STOCHASTIC POPULATION MODELS

EXERCISES 7-9

7.

Consider the Wiener process $\{W(t)\}_{r\geq 0}$ with W(0) = 0. Show that $\mathcal{E}\{W(t)W(s)\} = \min\{t, s\}$

8.

Integrate the linear stochastic differential equation dX = g(t)dW with $X(0) = x_0$. Show that it doesn't matter how we sample the integrant, and so, in particular, it doesn't matter whether we interpret the differential equation as an Ito equation or a Stratonovitch equation.

9.

Integrate the following stochastic differential equations with deterministic initial condition $X(0) = x_0$ for suitable choice of x_0 :

- (a) $dX = X^2 dW$ (S)
- (b) $dX = e^{-t}X \, dW$ (S)
- (c) dX = -X dt + X dW (I)