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Stochastic analysis, 12. exercises
Janne Junnila

April 25, 2013

Let 𝐵u� = (𝐵 (1)
u� , 𝐵 (2)

u� , 𝐵 (3)
u� ) be a 3-dimensional Brownian motion starting from 0 at time

0, with independent components so that ⟨𝐵 (u�)
u� , 𝐵 (u�)

u� ⟩u� = 𝛿u�u�.

The process

𝑅u� = |𝐵u�| = √
3

∑
u�=1

(𝐵 (u�)
u� )2

is called the 3-dimensional Bessel process.

Exercise 1 Use Ito formula to compute the semimartingale decomposition of 𝑅u� into
a continuous local martingale part 𝑊u� and a continuous process of finite variation.

Solution 1 Let 𝑓 (𝑥1, 𝑥2, 𝑥3) = √𝑥2
1 + 𝑥2

2 + 𝑥2
3 . Then by Ito formula

𝑅u� = 𝑓 (𝐵u�) = 𝑓 (𝐵0) +
3

∑
u�=1

u�
∫
0

∂𝑓
∂𝑥u�

(𝐵u�) 𝑑𝐵 (u�)
u� +

1
2 ∑

u�,u�

u�
∫
0

∂2𝑓
∂𝑥u�∂𝑥u�

(𝐵u�) 𝑑⟨𝐵(u�), 𝐵(u�)⟩u�

=
3

∑
u�=1

u�
∫
0

𝐵 (u�)
u�

√(𝐵 (1)
u� )2 + (𝐵 (2)

u� )2 + (𝐵 (3)
u� )2

𝑑𝐵 (u�)
u� +

1
2 ∑

u�

u�
∫
0

∂2𝑓
∂𝑥2

u�
(𝐵u�) 𝑑⟨𝐵(u�)⟩u�

=
3

∑
u�=1

u�
∫
0

𝐵 (u�)
u�

√(𝐵 (1)
u� )2 + (𝐵 (2)

u� )2 + (𝐵 (3)
u� )2

𝑑𝐵 (u�)
u� +

1
2 ∑

u�

u�
∫
0

√(𝐵 (1)
u� )2 + (𝐵 (2)

u� )2 + (𝐵 (3)
u� )2 − (u� (u�)

u� )2

√(u� (1)
u� )2+(u� (2)

u� )2+(u� (3)
u� )2

(𝐵 (1)
u� )2 + (𝐵 (2)

u� )2 + (𝐵 (3)
u� )2 𝑑⟨𝐵(u�)⟩u�

=
3

∑
u�=1

u�
∫
0

𝐵 (u�)
u�

√(𝐵 (1)
u� )2 + (𝐵 (2)

u� )2 + (𝐵 (3)
u� )2

𝑑𝐵 (u�)
u� +

u�
∫
0

1

√(𝐵 (1)
u� )2 + (𝐵 (2)

u� )2 + (𝐵 (3)
u� )2

𝑑𝑠.

Thus we have

𝑊u� =
3

∑
u�=1

u�
∫
0

𝐵 (u�)
u�

√(𝐵 (1)
u� )2 + (𝐵 (2)

u� )2 + (𝐵 (3)
u� )2

𝑑𝐵 (u�)
u�

as the continuous local martingale part.
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Exercise 2 Compute ⟨𝑅⟩u� = ⟨𝑊⟩u� and use Paul Lévy’s characterization theorem for
Brownian motion to show that the local martingale part of 𝑅u� which satisfies

𝑊u� = 𝑅u� −
u�

∫
0

1
𝑅u�

𝑑𝑠

is a Brownian motion in the filtration 𝔽 generated by (𝐵u�).

Solution 2 We have

⟨𝑊⟩u� =
3

∑
u�=1

u�
∫
0

(𝐵 (u�)
u� )2

(𝐵 (1)
u� )2 + (𝐵 (2)

u� )2 + (𝐵 (3)
u� )2 𝑑⟨𝐵(u�)⟩u� = 𝑡.

It follows that 𝑊u� is a Brownian motion.

Exercise 3 Show that 𝑅u� is a 𝔽-submartingale.

Solution 3 By the triangle inequality

𝐸(𝑅u�|ℱu�) = 𝐸(‖𝐵u�‖|ℱu�) ≥ ‖𝐸(𝐵u�|ℱu�)‖ = ‖𝐵u�‖ = 𝑅u�.

Let 𝑀u� = 𝑅−1
u� for 𝑡 ≥ 1. We start the process at time 1 since 𝑅0 = 0.

Exercise 4 Use Ito formula to show that (𝑀u�)u�≥1 is a local martingale, and write its
Ito integral representation.

Solution 4 Let 𝑓 (𝑡) = 1
u� . Then 𝑓 ′(𝑡) = − 1

u�2 and 𝑓 ′′(𝑡) = 2
u�3 . Thus by Ito formula

𝑀u� = 𝑓 (𝑅u�) = 𝑓 (𝑅1) −
u�

∫
1

1
𝑅2

u�
𝑑𝑅u� +

1
2

u�
∫
1

2
𝑅3

u�
𝑑⟨𝑅⟩u� = 𝑓 (𝑅1) −

u�
∫
1

1
𝑅2

u�
𝑑𝑅u� +

u�
∫
1

1
𝑅3

u�
𝑑𝑠

= 𝑓 (𝑅1) −
u�

∫
1

1
𝑅2

u�
𝑑𝑊u� −

u�
∫
1

1
𝑅3

u�
𝑑𝑠 +

u�
∫
1

1
𝑅3

u�
𝑑𝑠

=
1

𝑅1
−

u�
∫
1

1
𝑅2

u�
𝑑𝑊u�

we see that 𝑀u� is a local martingale.

Exercise 5 Compute ⟨𝑀⟩u�.

Solution 5 We have

⟨𝑀⟩u� =
u�

∫
1

1
𝑅4

u�
𝑑⟨𝑊⟩u� =

u�
∫
1

1
𝑅4

u�
𝑑𝑠.

Exercise 6 Show that 𝑀u� is a supermartingale.

Solution 6 Let 𝜏u� be a localizing sequence for the local martingale 𝑀u�. Because 𝑀u�
is non-negative, we can use Fatou’s lemma to get

𝐸(𝑀u�| ℱu�) = 𝐸( limu�→∞ 𝑀u�∧u�u�
|ℱu�) ≤ lim infu�→∞ 𝐸(𝑀u�∧u�u�

|ℱu�) = lim infu�→∞ 𝑀u�∧u�u�
= 𝑀u�.
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Exercise 7 Let 𝜏u� := inf{𝑡 ≥ 1 : 𝑅u� ≤ 𝑎}, 𝑎 > 0, with the convention inf{∅} = ∞. Show
that the stopped process (𝑀 u�u�

u� )u�≥1 is a martingale and consequently (𝜏1⁄u� : 𝑛 ∈ ℕ)
is a localizing sequence for the local martingale (𝑀u� : 𝑡 ≥ 1).

Solution 7 Because 𝑀 u�u�
u� ≤ 1

u� , we have by dominated convergence

𝐸(𝑀 u�u�
u� |ℱu�) = 𝐸( limu�→∞ 𝑀u�u�

u�∧u�u�
|ℱu�) = limu�→∞ 𝐸(𝑀u�u�

u�∧u�u�
|ℱu�) = limu�→∞ 𝑀u�u�

u�∧u�u�
= 𝑀 u�u�

u�

for a localizing sequence 𝜏u�.

Exercise 8 Let 0 < 𝑟′ < 𝑦 < 𝑟′′. Use the martingale property of (𝑀u�∧u�u�
: 𝑡 ≥ 1) to

compute 𝑃(𝜏u�′ < 𝜏u�′′ | 𝑅1 = 𝑦). By the conditioning we mean that we start 𝑅u� at time
𝑡 = 1 in position 𝑦.

Solution 8 By Doob optional stopping theorem

𝐸(𝑀u�u�′∧u�u�′′) =
1

𝑅1
.

Thus we have
1
𝑦 = 𝑃(𝜏u�′  < 𝜏u�′′ | 𝑅1 = 𝑦)

1
𝑟′ + (1 − 𝑃(𝜏u�′ < 𝜏u�′′ |𝑅1 = 𝑦))

1
𝑟′′ ,

from which we can solve

𝑃(𝜏u�′ < 𝜏u�′′ | 𝑅1 = 𝑦) =
1
u� − 1

u�′′

1
u�′ − 1

u�′′

.

Exercise 9 For 0 < 𝑟 < 𝑦 compute also 𝑃(𝜏u� < ∞| 𝑅1 = 𝑦).

Solution 9 Letting 𝑟′′ → ∞ in the previous result gives us

𝑃(𝜏u� < ∞| 𝑅1 = 𝑦) =
𝑟
𝑦 .

Exercise 10 Show that the 3-dimensional Brownian motion is transient, |𝐵u�| → ∞
𝑃 a.s., meaning that it leaves eventually any ball centered around the origin without
coming back, and therefore 𝑀∞ = limu�→∞ 𝑀u� = 0.

Solution 10 We play the following game: Starting at 𝑅1 = 𝑦, we consider the
stopping time 𝜏u�⁄2. By 9, there is a probability of 1

2 that |𝐵u�| → ∞. Otherwise we
hit 𝑦⁄2 and consider 𝜏u�⁄4. The probability that we will always hit the next smaller
ball is 0.

Exercise 11 Using the multivariate Gaussian density in polar coordinates, compute
the probability densities of 𝑅u� and 𝑀u�, and show that the local martingale (𝑀u� : 𝑡 ≥ 1)
is bounded in 𝐿2, so that in particular it is uniformly integrable.

Solution 11 The multivariate Gaussian density is

𝜌u� =
1

(2𝜋𝑡)3⁄2 𝑒− 1
2

‖u�‖2
u� .
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Thus

𝑃(𝑅u� ≤ 𝑢) = ∫
u�(0,u�)

𝜌u�(𝑥) 𝑑𝑥 =
u�

∫
0

2u�
∫
0

u�⁄2

∫
−u�⁄2

1
(2𝜋𝑡)3⁄2 𝑒− 1

2
u�2
u� 𝑟2 cos 𝜙 𝑑𝜙 𝑑𝜃 𝑑𝑟

=
4𝜋

(2𝜋𝑡)3⁄2

u�
∫
0

𝑒− 1
2

u�2
u� 𝑟2 𝑑𝑟.

It follows that 𝑅u� has density

𝑃(𝑅u� ∈ 𝑑𝑢) = √ 2
𝜋𝑡3 𝑒− 1

2
u�2
u� 𝑢2.

Thus

𝑃(𝑀u� ≤ 𝑢) = 𝑃(𝑅u� ≥
1
𝑢) =

∞
∫
1
u�

𝑃(𝑅u� ∈ 𝑑𝑣),

from which we see that

𝑃(𝑀u� ∈ 𝑑𝑢) = √ 2
𝜋𝑡3 𝑒− 1

2
1

u�2u�
1

𝑢4 .

Assume now 𝑡 ≥ 1. Then

∫ 𝑀 2
u� 𝑑𝑃 =

∞
∫
0

𝑢2 ⋅ √ 2
𝜋𝑡3 𝑒− 1

2
1

u�2u�
1

𝑢4 𝑑𝑢

= √ 2
𝜋𝑡3

∞
∫
0

𝑒− 1
2

1
u�2u�

𝑢2 𝑑𝑢 = √ 2
𝜋𝑡3

∞
∫
0

𝑒− 1
2

u�2
u� 𝑑𝑣

= √ 2
𝜋𝑡3

√2𝜋𝑡
2 =

1
𝑡 .

It follows that 𝑀u� is bounded in 𝐿2.

Exercise 12 Compute also the probability density function of 𝑅2
u� .

Show first that for 𝑡 = 1,

𝑃(𝑅2
1 ∈ 𝑑𝑥) = 𝟏(𝑥 ≥ 0)

1
Γ(3⁄2)23⁄2 exp(−𝑥⁄2)𝑥

3
2 −1 𝑑𝑥

which is the distribution of a Gamma random variable with shape parameter 3⁄2
and scale parameter 2 (also called chi-square with 3 degrees of freedom) and use the
scaling property of Brownian motion.

Solution 12 By the previous exercise, 𝑃(𝑅2
u� ≤ 𝑢) = 𝑃(𝑅u� ≤ √𝑢) =

√u�
∫
0

𝑃(𝑅u� ∈ 𝑑𝑣).

Therefore the density of 𝑅2
u� is
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√ 2
u�u�3 𝑒− 1

2 ⋅ u�
u� 𝑢

2√𝑢
=

𝑒− 1
2 ⋅ u�

u� √𝑢
√2𝜋𝑡3

Exercise 13 Show that 𝐸(⟨𝑀⟩u�) = ∞ for all 𝑡 ≥ 1.

Solution 13 By the exercise 5, we have

𝐸(⟨𝑀⟩u�) =
u�

∫
1

∞
∫
0

1
𝑥2 ⋅

𝑒− 1
2 ⋅ u�

u� √𝑥
√2𝜋𝑠3

𝑑𝑥 𝑑𝑠 = ∞,

since the integral of 1
u�3⁄2 diverges around 0.


