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5. Stochastic differential equations

5.1. The normal distribution. The normal distribution (or Gaussian distribution)
with mean µ and variance σ2 is the probability distribution on all the real numbers with
the probability density

(1) pµ,σ2(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

To denote that a random variable X is normally distributed with mean µ and variance
σ2, we write X ∼ N (µ, σ2). One readily verifies that

(2) E{X} :=

∫ +∞

−∞
x pµ,σ2(x)dx = µ

and

(3) E{(X − µ)2} :=

∫ +∞

−∞
(x− µ)2 pµ,σ2(x)dx = σ2

are indeed the mean and the variance of the distribution. If X ∼ N (µ, σ2), then

(4)
X − µ
σ

∼ N (0, 1)

which is called the standard normal distribution with the probability density

(5) p0,1(x) =
1√
2π
e−

1
2
x2

We have seen that there exists a one-to-one relationship between a function and its
Fourier transform. The Fourier transform of a probability density is called the charac-
teristic function of the distribution. The characteristic function of the standard normal
distribution is

(6) p̃0,1(ω) = e−
1
2
ω2

Below we shall see why statisticians and probability theorists are so obsessed with the
normal distribution.
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5.2. The Central Limit Theorem. The Central Limit Theorem states that if
X1, X2, X3, . . . are independent and identically distributed ramdom variables with fi-
nite mean µ and finite variance σ2 > 0, then

(7) lim
n→∞

n∑
i=1

Xi − µ
σ
√
n
∼ N (0, 1)

The amazing thing is that this conclusion does not depend on what the probability
distribution of the Xi actually looks like.

We prove the Central Limit Theorem as follows. First define

(8) Zn :=

n∑
i=1

Xi − µ
σ
√
n

and show that the probability density of Zn converges to the the probability density
of the standard normal distribution as n → ∞, i.e., we prove convergence in distri-
bution. It is easier, however, to show that the characteristic function of Zn converges
to the characteristic function of the standard normal distribution, which is the same
thing.

To calculate the characteristic function of Zn, first define

(9) Yi :=
Xi − µ
σ

(i = 1, 2, . . . )

The Yi then are independently and identically distributed random variables with zero
mean and unit variance and with a probability density pY (y) (which can be calculated
from the density of the Xi, but we will not need that). The characteristic function of
the Yi is

(10)

p̃Y (ω) =
∫ +∞
−∞ pY (y) e−iωydy

=
∫ +∞
−∞ pY (y)

[
1− iωy − 1

2ω
2y2 + O(ω3)

]
dy

= 1− iωE{Y } − 1
2ω

2E{Y 2}+ O(ω3)

= 1− 1
2ω

2 + O(ω3)

Consequently, the characteristic function of the Yi/
√
n is

(11) p̃ Y√
n

(ω) = p̃Y

(
ω√
n

)
= 1− ω2

2n
+ O

(
ω3

n3/2

)
Since the probability density of the sum of independent random variables is the con-
volution of the respective probability densities, the characteristic function of the sum
of independent random variables is product of the respective characteristic functions.
Applying this to

(12) Zn =

n∑
i=1

Yi√
n
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we find that the characteristic function of Zn is

(13) p̃Zn(ω) =

(
1− ω2

2n
+ O

(
ω3

n3/2

))n
and hence

(14) lim
n→∞

p̃Zn(ω) = e−
1
2
ω2

which is the characteristic function of the standard normal distribution (see Section 5.1).
So, the characteristic function of Zn converges to that of the standard normal distribu-
tion, which completes the proof of the Central Limit Theorem.

There exist more general versions of the Central Limit Theorem that allow for the Xi

to have different distributions.

Since many real-world quantities (such as the landing place of a seed on the ground, the
position of a dust particle after a given amount time, etc.) result from the additive effect
of many unobserved random events, the Central Limit Theorem provides an explanation
of the prevalence of the normal distribution in real life.

Likewise, many other real-world quantities (such as the life span of an individual) re-
sults from the multiplicative effect of a large number of unobserved random events. The
logarithm of those quantities, therefore, will be approximately normally distributed.

5.3. The Wiener process. The Wiener process {W (t)}t≥0 is a continuous-time sto-
chastic process on the real numbers and is characterized by its increments W (t)−W (s)
for t > s such that increments over non-overlapping intervals of the same length are
independently and identically distributed with zero mean and finite variance. The con-
sequences of this characterization are studied below.

For every regular partition s = t0 < t1 < · · · < tn = t of the interval (s, t) we have

(15) W (t)−W (s) =

n∑
i=1

(
W (ti)−W (ti−1)

)
which is a sum of n independently and identically distributed random variables. The
partition may be arbitrarily fine by choosing n sufficiently large, and so it follows from
the Central Limit Theorem that W (t)−W (s) is normally distributed. Moreover, as the
variance of the sum of independent random variables is equal to the sum of the variances,
it follows that the variance of the increment W (t) −W (s) must be proportional to the
length of the time interval (s, t). By an appropriate scaling of time, we can take the
constant of proportionality to be equal to one, and so the variance of W (t) −W (s) is
t− s. Thus we conclude that

(16) W (t)−W (s) ∼ N (0, t− s)
for every t > s ≥ 0. In particular, if we fix the initial condition W (0) = 0 and take
s = 0, then

(17) W (t) ∼ N (0, t)
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with

(18) E{W (t)} = 0

(19) E{W (t)2} = t

(20) E{W (t)W (s)} = min{t, s}

for the mean, variance and auto-covariance of the process.

Realizations of the Wiener process are continuous. This can be understood from

(21) W (t+ ∆t)−W (t) ∼ N (0,∆t)

which for ∆t → 0 converges to the Dirac delta distribution with all probability mass
concentrated at zero, and hence

(22) Prob

{
lim

∆t→0
|W (t+ ∆t)−W (t)| = 0

}
= 1

On the other hand, realizations of the Wiener process are nowhere differentiable, at least
not in a similar sense as the process is continuous, because

(23)
W (t+ ∆t)−W (t)

∆t
∼ N

(
0,

1

∆t

)
which has a divergent variance in the limit ∆t→ 0.

5.4. Linear stochastic differential equations (SDE). Consider a stochastic process
{X(t)}t≥t0 with X(t0) = x0 (a.s.) satisfying

(24) dX(t) = −aX(t)dt+ bdW (t) (a > 0, t ≥ t0)

where dX(t) := X(t+ dt)−X(t) and dW (t) := W (t+ dt)−W (t) for an infinitesimally
small time step dt. The dW (t) is called the infinitesimal Wiener increment, and the
equation is called a stochastic differential equation (SDE); in particular a linear stochastic
differential equation, because the right hand side is linear in both X and W . We now
define what the equation actually means.

Formal integration of equation (24) (i.e., acting as if the equation is an ordinary differ-
ential equation) leads to

(25) X(t) = x0e
−a(t−t0) + b e−a(t−t0)

∫ t

t0

eaτdW

What to make of the integral on the right?

Let t0 < t1 < · · · < tn = t be a regular partition of the interval (0, t). Then we define for
any integrable function f : R+ → R

(26)

∫ t

t0

f(τ)dW := lim
n→∞

n∑
i=1

f(τi)(W (ti)−W (ti−1))
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where each τi ∈ (ti−1, ti). The sum on the right is a linear combination of n independent
N (0, ti − ti−1) distributed random variables and therefore is itself normally distributed
with zero mean and variance

(27)

n∑
i=1

f(τi)
2(ti − ti−1) −→

∫ t

t0

f(τ)2dτ as n→∞.

Hence, we get

(28)

∫ t

t0

f(τ)dW ∼ N
(

0,

∫ t

t0

f(τ)2dτ

)
In particular, in equation (25),

(29)

∫ t

t0

eaτdW ∼ N

(
0,
e2a(t−t0) − 1

2a

)
and so

(30) X(t) ∼ N
(
x0e
−a(t−t0),

b2

2a

(
1− e−2a(t−t0)

))
Since a > 0, it follows that, asymptotically,

(31) lim
t→∞

X(t) ∼ N
(

0,
b2

2a

)
The stochastic differential equation (24) with initial condition X(t0) = x0 (a.s.) uniquely
defines the stochastic process {X(t)}t≥t0 . This process is called the Ornstein-Uhlenbeck
process. Note, however, that while the process is uniquely defined, there are infinitely
many different realizations of the process, called sample paths or stochastic orbits.

Figure 1. Ten sample paths of the Ornstein-Uhlenbeck process (25) with
X(0) = 5 and a = b = 1. Solid line indicates the mean and the dashed lines the
mean plus/minus the standard deviation of the distribution of X(t).

5.5. White noise. Consider the linear equation (24) for b→ 1 and a→ 0, which then
becomes

(32) dX(t) = dW (t)



6STEFAN GERITZ DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF HELSINKI

and given the initial condition X(t0) = x0 (a.s.), the solution (30) becomes

(33) X(t) ∼ N (x0, t− t0)

For arbitrary t > s ≥ t0 we thus have

(34) X(t)−X(s) ∼ N (0, t− s)

independently of the initial condition at time t0. We conclude that any two increments
X(t1)−X(s1) and X(t2)−X(s2) over non-overlapping bounded intervals of equal length
are identically and independently distributed with zero mean and finite variance. As
these are the defining characteristics of the Wiener process (see section 5.3), it follows
that {X(t)} in fact is a Wiener process.

We thus find that, after having shown in section 5.3 that the Wiener process is nowhere
differentiable, it nonetheless can be described by a differential equation, or more precisely,
by a stochastic differential equation. The Wiener process is, in some sense, differentiable
after all! The derivative of the Wiener process is called white noise, which is a stochastic
process itself.

Let {ξ(t)} be the process we just called white noise. Then (32) can be rewritten as

(35) dW (t) = ξ(t)dt

White noise is a stochastic process where all the ξ(t) are independently and identically
distributed with

(36) E{ξ(t)} = 0

and

(37) E{ξ(t)ξ(s)} = δ(t− s)

for the mean and the auto-covariance, where δ denotes the Dirac delta distribution. In
particular, the white noise has infinite variance. White noise obviously is a weird pro-
cess and begins to make sense only after integration, which gives the Wiener process.
A similar situation we find in the case of the Dirac delta distribution, which can be
interpreted as the derivative of the unit step function at zero, exactly where the function
in the classical sense is non-differentiable.

5.6. Non-linear stochastic differential equations. Most of the time we shall be
dealing with linear SDEs. Still it is important to know something of non-linear SDEs
as well, especially those SDEs with multiplicative noise (i.e., with a non-linear noise
term).

Consider the non-linear SDE with multiplicative noise

(38) dX = WdW

which can formally be solved as

(39) X(t) =

∫ t

t0

WdW
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But what to make of this integral? What does it mean? Lets proceed as in the previous
section, i.e., let t0 < t1 < · · · < tn = t be a regular partition of the interval (0, t), and
define

(40)

∫ t

t0

WdW := lim
n→∞

n∑
i=1

W (τi)(W (ti)−W (ti−1))

where (and now we want to be explicit about this)

(41) τi = (1− α)ti−1 + αti

for some fixed α ∈ [0, 1]. One wouldn’t like the definition of the integral to depend on the
particular choice of alpha, but unfortunately it will. To see this we take the expectation
of the sum on the right side and use the property of the Wiener process that

(42) E{W (t)W (s)} = min{t, s}
Since ti−1 ≤ τi ≤ ti, this gives

(43)

∑n
i=1

(
E{W (τi)W (ti)} − E{W (τi)W (ti−1)}

)
=
∑n

i=1(τi − ti−1)

= α(t− t0)

Hence we find

(44) E
{∫ t

t0

WdW

}
= αt

which depends on the particular choice of α. But then also the solution (39) of the SDE
(38) will depend on the choice of α.

Now consider the more general non-linear SDE with multiplicative noise

(45) dX = f(X)dt+ g(X)dW

Formally we can define a solution of this equation as any stochastic process {X(t)}t≥0

that satisfies the integral equation

(46) X(t) =

∫ t

t0

f(X)dτ +

∫ t

t0

g(X)dW

The first integral will not give any problem, but the definition of the second integral as
a limit of a sum over a partition requires an extra rule that specifies at what points the
integrant is to be sampled. Without such integration rule, the SDE is not well-defined
and not interpretable.

Although there are infinitely many possibilities for the α, in practice only two are being
used: α = 0 and α = 1/2. The first leads to the so-called Ito calculus, and the second to
the Stratonovitch calculus. Without proof we state that the following SDEs together with
their respective integration rules as indicated in parentheses have the same solutions,
i.e., describe the same stochastic process:

(47) dX = f(X)dt+ g(X)dW (S)
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(48) dX =
(
f(X) +

1

2
g′(X)g(X)

)
dt+ g(X)dW (I)

Each of these two descriptions has its own advantages and disadvantages. We state with-
out proof that in the Stratonovitch calculus we can integrate and differentiate as if the
stochastic processes were ordinary functions, whereas in the Ito calculus the calculation
of expectations as well as the numerical integration of the SDE are easier. Depending
on what particular information we want to get out of a given SDE, we may prefer either
the Ito or the Stratonovitch representation. This will be made clear with the following
section.

Note from equations (47) and (??) that if g is the constant function (i.e., g′(x) = 0 for all
x), then the Ito interpretation and the Stratonovitch interpretation make no difference
at all. That is why in the case of a linear stochastic stochastic differential equation we
do not need to specify the integration rule (see section 5.4).

5.7. Example. Consider the non-linear SDE

(49)

{
dX = XdW (S)

X(0) = x0

As indicated between the parentheses, the equation has to be integrated according to
the Stratonovich rule which follows the ordinary rules of calculus. This gives

(50) X(t) = x0E
W (t)

In other words, X(t) has a log-normal distribution, i.e., logX(t) ∼ N (log x0, t).

Next, consider the SDE

(51)

{
dX = XdW (I)

X(0) = x0

which looks the same but which has to be integrated according to a different rule,
namely the Ito rule. Easiest way to solve the equation is first to transform it into
a Stratonovitch equation. A comparison with the Ito equation (48) shows that then
we should take g(X) = X and f(X) = −1

2X. Substituting these functions into the
Stratonovitch equation (47) gives

(52)

{
dX = −1

2Xdt+XdW (S)
X(0) = x0

Equations (51) and (52) have the same solutions, but the latter can be integrated using
the ordinary rules of calculus, which gives

(53) X(t) = x0e
− t

2
+W (t)

So, X(t) gain has a log-normal distribution, but with different parameters, i.e., logX(t) ∼
N (log x0 − 1

2 t, t).

It is obvious why one would like to have an SDE in the Stratonovitch form, because then
we can use the normal rules of calculus. But what is the Ito form good for? To begin
with, the Ito SDE is good to calculate expected values. Remember from the definition
(40) that for the Ito integral the integrant is sampled at the beginning of each interval
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and therefore is independent of the Wiener increment over that interval. Thus, taking
expectations in the Ito equation (51) and using that the expectation of the product
of two independent random variables is equal to the product of their expectations, we
get

(54)


dE{X} = E{XdW}

= E{X}E{dW}
= E{X} · 0
= 0

E{X(0)} = x0

So, the expectation of X(t) stays constant in time, i.e.,

(55) E{X(t)} = x0

How is this for the Stratonovitch equation (49)? Remember that in the definition of
the Stratonovitch integral, the integrant is sampled in the middle of each interval of
the partition, and so the integrant and the Wiener increment over that interval are not
independent. To calculate the expectation of the process defined by the Stratonovitch
equation (49) we must first put it in the Ito form in order to be able to exploit that
the expectation of XdW is equal to the product of expectations of X and dW . From
equations (47) and (48) we see that the Stratonovitch equation (49) is equivalent to the
Ito equation

(56)

{
dX = 1

2Xdt+XdW (I)
X(0) = x0

Taking expectations we get

(57)


dE{X} = 1

2E{X}dt+ E{XdW}
= 1

2E{X}dt+ E{X}E{dW}
= 1

2E{X}dt+ E{X} · 0
= 1

2E{X}dt
E{X(0)} = x0

and so

(58) E{X(t)} = x0e
1
2
t

5.8. Numerical integration of SDEs. The Stratonovitch equation we can solve using
de rules of ordinary calculus. The Ito equation is handy when it comes to calculating
expectations, because the integrant and the Wiener increment are probabilistically in-
dependent. Another advantage of the Ito form is that it suggest a method for solving
the SDE numerically.

Consider the Ito equation

(59) dX = h(X)dt+ g(X)dW (I)

For small ∆t > 0 we can approximate this by

(60) ∆X(t) = h(X(t))∆t+ g(X(t))∆W (t)
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Figure 2. Numerical integration of the Ito equation dX = XdW . Twenty
sample paths of logX(t) versus t with initial condition logX(0) = 0. Solid
line indicates the mean and the dashed lines the mean plus/minus the standard
deviation of the distribution of logX(t).

Figure 3. Numerical integration of the Stratonovich equation dX = XdW ,
which was solved by numerically integrating the equivalent Ito equation dX =
1
2Xdt+XdW . Twenty sample paths of logX(t) versus t with initial condition
logX(0) = 0. Solid line indicates the mean and the dashed lines the mean
plus/minus the standard deviation of the distribution of logX(t).

where

(61)

∆X(t) := X(t+ ∆t)−X(t)

∆W (t) := W (t+ ∆t)−W (t)

∆W (t) ∼ N (0,∆t)

A similar discretization of the Stratonovitch equation

(62) dX = h(X)dt+ g(X)dW (S)

would give

(63) ∆X(t) = h(X(t+
1

2
∆t))∆t+ g(X(t+

1

2
∆t))∆W (t)

which, if we know X only up to and including time t (but not further), is not practi-
cal.
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So, let’s go back to the discretization of the Ito equation, which we can rewrite as

(64)
X(t+ ∆t) = X(t) + h(X(t))∆t+ g(X(t))

√
∆t Z(t)

Z(t) ∼ N (0, 1) and i.i.d. for all t ≥ 0

Most program packages contain a random number generator for the standard normal dis-
tribution N (0, 1). Numerical iteration of the discretization of the Ito equation n times
gives us an approximation of a sample path (or realization) of the stochastic process
{X(t)}t≥0 for the times t = 0,∆t, 2∆t, 3∆t, . . . , n∆t.

5.9. SDEs and the Fokker-Planck equation There are at least two ways to describe
a stochastic process {X(t)}: (i) one can describe the evolution of individual realizations
(i.e., sample paths) of the process – this is in essence what is done by a stochastic
differential equation. (ii) One can also describe how the probability distribution p(x, t)
of the random variable X(t) changes over time – this is done by the so-called Fokker-
Planck equation. It should not come as a surprise that what the Fokker-Planck equation,
too, depends on the sampling oprocedure, i.e., on α ∈ [0, 1]:

(65) ∂tp(x, t) = −∂x
([
f(x) + αg′(x)g(x)

]
p(x, t)

)
+

1

2
∂xx

(
g(x)2p(x, t)

)
This we give without proof. Hence, the Ito differential equation

(66) dX = f(X)dt+ g(X)dW (I)

with α = 0 corresponds to the Fokker-Planck equation

(67) ∂tp(x, t) = −∂x
(
f(x)p(x, t)

)
+

1

2
∂xx
(
g(x)2p(x, t)

)
and the Stratonovitch equation

(68) dX = f(X)dt+ g(X)dW (S)

with α = 1/2 corresponds to the Fokker-Planck equation

(69) ∂tp(x, t) = −∂x
([
f(x) +

1

2
g′(x)g(x)

]
p(x, t)

)
+

1

2
∂xx
(
g(x)2p(x, t)

)
The Focker-Planck equation contains the same information as the corresponding SDE –
they are equivalent representations of the same stochastic process.

In particular, the linear equation

(70) dX = 2DdW

(no need to specify whether it is Ito or Stratonovics; see last paragraph of section 5.6)
is equivalent to the so-called heat equation

(71) ∂tp(x, t) = D∂xxp(x, t)

with diffusion coefficient D > 0.


