Stochastic analysis, 8. exercises

Janne Junnila

March 21, 2013

Exercise 1 Let $\tau(\omega) \in[0,+\infty]$ be a random time, $F(t)=P(\tau \leq t)$ for $t \in[0, \infty)$.
Consider the single jump counting process $N_{t}=\mathbf{1}(\tau(\omega) \leq t)$ which generates the filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)$ with $\mathcal{F}_{t}^{N}=\sigma\left(N_{s}: s \leq t\right)$.
(a) Show that τ is a stopping time in the filtration \mathbb{F}.
(b) Show first that for every Borel function $f(x)$, the random variable

$$
f(\tau(\omega)) \mathbf{1}(\tau(\omega) \leq s)
$$

is F_{s}-measurable.
(c) Define the cumulative hazard function

$$
\Lambda(t)=\int_{0}^{t} \frac{1}{1-F(s-)} F(d s),
$$

where $F(-s)=P(\tau<s)$ denotes the limit from the left. Show that

$$
M_{t}=N_{t}-\Lambda_{t \wedge \tau}
$$

is an \mathbb{F}-martingale.
(d) Assume that $t \mapsto F(t)$ and therefore also $t \mapsto \Lambda(t)$ are continuous, which means $P(\tau=t)=0$ for all $t \in \mathbb{R}^{+}$. Show that Λ_{τ} has 1-exponential distribution:

$$
P\left(\Lambda_{\tau}>x\right)=\exp (-x), \quad x \geq 0
$$

(e) Show that the martingale M_{t} is uniformly integrable, what is M_{∞} ?

Solution 1 (a) We have $\{\tau(\omega) \leq s\}=N_{s}^{-1}\{1\} \in \mathcal{F}_{s}^{N}$, so τ is a stopping time.
(b) We notice that when f is a simple function of the form $f(x)=\sum_{k=1}^{n} c_{n} \mathbf{1}\left(a_{n}, b_{n}\right)$, the claim holds, since

$$
f(\tau(\omega)) \mathbf{1}(\tau(\omega) \leq s)=\sum_{k=1}^{n} c_{n} \mathbf{1}\left(\tau(\omega) \in\left(a_{n}, b_{n}\right) \cap[0, s]\right)
$$

and every set of the form $\{\tau \in(a, b) \cap[0, s]\}$ is F_{s} measurable. The rest follows by a standard limiting argument.
(c) Notice first that M_{t} is integrable, since

$$
\int_{\Omega} \Lambda_{t \wedge \tau} d P=\int_{\Omega} \int_{0}^{t \wedge \tau} \frac{1}{1-F(s-)} F(d s) d P \leq \int_{0}^{\infty} \int_{\{\tau \geq s\}} \frac{1}{1-F(s-)} d P F(d s)=\int_{0}^{\infty} 1 F(d s)=1
$$

We have

$$
E\left(M_{t}-M_{s} \mid F_{s}\right)=E\left(\left.N_{t}-\int_{0}^{t \wedge \tau} \frac{1}{1-F(u-)} F(d u)-N_{s}+\int_{0}^{s \wedge \tau} \frac{1}{1-F(u-)} F(d u) \right\rvert\, F_{s}\right)=0
$$

Thus it is enough to show that for any $A \in F_{s}$ we have

$$
\left.\int_{A} \mathbf{1}(s<\tau \leq t)\right) d P=\int_{A} \int_{(s \wedge \tau, t \wedge \tau]} \frac{1}{1-F(u-)} F(d u) d P .
$$

Notice that if $\omega \in A$ is such that $\tau(\omega) \leq s$, then

$$
\mathbf{1}(s<\tau \leq t)=0=\int_{(s \wedge \tau(\omega), t \wedge \tau(\omega)]} \frac{1}{1-F(u-)} F(d u) .
$$

Therefore we may assume that $\tau(\omega)>s$ for all $\omega \in A$, but this implies that $A=$ $\{\omega \in \Omega: \tau(\omega)>s\}$ (or the empty set, but that is a trivial case). Now

$$
\begin{aligned}
\int_{A} \int_{(s \wedge \tau, t \wedge \tau]} \frac{1}{1-F(u-)} F(d u) d P & =\int_{\Omega} \int_{(s, t \wedge \tau]} \frac{\mathbf{1}(\tau(\omega)>s)}{1-F(u-)} F(d u) d P(\omega) \\
& =\int_{(s, t]\{\tau \geq u\}} \int_{\{(s, t]} \frac{1}{1-F(u-)} d P F(d u) \\
& =\int_{(s, t]} \frac{P(\tau \geq u)}{1-P(\tau<u)} F(d u) \\
& =\int_{(s)} F(d u)=F(t)-F(s+)=P(\tau \leq u)-P(\tau \leq s) \\
& =P(s<\tau \leq u)=\int_{A} \mathbf{1}(s<\tau \leq t)
\end{aligned}
$$

(d) We compute the Laplace transform.

$$
\begin{aligned}
\int_{\Omega} e^{-\theta \Lambda_{\tau}} d P & =\int_{\Omega} e^{-\theta \int_{0}^{\tau(\omega)} \frac{1}{1-F(s)} F(d s)} d P(\omega)=\int_{0}^{\infty} e^{-\theta \int_{0}^{t} \frac{1}{1-F(s)} F(d s)} F(d t) \\
& =\int_{0}^{\infty} e^{\theta \log (1-F(t))} F(d t)=\int_{0}^{\infty}(1-F(t))^{\theta} F(d t)=\frac{1}{\theta+1}
\end{aligned}
$$

which is the same as the Laplace transform of a random variable with $\operatorname{pdf} \exp (-x)$,

$$
\int_{0}^{\infty} e^{-\theta x} \exp (-x) d x=\int_{0}^{\infty} e^{-(\theta+1) x} d x=\frac{1}{\theta+1}
$$

(e) The martingale is uniformly integrable, since $M_{t} \leq 1+\Lambda_{\tau}$, which is integrable. Moreover, $M_{t}>0$, so M_{t} converges and $E\left(M_{\infty}\right)=E\left(M_{0}\right)=0$.

Exercise 2 Let $\left(M_{t}: t \in \mathbb{R}^{+}\right)$be a \mathbb{F}-martingale, and \mathbb{G} a filtration with $G_{t} \subset \mathcal{F}_{t}$. We assume that $\left(M_{t}\right)$ is also \mathbb{G}-adapted. Show that $\left(M_{t}\right)$ is a martingale in the smaller filtration \mathbb{G}.

Solution 2 We have

$$
E\left(M_{t} \mid g_{s}\right)=E\left(\left(M_{t} \mid F_{s}\right) \mid g_{s}\right)=E\left(M_{s} \mid g_{s}\right)=M_{s} .
$$

Exercise 3 Let ($M_{t}: t \in \mathbb{R}$) be a \mathbb{F}-martingale under P, and g_{t} a filtration such that $\forall t \geq 0$, the σ-algebrae g_{t} and $\sigma\left(M_{s}: s \leq t\right)$ are P-independent. Show that under P, $\left(M_{t}: t \in \mathbb{R}^{+}\right)$is a martingale in the enlarged filtration ($\mathcal{F}_{t} \vee g_{t}: t \geq 0$).

Solution 3 Solution missing.
Let $\left(B_{t}: t \geq 0\right)$ be a Brownian motion in the filtration \mathbb{F}, which means

- $B_{0}(\omega)=0$
- $t \mapsto B_{t}(\omega)$ is continuous
- $\forall 0 \leq s \leq t,\left(B_{t}-B_{s}\right)$ is P-independent from F_{s}, conditionally gaussian with conditional mean $E\left(B_{t}-B_{s} \mid F_{s}\right)=0$ and conditional variance $E\left(\left(B_{t}-B_{s}\right)^{2} \mid F_{s}\right)=$ $t-s$.

Exercise 4 Show that for $a>0$ the process $\left(a^{-1 / 2} B_{a t}: t \in \mathbb{R}^{+}\right)$is also a Brownian motion.

Solution 4 Notice that it is a Brownian motion w.r.t. the filtration $F_{a t}$!
Clearly at $t=0$ we have $a^{-1 / 2} B_{a t}=0$. The continuity is also satisfied. Finally, $a^{-1 / 2} B_{a t}-a^{-1 / 2} B_{a s}$ is clearly independent from $F_{a s}$ and its conditional probability density is just

$$
a^{1 / 2} \frac{1}{\sqrt{2 \pi(a t-a s)}} e^{-\frac{\left(a^{1 / 2} x^{2}\right.}{2(a t-a s)}}=\frac{1}{\sqrt{2 \pi(t-s)}} e^{-\frac{x^{2}}{2(t-s)}}
$$

which is what we needed to prove.
Exercise 5 The process $W_{0}=0, W_{t}=t B_{1 / t}$ is also a Brownian motion.
Solution 5 We will show that W_{t} is a Brownian motion with respect to its own filtration $g_{t}=\sigma\left(W_{s}: s \leq t\right)$.

First of all notice that $W_{t}-W_{s}=t B_{1 / t}-s B_{1 / s}$ is independent of $G_{s}=\sigma\left(B_{1 / r}: r \leq\right.$ s). We can use the 1st exercise of the 2 nd exercise set to see that $B_{1 / t}$ has Gaussian conditional distribution with mean $\frac{B_{1 / s} / t}{1 / s}=\frac{s}{t} B_{1 / s}$ and variance $\frac{(1 / t)(1 / s-1 / t)}{1 / s}=\frac{t-s}{t^{2}}$. Thus $t B_{1 / t}$ has Gaussian conditional distribution with mean $s B_{1 / s}$ and variance $t-s$ and finally $W_{t}-W_{s}$ has Gaussian conditional distribution with mean 0 and variance $t-s$, which is what we wanted to show.

Exercise 6 Let $\theta \in \mathbb{R}$, and $i=\sqrt{-1}$ be the imaginary unit.

Show that

$$
E\left(\exp \left(i \theta B_{t}\right)\right)=\exp \left(-\frac{1}{2} \theta^{2} t\right)
$$

Solution 6 We calculate

$$
\begin{aligned}
E\left(\exp \left(i \theta B_{t}\right)\right) & =\int_{-\infty}^{\infty} e^{i \theta x} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}} d x \\
& =\int_{-\infty}^{\infty} e^{-\left(\frac{x}{\sqrt{2 t}}+i \theta \sqrt{\frac{t}{2}}\right)^{2}-\frac{\theta^{2} t}{2}} \frac{d x}{\sqrt{2 \pi t}} \\
& =e^{-\frac{1}{2} \theta^{2} t} \frac{1}{\sqrt{\pi}} \int_{\left(-\infty, \theta \sqrt{\frac{t}{2}}\right)}^{\left(\infty, \theta \sqrt{\frac{t}{2}}\right)} e^{-z^{2}} d y
\end{aligned}
$$

Thus it is enough to show that

$$
\int_{(-\infty, a)}^{(\infty, a)} e^{-z^{2}} d z=\sqrt{\pi}
$$

for all a. We do this by contour integration. The function $e^{-z^{2}}$ is analytic, so its integral over the rectangular path $(-R, 0) \rightarrow(R, 0) \rightarrow(R, a) \rightarrow(-R, a) \rightarrow(-R, 0)$ is 0 . Moreover

$$
\int_{(R, 0)}^{(R, a)} e^{-z^{2}} d z \rightarrow 0, \quad \int_{(-R, a)}^{(-R, 0)} e^{-z^{2}} d z \rightarrow 0
$$

as $R \rightarrow \infty$. Thus letting $R \rightarrow \infty$, we get that

$$
\int_{(-\infty, a)}^{(\infty, a)} e^{-z^{2}} d z=\int_{-\infty}^{\infty} e^{-z^{2}} d z=\sqrt{\pi}
$$

Exercise 7 For $\theta \in \mathbb{R}$, consider now

$$
M_{t}=\exp \left(i \theta B_{t}+\frac{1}{2} \theta^{2} t\right)=\left\{\exp \left(\frac{1}{2} \theta^{2} t\right) \cos \left(\theta B_{t}\right)+\sqrt{-1} \exp \left(\frac{1}{2} \theta^{2} t\right) \sin \left(\theta B_{t}\right)\right\} \in \mathbb{C}
$$

where $i=\sqrt{-1}$ is the imaginary unit.
Recall that $E(\exp (i \theta G))=\exp \left(-\theta^{2} \sigma^{2} / 2\right)$ when $G(\omega) \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

- Show that M_{t} is a complex valued \mathbb{F}-martingale, which means that real and imaginary parts are \mathbb{F}-martingales.
- Show that $\lim _{t \rightarrow \infty}\left|M_{t}(\omega)\right|=\infty$.

Solution 7 Assuming $\theta \neq 0$, clearly $\lim _{t \rightarrow \infty}\left|M_{t}(\omega)\right|=\lim _{t \rightarrow \infty} e^{\frac{1}{2} \theta^{2} t}=\infty$.
Now, M_{t} is integrable since $\left|M_{t}\right|=e^{\frac{1}{2} \theta^{2} t}<\infty$. Also the martingale property is satisfied:

$$
E\left(M_{t} \mid F_{s}\right)=e^{\frac{1}{2} \theta^{2} t+i \theta B_{s}} E\left(e^{i \theta\left(B_{t}-B_{s}\right)} \mid F_{s}\right)=e^{i \theta B_{s}+\frac{1}{2} \theta^{2} t} e^{-\frac{1}{2} \theta^{2}(t-s)}=e^{i \theta B_{s}+\frac{1}{2} \theta^{2} s}
$$

