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Exercise 1 Let 7(w) € [0, +cc] be a random time, F(t) = P(7 < t) for t € [0, o).

Consider the single jump counting process N; = 1(7(w) < t) which generates the
filtration F = (J) with jth =0(Ng:8<t).

(a) Show that 7 is a stopping time in the filtration F.

(b) Show first that for every Borel function f (x), the random variable
f@(@N(T(w) <5)

is J,-measurable.

(c) Define the cumulative hazard function
o
A(t) = | ————Fs),
(t) ! e T

where F(—s) = P(T < s) denotes the limit from the left. Show that
M; =Ny — Ajpe

is an F-martingale.

(d) Assume that t — F(t) and therefore also t — A(t) are continuous, which means
P(t =t) =0forallt € R*. Show that A, has 1-exponential distribution:

P(A; >x) =exp(—x), x=0
(e) Show that the martingale M, is uniformly integrable, what is M.?
Solution1 (a) We have {1t(w) < s} = Ns_l{l} S Té\’, so T is a stopping time.

(b) We notice that when f is a simple function of the form f (x) = Z,’::] c,1(a,,b,),
the claim holds, since

n

FENU(T(@) £8) = ) ¢, 1(T(w) € (ay,b,) N[0,5])
k=1

and every set of the form {7 € (4,b) N [0, s]} is F, measurable. The rest follows by a
standard limiting argument.



(c) Notice first that M, is integrable, since

('E Ajpp dP = (J; tjjTl_Flﬁp(ds)dP < j’" j %(S_)dPF(ds) = IolF(ds) =1

0 {T>s}
We have
tAT SAT
1
EM; —M,F) =ENN,— | ——F(du) =N, + | ———F(du)|F,) =0.
»([ 1—F(u-) -(]; 1—-F(u—)

Thus it is enough to show that for any A € F; we have

1
Is<T<t)dP = —— F(du)dP.
i i (s/\‘r.!‘t/\‘r] 1- F(u_)

Notice that if w € A is such that T(w) < s, then

1
1s<t<tHh=0= —— F(du).
(s/\T(w)J,.t/\T(w)] 1-F(u=)
Therefore we may assume that 7(w) > s for all w € A, but this implies that A =

{w € O : 7(w) > s} (or the empty set, but that is a trivial case). Now

1 1(t(w) > 5)
—— F(du)dP = —— = "F(du)dP(w)
A (S/\‘J‘tl\T] 1- F(u_) i (S,J\T] 1- F(M—)
1
= ——  dPF(du)
($,t] {T>u) 1= Fu-)
= M F(du)

o] 1—-P(t<u)

f F(du) = F(t) — F(s+) = P(T < u) — P(T < 5)
(s,t]

:P(S<TSu)=f1(s<TSt).
A

(d) We compute the Laplace transform.

T(w)

t
-6 [ E=Fds) T —0 [ = Fds)
[etncar=[e o T ap) = [e 0 T R

Q Q 0
— j e(—)log(l—F(t))F(dt) — f (1 —F(t))gF(dt) — 1 ,
) 5 0+1

which is the same as the Laplace transform of a random variable with pdf exp(—x),

oo

e~ exp(—x) dx = f e~ (O+Dx gy —
0

1
0+1

T3

(e) The martingale is uniformly integrable, since M; < 1 + A, which is integrable.
Moreover, M; > 0, so M, converges and E(M_,) = E(M,) = 0.



Exercise2 Let (M, :t € R") be a F-martingale, and G a filtration with gt C F4. We
assume that (M;) is also G-adapted. Show that (M;) is a martingale in the smaller
filtration G.

Solution2 We have
E(Mt|gs) = E((Mt|j:s)|gs) = E(Ms|gs) = Ms-

Exercise 3 Let (M, :t € R) be a F-martingale under P, and gt a filtration such that
Vt > 0, the o-algebrae gt and o (M : s < t) are P-independent. Show that under P,
(M; : t € RY) is a martingale in the enlarged filtration (F; v Qt 1t >0).

Solution 3  Solution missing.

Let (B; : t = 0) be a Brownian motion in the filtration F, which means
e By(w)=0

e t+— B,(w) is continuous

e V0 < s <t, (B; — B,) is P-independent from F,, conditionally gaussian with
conditional mean E(B; — B,|F,) = 0 and conditional variance E((B; — B,)?|F,) =
t—s.

Exercise 4 Show that for a > 0 the process (a~Y2?B,, : t € R*) is also a Brownian
motion.

Solution 4 Notice that it is a Brownian motion w.r.t. the filtration F;!

Clearly at t = 0 we have a=1/2B,, = 0. The continuity is also satisfied. Finally,
a~Y2B,, — a~1/?B,, is clearly independent from J,, and its conditional probability
density is just

n 1 (@122 1 2
gl/2———p 2@t-as) = ————» 205 |

V27t (at — as) V27T (t — )

which is what we needed to prove.

Exercise 5 The process W = 0, W, = tB; ; is also a Brownian motion.

Solution 5 We will show that W, is a Brownian motion with respect to its own
filtration G = c(W, :s < 1).

First of all notice that W, — W, = By, — sBy, is independent of G, = (B, : 1 <
s). We can use the 1st exercise of the 2nd exercise set to see that B ;; has Gaussian
Bys/t A/HA/s=1/t) _ t=s

1/s 1/s - o2
Thus tB, ; has Gaussian conditional distribution with mean sB; ;; and variance t — s

and finally W, — W, has Gaussian conditional distribution with mean 0 and variance
t — s, which is what we wanted to show.

conditional distribution with mean = 7Bys and variance

Exercise 6 Letf € R, and i = ¥ —1 be the imaginary unit.



Show that
E(exp(ifB,)) = exp <—%92t) )

Solution 6 We calculate

(o] X2
E(exp(ifB,)) = | e'®* e 2 dx
P ! _L, 27t
B j’o (%HG 2) 02t dx
oo 27t
192; 1 (VD)
=2’ t\/—_ f ez’ dy
T

Thus it is enough to show that
(c0,a)
e dz = V7
(=o0,a)
for all a. We do this by contour integration. The function e is analytic, so its in-
tegral over the rectangular path (—R,0) - (R,0) - (R,a) —» (—R,a) = (=R, 0) is 0.
Moreover

(R,a) (=R,0)
e~Fdz > 0, j e=Fdz - 0
(R,0) (=R,a)

as R — oo. Thus letting R — oo, we get that

(c0,a) s

e~F dz = f e~* dz = JTT.

(—c0,a)

Exercise 7 For 0 € R, consider now

M, = exp(ifB; + %921}) = {exp(%@zt) cos(6B;) + J—_lexp(%Gzt) sin(HBt)} eC

where i = v/—1is the imaginary unit.
Recall that E(exp(i6G)) = exp(—6202/2) when G(w) ~ N(0,c?).

e Show that M, is a complex valued F-martingale, which means that real and imag-
inary parts are F-martingales.

e Show that lim,_,, IM;(w)| = oo.

Solution 7 Assuming 6 # 0, clearly lim,_, , IM;(w)| = lim,_,, 2% = co.

192
Now, M, is integrable since |M;| = e2?" < oo, Also the martingale property is satis-
fied:

19241 . ; 192y _1p204 ; 192
E(thzs) — 629 t+l€BSE(e19(Bt_BS)|j:S) — ezGBs+29 te 50 (t=s) — e1935+29 s



