Stochastic analysis, spring 2013, Exercises-8, 21.03.2013

3 Let $\left(M_{t}: t \in \mathbb{R}\right)$ a F-martingale under P, and \mathcal{G}_{t} a filtration such that $\forall t \geq 0$, the σ-algebrae \mathcal{G}_{t} and $\sigma\left(M_{s}: s \leq t\right)$ are P-independent.

Show that under $P,\left(M_{t}: t \in \mathbb{R}^{+}\right)$is a martingale in the enlarged filtration $\left(\mathcal{F}_{t} \vee \mathcal{G}_{t}: t \geq 0\right)$.

Solutions This is not always true.
What is true is that $\left(M_{t}: t \in \mathbb{R}^{+}\right)$is a martingale in the enlarged filtration $\left(\sigma\left(M_{s}: s \leq t\right) \vee \mathcal{G}: t \geq 0\right)$, when the σ-algebra \mathcal{G} is P-independent from $\left(M_{t}: t \in \mathbb{R}^{+}\right)$

If $G \in \mathcal{G}$ and $A \in \sigma\left(M_{r}: r \leq s\right)$ for $s \leq t$,

$$
E_{P}\left(\left(M_{t}-M_{s}\right) \mathbf{1}_{A \cap G}\right)=E_{P}\left(\left(M_{t}-M_{s}\right) \mathbf{1}_{A} \mathbf{1}_{G}\right)=E_{P}\left(\left(M_{t}-M_{s}\right) \mathbf{1}_{A}\right) P(G)=0
$$

and the result follows since

$$
\sigma\left(M_{r}: r \leq s\right) \vee \mathcal{G}=\sigma\left(A \cap G: A \in \sigma\left(M_{r}: r \leq s\right), G \in \mathcal{G}\right)
$$

Counterexample

Let X_{1}, X_{2}, X_{3} i.i.d. binary variables with $P\left(X_{i}=1\right)=P\left(X_{i}=0\right)=1 / 2$, and

$$
X_{4}=\left(X_{1}+X_{2}+X_{3}\right) \quad \bmod 2
$$

It follows that the distribution of $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ is invariant under permutations of the coordintates
and for each distinct triple $1 \leq i \neq j \neq k \leq 4$ and $a, b, c \in\{0,1\}$

$$
P\left(X_{i}=a, X_{j}=b, X_{k}=c\right)=2^{-3}=P\left(X_{i}=a\right) P\left(X_{j}=b\right) P\left(X_{k}=c\right)
$$

The random variables ($X_{1}, X_{2}, X_{3}, X_{4}$) are 3 -wise independent but are not independent, since any three random variables determine the 4 -th.

Not also that $E_{P}\left(X_{i}\right)=P\left(X_{i}=1\right)=1 / 2$.
Let

$$
\begin{aligned}
& M_{0}=\left(X_{3}-1 / 2\right), \quad M_{1}=\left(X_{3}+X_{4}-1\right) \\
& \mathcal{F}_{0}=\sigma\left(X_{2}, X_{3}\right) \subseteq \mathcal{F}_{1}=\sigma\left(X_{2}, X_{3}, X_{4}\right)
\end{aligned}
$$

Now $\left(M_{t}: t=0,1\right)$ is a martingale in the filtration $\left(\mathcal{F}_{t}: t=0,1\right)$, is not a martingale in the enlarged filtration $\left(\mathcal{F}_{t} \vee \sigma\left(X_{1}\right)\right)$, because $M_{1} \neq M_{0}$ are both $\mathcal{F}_{0} \vee \sigma\left(X_{1}\right)$ measurable, which means

$$
E\left(M_{1} \mid \mathcal{F}_{0}\right)=M_{1} \neq M_{0} .
$$

