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Exercise 1 We have seen that when Ep(|X]) < oo,
Ve>0,36: P(A) < = Ep(IX|1,) < e.

Show that a collection C C L!(P) is uniformly integrable if and only if
Ve>0,36: P(A) <6 = supEp(IX|1,) < e.

XeC

Solution1 Assume first that C is uniformly integrable and let ¢ > 0 be given. Then
(by uniform integrability) there exists K > 0 such that

sup f IX|dP < 5.
XeCxi>K)

3

If we now let 6 = 57,

then for any A C ) with P(A) <  we have

sup j IX|dP < sup f IX|dP + sup f |X|dP

XeCh XeCAn(XI>K} XeCan(X|<K}
< su |X|dP + su KdpP
p p
XEC{\X\>K} XeC A

<5+KPA)<e.

Suppose then that there exists a constant L > 0 such that E(|X]) < L forall X € C and
the condition

Ve>0,36: P(A) < 6 = sup Ep(IX[1,) < e.
XeC

holds. Let ¢ > 0 and choose ¢ as in the condition. Then for any X &€ C we have
P{IX| > L/é}) < 6 and thus

IX|dP < e.
{IX|>L/d}

Hence

sup f |X|dP < e.
XeCyxi>L/6)

Because ¢ was arbitrary, it follows that



I}im sup f |IX|dP =0,
T XeCxisky

so C is uniformly integrable.

Exercise 2 Let 7(w) € N be a stopping time w.r.t. F = (J4 : t € N). Show that
Fo={AeF:An{t <t} e Fforallt € N}

is a o-algebra.

Solution 2 Clearly @ € F,. Suppose that A € F. Then forallt € N

ONAN{TSH=O\NANO\{T>tHh =Q\N AU{T >1})
=Q\N(ANn{t<thu{t>t) EF,

so O\ A € F,. Finally if A, € F, (k € N) then

(Jaontrsp=Jtnirsther
k=1 k=1

forallt € N, so U;_, Ay € Fr. Thus F is a o-algebra.
Exercise 3 We continue with the random walk. The process
t
My(w) =) X (w)
s=1

is a binary random walk where t € N and (X, : s € N) are i.i.d. random variables
with

P(X, = +1) = P(X, = +1|F,_1) = 1/2.
X, is F,-measurable and P-independent from J_;.
Recall that (M;);cn and (M tz — 1);en are F-martingales.

e Consider the stopping time T = 7x = inf{t : M; > K} for K € N. Show that
P(t <o) =1.

e Show that P almost surely M, (w) = K.
e Show that (M;,.(w) : t € N) is not uniformly integrable.
e Show that E(T) = +oo.

Solution 3 (P(T < o) = 1 and M, (w) = K): Consider the stopped process M; , ;.
It is a martingale and clearly M;,, < K for all t € N. Thus
EM} ) <K,

INT

and by Doob’s forward convergence theorem the limit lim,_, ., M; » - (w) exists for al-
most all w. Since the limit cannot exist if T(w) = oo, we must have P(T < o) = 1. If
the limit exists, then M, (w) = K by the definition of 7.



(The stopped martingale M, 5, is not ULL): Assume that M, ,, were U.L. Then M;,, —
M, = K in L'. However

E(Mpr —KI) = K = EM, ) = K,
because M, , . is a martingale.
(E(T) = o0): Suppose that E(T) < co. Then because
IMipncl SEAT ST,
we see that the martingale M, ., is uniformly integrable, which is a contradiction.

Exercise 4 A three player ruin problem: Initially, three players have respectively
a,b,c € N units of capital. Games are independent and each game consists of choos-
ing two players at random and transferring one unit from the first-chosen to the sec-
ond-chosen player. Once a player is ruined, he is ineligible for further play.

Let 71 be the number of games required for one player to be ruined, and let 7, be the
number of games required for two players to be ruined.

Let (X}, Y}, Z;) be the numbers of units possessed by the three players after the t-game,
and

Mt = XthZt + w
Nt = Xth + YtZt + ZtXt +t

e Show that the stopped processes (M;\r, : t € N) and (N;p,, : t € N) are
non-negative F-martingales where J, = (X, Y,, Z;,s < t).

e Use Doob martingale convergence theorem and Fatou’s lemma to show that E(7y) <
oo fork=1,2.

e Knowing that E(1;) < oo, show that (Mipr, : t € N) and (N¢pq, o t € N) are
uniformly integrable.

e Use uniform integrability of the stopped martingales (M5, : t € N) and (Nyp, :
t € N) to compute E(ty) fork =1, 2.

Solution 4  (The stopped processes are martingales): Both M; and N, are clearly inte-
grable. Moreover, if 71 (w) > t, then

E(Mt+1/\T1|j:t)(w) = E(XH—]/\T] YH—]/\T]ZH—l/\T] + w|ﬁt)(w)
= E(Xt+1yt+1zt+1 + Wﬁjﬁ)(w)
= %((Xt -DY+DZ+ XV = D(Ze+ 1) + (X + DY (Z = 1)

+ X+ DY -DZ,+ X, (Y, + D)(Z - 1) + (X = DY (Z, + 1))

+ (a+b+§)(t+1>
= 1 (6X, Y1 Zp = 2(X; + Yy + Zp) + SCHHOHD = Xy, 7, 4 @Ol



Nipr,- If T(w) > t, then also 75 (w) >t and

Otherwise if 7y (w) < t, then clearly E(M,qpq,174)(w) = M;r.,. Consider next

E(Nps1pr, F) (@) = EXpy1 Vi1 + YipZpon + Zea1 Xpn + 1+ 1P (W)
- %((Xt DY, D+ Y, —DZ +Z,(X + 1)
XY+ D)+ (Y, +1)(Z - 1) + (Z, — DX,
G -DY + Y (Z+ D)+ (Z+ DX, - 1)
X =D+ D)+ Y, +DZ + Z(X, - 1)
XY, =1+ (Y, = 1)(Z, + 1) + (Z, + DX,
X+ DY, +Y,(Z -1+ (Z, —1)(Xt+1)> Ft+1
= 2(6X,Y; + 6Y,Z; + 6Z,X; —6) +t +1
= XY, +Y,Z, + Z,X, + 1.

If 71 (w) <t and 75(w) > t, then exactly one of X;,Y;, Z; is 0. Without loss of gener-
ality we can assume that it is X;.

E(Nt+1/\72|j:t)(w) = EXp11 Y1 + Y1 Zoa + Zia1 Xegq +H+ 1) (W)
=E(Y(317Z441 +t + 11T (W)
= %((Yt ~1)(Z, + 1)+ (Y, + 1)(Z, — 1)) Ft+1
=Y Z,+t =X Y, + YV Z, + 2, X, + T
Finally if 7,(w) < t, then clearly E(Nt+1/\1’2|3:t) = Nipr,, S0 we are done.

(We have E(Ty) < co): Because both martingales M;,, and N;,, are non-negative,
Doob’s martingale convergence theorem applies. Therefore

b
Mipr, (@) = My (w) = w
for almost every w. In particular by Fatou’s lemma

GCE(Ty) = Eiminf M;,,) < liminf E(M, r,) = abc,

SO

3abc
E(Tl) = a+b+c’

Similarly
Nipr, (W) = N, (w) = To(w)
for almost every w, so again by Fatou’s lemma

E(ty(w)) = E(li¥ng1th,\T2) < lipinfE(NtATz) =ab+ bc + ca.

(The martingales My, and Ny, ., are U.L): Because



3
a+b+c a+b+c
Mine, < (5375) + 555,

where the right side is integrable, we see that M, ., is U.L Similarly
Nipr, S (@+b+0)? + 1y,
and N, is UL

(Evaluating E(ty)): By uniform integrability, we can change the < signs to = signs

above and see that E(17) = % and E(T,) = ab + bc + ca.

Exercise 5 A generalization of a game by Jacob Bernoulli. In this game a fair die is
rolled, and if the result is Z;, then Z; dice are rolled. If the total of the Z; dice is Z,,
then Z, dice are rolled. If the total of the Z, dice is Z3, then Z5 dice are rolled, and
soon. Let Z, = 1.

Find a positive constant « such that
M;(w) = Z(w)at, tEN
is a F-martingale where F; = 0(Zy,Z4, ..., Z;).

Solution 5 Let Dt(k), t,k € N be i.i.d. random variables with P(Dt(k) =1i) = % for
1 <i < 6. If a constant « exists for which M; is a martingale, then necessarily

Zat = E(Zp 0t Fy) = att E(Z, 4| F)
Z, Z,
=aEQ) DRIF) = a1y E(DE)
k=1 k=1
— at+lzt%'

Hence a = % The above calculation also shows that with this choice of «, M, is a
martingale.

Exercise 6

o If (M;(w) :t € N)isan F-martingale and f (x) is convex such that E(|f (X;)]) < o
Vt € N, show that (f (M;(w)) : t € N) is an F-submartingale.

o If (M;(w) :t & N)isan F-submartingale and f (x) is convex non-decreasing such
that E(If (X;)]) < oo Vt € N, show that (f (M;(w)) : t € N) is an F-submartingale.

Solution 6
e We have

E(f (M1 () Fy) 2 fF(EMipq (@)l Fy)) = f(My).
e W ehave

E(f (Mpy1 () Fy) 2 F(E(Mppq (@)1 ) = f(My).



