maximum (𝐵∗
u� : 𝑡 ≥ 0) is not a Markov process. Show that the pair

(𝐵∗
u� , 𝐵u�) is a strong Markov process.

Solution 2 (a) By the strong Markov property, 𝑊u� = 𝐵u�u�+u� − 𝐵u�u�
= 𝐵u�u�+u� − 𝑥 is a

Brownian motion. Similarly −𝑊u� is a Brownian motion. Now

𝐵̃u� = { 𝐵u�, 𝑡 ≤ 𝜏u�,
2𝑥 − 𝑊u�, 𝑡 > 𝜏u�.

This is a Brownian motion since the conditional distribution of 𝐵̃u� − 𝐵̃u� is the same as
the conditional distribution of the original process

𝐵u� = { 𝐵u�, 𝑡 ≤ 𝜏u�,
𝑥 + 𝑊u�, 𝑡 > 𝜏u�.

(b) We have 𝑃(𝐵∗
u� > 𝑥) = 𝑃(𝐵u� > 𝑥) + 𝑃(𝐵̃u� > 𝑥), so

𝑃(𝐵∗
u� ≤ 𝑥) = 1 − 𝑃(𝐵u� > 𝑥) − 𝑃(𝐵̃u� > 𝑥) = 1 − 2

∞
∫
u�

1
√2𝜋𝑡

𝑒− u�2
u� 𝑑𝑠.

This implies that the probability density function of 𝐵∗
u� is
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2
√2𝜋𝑡

𝑒− u�2
u� .

(c)

𝑃(𝐵∗
u� > 𝑥, 𝐵u� > 𝑦) = 𝑃({𝐵u� > 𝑥} ∩ {𝐵u� > 𝑦}) + 𝑃({𝐵̃u� > 𝑥} ∩ {𝐵u� > 𝑦})

= 𝑃({𝐵u� > 𝑥 ∨ 𝑦}) + 𝑃({𝐵̃u� > 𝑥} ∩ {2𝑥 − 𝐵̃u� > 𝑦})

= 𝑃({𝐵u� > 𝑥 ∨ 𝑦}) + 𝑃({𝑥 < 𝐵̃u� < 2𝑥 − 𝑦})

=
∞
∫

u�∨u�

1
√2𝜋𝑡

𝑒− u�2
2u� 𝑑𝑠 + ∫

(u�,2u�−u�)

1
√2𝜋𝑡

𝑒− u�2
2u� 𝑑𝑠.

(d) We wish to find a function 𝑓 ∶ ℝ2 → ℝ such that
∞
∫
u�

∞
∫
u�

𝑓 (𝑢, 𝑣) 𝑑𝑣 𝑑𝑢 =
∞
∫

u�∨u�

1
√2𝜋𝑡

𝑒− u�2
2u� 𝑑𝑠 + ∫

(u�,2u�−u�)

1
√2𝜋𝑡

𝑒− u�2
2u� 𝑑𝑠. (1)

Assume first that 𝑥 > 𝑦. By differentiating (1) w.r.t. 𝑦, we get that
∞
∫
u�

𝑓 (𝑢, 𝑦) 𝑑𝑢 =
1

√2𝜋𝑡
𝑒− (2u�−u�)2

2u� ,

and after differentiating this w.r.t. 𝑥, we have

𝑓 (𝑥, 𝑦) =
2(2𝑥 − 𝑦)

𝑡√2𝜋𝑡
𝑒− (2u�−u�)2

2u� . (2)

Assume then that 𝑥 < 𝑦. We can write (1) as
∞
∫
u�

u�
∫
u�

𝑓 (𝑢, 𝑣) 𝑑𝑢 +
∞
∫
u�

𝑓 (𝑢, 𝑣) 𝑑𝑢 𝑑𝑣 =
∞
∫
u�

1
√2𝜋𝑡

𝑒− u�2
2u� 𝑑𝑠.

Now if we use (2), we have
∞
∫
u�

𝑓 (𝑢, 𝑣) 𝑑𝑢 =
1

√2𝜋𝑡
𝑒− u�2

2u� ,

so it makes sense to define

𝑓 (𝑥, 𝑦) :=
⎧{
⎨{⎩

2(2u�−u�)

u�√2u�u�
𝑒− (2u�−u�)2

2u� , if 𝑥 ≥ 𝑦

0, if 𝑥 ≤ 𝑦

and check that this satisfies (1) for 𝑥 > 0, 𝑦 ∈ ℝ. Indeed
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∞
∫
u�

∞
∫
u�

𝑓 (𝑢, 𝑣) 𝑑𝑢 𝑑𝑣 =
∞
∫
u�

∞
∫

u�∨u�
𝑓 (𝑢, 𝑣) 𝑑𝑢 𝑑𝑣

=
∞
∫
u�

∞
∫

u�∨u�

2(2𝑢 − 𝑣)

𝑡√2𝜋𝑡
𝑒− (2u�−u�)2

2u� 𝑑𝑢 𝑑𝑣

=
∞
∫
u�

1
√2𝜋𝑡

𝑒− (u�−2(u�∨u�))2
2u� 𝑑𝑣

=
u�∨u�

∫
u�

1
√2𝜋𝑡

𝑒− (u�−2u�)2
2u� 𝑑𝑣 +

∞
∫

u�∨u�

1
√2𝜋𝑡

𝑒− u�2
2u� 𝑑𝑣

=
∞
∫

u�∨u�

1
√2𝜋𝑡

𝑒− u�2
2u� 𝑑𝑣 +

(u�∨u�)−2u�

∫
u�−2u�

1
√2𝜋𝑡

𝑒− u�2
2u� 𝑑𝑠

=
∞
∫

u�∨u�

1
√2𝜋𝑡

𝑒− u�2
2u� 𝑑𝑠 + ∫

(u�,2u�−u�)

1
√2𝜋𝑡

𝑒− u�2
2u� 𝑑𝑠.

(e) Let 𝜏 be a stopping time. Notice that

𝟏(𝐵∗
u�+u� ≥ 𝑥) = 𝟏(𝐵∗

u� ≥ 𝑥) + 𝟏(𝐵∗
u� < 𝑥)𝟏( sup

0≤u�≤u�
𝐵u�+u� ≥ 𝑥).

By the strong Markov property of 𝐵u�, we thus see that

𝑃(𝐵∗
u�+u� ≥ 𝑥, 𝐵u�+u� ≥ 𝑦|ℱu�) = 𝑃(𝐵∗

u�+u� ≥ 𝑥, 𝐵u�+u� ≥ 𝑦|𝜎(𝐵∗
u� , 𝐵u�)).

Therefore the conditional distribution of (𝐵∗
u�+u�, 𝐵u�+u�) given ℱu� is the same as given

𝜎(𝐵∗
u� , 𝐵u�), which implies the strong Markov property.

Exercise 3 The same reflection principle holds for a symmetric random walk on ℤ.
Consider a filtration 𝔽 = (ℱu� : 𝑛 ∈ ℕ) in discrete time. Let (𝑋u� : 𝑛 ∈ ℕ) be an
𝔽-adapted process with

𝑃(𝑋u� = 1|ℱu�−1) = 𝑃(𝑋u� = −1|ℱu�−1) = 1⁄2

(which means that 𝑋u� is independent from the past) and

𝑆u� = 𝑋1 + … + 𝑋u�

Note that the probability law of 𝑆u� is the binomial distribution

𝑃(𝑆u� = 𝑘) = (
𝑛
𝑘)2−u�

Let
𝑆∗

u� = max
1≤u�≤u�

𝑆u�

be the running maximum of the random walk.

(a) Show that (𝑆u� : 𝑛 ∈ ℕ) is a strong Markov process in the filtration 𝔽.

(b) Compute the joint probability 𝑃(𝑆∗
u� = ℓ, 𝑆u� = 𝑘).
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(c) Show that (𝑆∗
u� , 𝑆u�)u�∈ℕ is a strong Markov process in the filtration 𝔽.

Solution 3 (a) We will prove the Markov property. The strong Markov property will
then follow the same way as in 1.c. Let 𝑠 < 𝑡 and 𝑓 a bounded measurable function.
Then

𝑃(𝑆u�−𝑆u� = 𝑘|ℱu�)(𝜔) = 𝑃(𝑋u�+1+…+𝑋u� = 𝑘|ℱu�)(𝜔) = 𝑃(𝑋1+…+𝑋u�−u� = 𝑘) = 𝑃(𝑆u�−u� = 𝑘)

by independence. Hence

𝐸(𝑓 (𝑆u�)|ℱu�)(𝜔) =
∞
∑

u�=−∞
𝑓 (𝑘 + 𝑆u�(𝜔))𝑃(𝑆u�−u� = 𝑘) = 𝐸(𝑓 (𝑆u�(𝜔) + 𝑆u�−u�)).

(b) Let 𝑆̃u� be the process reflected after hitting ℓ. Then for 𝑘 ≤ ℓ (assuming 𝑛 ≡ 𝑘
modulo 2),

𝑃(𝑆∗
u� ≥ ℓ, 𝑆u� = 𝑘) = 𝑃(𝑆̃u� = 2ℓ − 𝑘) = 𝑃(𝑆u� = 2ℓ − 𝑘) = (

𝑛
2ℓ − 𝑘)2−u�.

Thus

𝑃(𝑆∗
u� = ℓ, 𝑆u� = 𝑘) = 𝑃(𝑆∗

u� ≥ ℓ, 𝑆u� = 𝑘)−𝑃(𝑆∗
u� ≥ ℓ+1, 𝑆u� = 𝑘) = (

𝑛
2ℓ − 𝑘)2−u�−(

𝑛
2ℓ + 2 − 𝑘)2−u�

(c) Completely analogous to 2.e.


