Stochastic analysis, 12. exercises

Janne Junnila

April 25, 2013

Let $B_{t}=\left(B_{t}^{(1)}, B_{t}^{(2)}, B_{t}^{(3)}\right)$ be a 3-dimensional Brownian motion starting from 0 at time 0 , with independent components so that $\left\langle B_{t}^{(i)}, B_{t}^{(j)}\right\rangle_{t}=\delta_{i j}$.
The process

$$
R_{t}=\left|B_{t}\right|=\sqrt{\sum_{i=1}^{3}\left(B_{t}^{(i)}\right)^{2}}
$$

is called the 3-dimensional Bessel process.
Exercise 1 Use Ito formula to compute the semimartingale decomposition of R_{t} into a continuous local martingale part W_{t} and a continuous process of finite variation.

Solution 1 Let $f\left(x_{1}, x_{2}, x_{3}\right)=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}$. Then by Ito formula

$$
\begin{aligned}
R_{t}= & f\left(B_{t}\right)=f\left(B_{0}\right)+\sum_{i=1}^{3} \int_{0}^{t} \frac{\partial f}{\partial x_{i}}\left(B_{s}\right) d B_{s}^{(i)}+\frac{1}{2} \sum_{i, j} \int_{0}^{t} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(B_{s}\right) d\left\langle B^{(i)}, B^{(j)}\right\rangle_{s} \\
= & \sum_{i=1}^{3} \int_{0}^{t} \frac{B_{s}^{(i)}}{\sqrt{\left(B_{s}^{(1)}\right)^{2}+\left(B_{s}^{(2)}\right)^{2}+\left(B_{s}^{(3)}\right)^{2}}} d B_{s}^{(i)}+\frac{1}{2} \sum_{i} \int_{0}^{t} \frac{\partial^{2} f}{\partial x_{i}^{2}}\left(B_{s}\right) d\left\langle B^{(i)}\right\rangle_{s} \\
= & \sum_{i=1}^{3} \int_{0}^{t} \frac{B_{s}^{(i)}}{\sqrt{\left(B_{s}^{(1)}\right)^{2}+\left(B_{s}^{(2)}\right)^{2}+\left(B_{s}^{(3)}\right)^{2}}} d B_{s}^{(i)}+ \\
& \frac{1}{2} \sum_{i} \int_{0}^{t} \frac{\sqrt{\left(B_{s}^{(1)}\right)^{2}+\left(B_{s}^{(2)}\right)^{2}+\left(B_{s}^{(3)}\right)^{2}}-\frac{\left(B_{s}^{(i)}\right)^{2}}{\sqrt{\left(B_{s}^{(1)}\right)^{2}+\left(B_{s}^{(2)}\right)^{2}+\left(B_{s}^{(2))^{2}+\left(B_{s}^{(3)}\right)^{2}}\right.}} d\left\langle B_{s}^{(i)}\right\rangle_{s}}{\left.B_{s}^{(i)}\right)^{2}} \\
= & \sum_{i=1}^{3} \int_{0}^{t} \frac{1}{\sqrt{\left(B_{s}^{(1)}\right)^{2}+\left(B_{s}^{(2)}\right)^{2}+\left(B_{s}^{(3)}\right)^{2}}} d B_{s}^{(i)}+\int_{0}^{t} \frac{\sqrt{\left(B_{s}^{(1)}\right)^{2}+\left(B_{s}^{(2)}\right)^{2}+\left(B_{s}^{(3)}\right)^{2}}}{t}
\end{aligned}
$$

Thus we have

$$
W_{t}=\sum_{i=1}^{3} \int_{0}^{t} \frac{B_{s}^{(i)}}{\sqrt{\left(B_{s}^{(1)}\right)^{2}+\left(B_{s}^{(2)}\right)^{2}+\left(B_{s}^{(3)}\right)^{2}}} d B_{s}^{(i)}
$$

as the continuous local martingale part.

Exercise 2 Compute $\langle R\rangle_{t}=\langle W\rangle_{t}$ and use Paul Lévy's characterization theorem for Brownian motion to show that the local martingale part of R_{t} which satisfies

$$
W_{t}=R_{t}-\int_{0}^{t} \frac{1}{R_{s}} d s
$$

is a Brownian motion in the filtration \mathbb{F} generated by $\left(B_{t}\right)$.
Solution 2 We have

$$
\langle W\rangle_{t}=\sum_{i=1}^{3} \int_{0}^{t} \frac{\left(B_{s}^{(i)}\right)^{2}}{\left(B_{s}^{(1)}\right)^{2}+\left(B_{s}^{(2)}\right)^{2}+\left(B_{s}^{(3)}\right)^{2}} d\left\langle B^{(i)}\right\rangle_{s}=t .
$$

It follows that W_{t} is a Brownian motion.
Exercise 3 Show that R_{t} is a \mathbb{F}-submartingale.
Solution 3 By the triangle inequality

$$
E\left(R_{t} \mid F_{s}\right)=E\left(\left\|B_{t}\right\| \| F_{s}\right) \geq\left\|E\left(B_{t} \mid F_{s}\right)\right\|=\left\|B_{s}\right\|=R_{s} .
$$

Let $M_{t}=R_{t}^{-1}$ for $t \geq 1$. We start the process at time 1 since $R_{0}=0$.
Exercise 4 Use Ito formula to show that $\left(M_{t}\right)_{t \geq 1}$ is a local martingale, and write its Ito integral representation.

Solution 4 Let $f(t)=\frac{1}{t}$. Then $f^{\prime}(t)=-\frac{1}{t^{2}}$ and $f^{\prime \prime}(t)=\frac{2}{t^{3}}$. Thus by Ito formula

$$
\begin{aligned}
M_{t}=f\left(R_{t}\right) & =f\left(R_{1}\right)-\int_{1}^{t} \frac{1}{R_{s}^{2}} d R_{s}+\frac{1}{2} \int_{1}^{t} \frac{2}{R_{s}^{3}} d\langle R\rangle_{s}=f\left(R_{1}\right)-\int_{1}^{t} \frac{1}{R_{s}^{2}} d R_{s}+\int_{1}^{t} \frac{1}{R_{s}^{3}} d s \\
& =f\left(R_{1}\right)-\int_{1}^{t} \frac{1}{R_{s}^{2}} d W_{s}-\int_{1}^{t} \frac{1}{R_{s}^{3}} d s+\int_{1}^{t} \frac{1}{R_{s}^{3}} d s \\
& =\frac{1}{R_{1}}-\int_{1}^{t} \frac{1}{R_{s}^{2}} d W_{s}
\end{aligned}
$$

we see that M_{t} is a local martingale.
Exercise 5 Compute $\langle M\rangle_{t}$.
Solution 5 We have

$$
\langle M\rangle_{t}=\int_{1}^{t} \frac{1}{R_{s}^{4}} d\langle W\rangle_{s}=\int_{1}^{t} \frac{1}{R_{s}^{4}} d s
$$

Exercise 6 Show that M_{t} is a supermartingale.
Solution 6 Let τ_{n} be a localizing sequence for the local martingale M_{t}. Because M_{t} is non-negative, we can use Fatou's lemma to get

$$
E\left(M_{t} \mid F_{u}\right)=E\left(\lim _{n \rightarrow \infty} M_{t \wedge \tau_{n}} \mid F_{u}\right) \leq \liminf _{n \rightarrow \infty} E\left(M_{t \wedge \tau_{n}} \mid F_{u}\right)=\liminf _{n \rightarrow \infty} M_{u \wedge \tau_{n}}=M_{u} .
$$

Exercise 7 Let $\tau_{a}:=\inf \left\{t \geq 1: R_{t} \leq a\right\}, a>0$, with the convention $\inf \{\varnothing\}=\infty$. Show that the stopped process $\left(M_{t}^{\tau_{a}}\right)_{t \geq 1}$ is a martingale and consequently ($\tau_{1 / n}: n \in \mathbb{N}$) is a localizing sequence for the local martingale ($M_{t}: t \geq 1$).

Solution 7 Because $M_{t}^{\tau_{a}} \leq \frac{1}{a}$, we have by dominated convergence

$$
E\left(M_{t}^{\tau_{a}} \mid F_{s}\right)=E\left(\lim _{n \rightarrow \infty} M_{t \wedge \tau_{n}}^{\tau_{a}} \mid F_{s}\right)=\lim _{n \rightarrow \infty} E\left(M_{t \wedge \tau_{n}}^{\tau_{a}} \mid F_{s}\right)=\lim _{n \rightarrow \infty} M_{s \wedge \tau_{n}}^{\tau_{a}}=M_{s}^{\tau_{a}}
$$

for a localizing sequence τ_{n}.
Exercise 8 Let $0<r^{\prime}<y<r^{\prime \prime}$. Use the martingale property of ($M_{t \wedge \tau_{r}}: t \geq 1$) to compute $P\left(\tau_{r^{\prime}}<\tau_{r^{\prime \prime}} \mid R_{1}=y\right)$. By the conditioning we mean that we start R_{t} at time $t=1$ in position y.

Solution 8 By Doob optional stopping theorem

$$
E\left(M_{\tau_{r^{\prime}} \wedge \tau_{r^{\prime \prime}}}\right)=\frac{1}{R_{1}}
$$

Thus we have

$$
\frac{1}{y}=P\left(\tau_{r^{\prime}}<\tau_{r^{\prime \prime}} \mid R_{1}=y\right) \frac{1}{r^{\prime}}+\left(1-P\left(\tau_{r^{\prime}}<\tau_{r^{\prime \prime}} \mid R_{1}=y\right)\right) \frac{1}{r^{\prime \prime}},
$$

from which we can solve

$$
P\left(\tau_{r^{\prime}}<\tau_{r^{\prime \prime}} \mid R_{1}=y\right)=\frac{\frac{1}{y}-\frac{1}{r^{\prime \prime}}}{\frac{1}{r^{\prime}}-\frac{1}{r^{\prime \prime}}} .
$$

Exercise 9 For $0<r<y$ compute also $P\left(\tau_{r}<\infty \mid R_{1}=y\right)$.
Solution 9 Letting $r^{\prime \prime} \rightarrow \infty$ in the previous result gives us

$$
P\left(\tau_{r}<\infty \mid R_{1}=y\right)=\frac{r}{y} .
$$

Exercise 10 Show that the 3-dimensional Brownian motion is transient, $\left|B_{t}\right| \rightarrow \infty$ P a.s., meaning that it leaves eventually any ball centered around the origin without coming back, and therefore $M_{\infty}=\lim _{t \rightarrow \infty} M_{t}=0$.

Solution 10 We play the following game: Starting at $R_{1}=y$, we consider the stopping time $\tau_{y / 2}$. By 9 , there is a probability of $\frac{1}{2}$ that $\left|B_{t}\right| \rightarrow \infty$. Otherwise we hit $y / 2$ and consider $\tau_{y / 4}$. The probability that we will always hit the next smaller ball is 0 .

Exercise 11 Using the multivariate Gaussian density in polar coordinates, compute the probability densities of R_{t} and M_{t}, and show that the local martingale ($M_{t}: t \geq 1$) is bounded in L^{2}, so that in particular it is uniformly integrable.

Solution 11 The multivariate Gaussian density is

$$
\rho_{t}=\frac{1}{(2 \pi t)^{3 / 2}} e^{-\frac{1}{2} \frac{\|x\|^{2}}{t}} .
$$

Thus

$$
\begin{aligned}
P\left(R_{t} \leq u\right) & =\int_{B(0, u)} \rho_{t}(x) d x=\int_{0}^{u} \int_{0}^{2 \pi} \int_{-\pi / 2}^{\pi / 2} \frac{1}{(2 \pi t)^{3 / 2}} e^{-\frac{1}{2} \frac{r^{2}}{t}} r^{2} \cos \phi d \phi d \theta d r \\
& =\frac{4 \pi}{(2 \pi t)^{3 / 2}} \int_{0}^{u} e^{-\frac{1}{2} \frac{r^{2}}{t}} r^{2} d r .
\end{aligned}
$$

It follows that R_{t} has density

$$
P\left(R_{t} \in d u\right)=\sqrt{\frac{2}{\pi t^{3}}} e^{-\frac{1}{2} \frac{u^{2}}{t}} u^{2} .
$$

Thus

$$
P\left(M_{t} \leq u\right)=P\left(R_{t} \geq \frac{1}{u}\right)=\int_{\frac{1}{u}}^{\infty} P\left(R_{t} \in d v\right),
$$

from which we see that

$$
P\left(M_{t} \in d u\right)=\sqrt{\frac{2}{\pi t^{3}}} e^{-\frac{1}{2} \frac{1}{u^{2} t}} \frac{1}{u^{4}} .
$$

Assume now $t \geq 1$. Then

$$
\begin{aligned}
\int M_{t}^{2} d P & =\int_{0}^{\infty} u^{2} \cdot \sqrt{\frac{2}{\pi t^{3}}} e^{-\frac{1}{2} \frac{1}{u^{2} t}} \frac{1}{u^{4}} d u \\
& =\sqrt{\frac{2}{\pi t^{3}}} \int_{0}^{\infty} \frac{e^{-\frac{1}{2} \frac{1}{u^{2} t}}}{u^{2}} d u=\sqrt{\frac{2}{\pi t^{3}}} \int_{0}^{\infty} e^{-\frac{1}{2} \frac{v^{2}}{t}} d v \\
& =\sqrt{\frac{2}{\pi t^{3}}} \frac{\sqrt{2 \pi t}}{2}=\frac{1}{t}
\end{aligned}
$$

It follows that M_{t} is bounded in L^{2}.
Exercise 12 Compute also the probability density function of R_{t}^{2}.
Show first that for $t=1$,

$$
P\left(R_{1}^{2} \in d x\right)=\mathbf{1}(x \geq 0) \frac{1}{\Gamma(3 / 2) 2^{3 / 2}} \exp (-x / 2) x^{\frac{3}{2}-1} d x
$$

which is the distribution of a Gamma random variable with shape parameter $3 / 2$ and scale parameter 2 (also called chi-square with 3 degrees of freedom) and use the scaling property of Brownian motion.

Solution 12 By the previous exercise, $P\left(R_{t}^{2} \leq u\right)=P\left(R_{t} \leq \sqrt{u}\right)=\int_{0}^{\sqrt{u}} P\left(R_{t} \in d v\right)$. Therefore the density of R_{t}^{2} is

$$
\frac{\sqrt{\frac{2}{\pi t^{3}}} e^{-\frac{1}{2} \cdot \frac{u}{t}} u}{2 \sqrt{u}}=\frac{e^{-\frac{1}{2} \cdot \frac{u}{t}} \sqrt{u}}{\sqrt{2 \pi t^{3}}}
$$

Exercise 13 Show that $E\left(\langle M\rangle_{t}\right)=\infty$ for all $t \geq 1$.
Solution 13 By the exercise 5, we have

$$
E\left(\langle M\rangle_{t}\right)=\int_{1}^{t} \int_{0}^{\infty} \frac{1}{x^{2}} \cdot \frac{e^{-\frac{1}{2} \cdot \frac{x}{s}} \sqrt{x}}{\sqrt{2 \pi s^{3}}} d x d s=\infty,
$$

since the integral of $\frac{1}{x^{3 / 2}}$ diverges around 0 .

