STOCHASTIC POPULATION MODELS

EXERCISES 10-12

10.

Given the stationary stochastic processes $\{X(t)\}\$ and $\{Y(t)\}\$, show that

- (a) $C_X(\tau) = C_X(-\tau)$.
- (a) $C_{X,Y}(\tau) = C_{Y,X}(-\tau).$
- (c) $C_{Z,Z} = a^2 C_{X,X} + ab C_{X,Y} + ab C_{Y,X} + b^2 C_{Y,Y}.$

where the process $\{Z(t)\}$ is defined by Z(t) := aX(t) + bY(t) for given constants a and b.

11.

Given the stationary processes $\{X(t)\}\$ and $\{Y(t)\}\$, show that

- (a) $C_{\frac{\mathrm{d}X}{\mathrm{d}t},Y} = +C'_{X,Y}$
- (b) $C_{X,\frac{\mathrm{d}Y}{\mathrm{d}t}} = -C'_{X,Y}$
- (c) $C_{\frac{\mathrm{d}X}{\mathrm{d}t},\frac{\mathrm{d}Y}{\mathrm{d}t}} = -C_{X,Y}''$

where $C'_{X,Y}$ and $C''_{X,Y}$ are the first- and second-order derivatives of the cross-covariance function $C_{X,Y}(\tau)$ with respect to τ .

12.

Calculate the spectral density and (if possible) the auto-covariance of the stationary process $\theta(t)$ for each of the following cases:

- (a) $d\theta = -a\theta dt + b dW$
- (b) $d\theta = -a\theta_{\Delta t} dt + b dW$ where $\theta_{\Delta t}(t) := \theta(t \Delta t)$
- (c) $\theta(t) = \frac{1}{\Delta t} \int_{t-\Delta t}^{t} \mathrm{d}W(s)$

(d)
$$\theta(t) = a \int_{-\infty}^{t} e^{-a(t-s)} dW(s)$$

(e) $\theta(t) = \frac{1}{\Delta t} \int_{t-\Delta t}^{t} \eta(s) ds$ with $d\eta = -\eta dt + dW$

for positive constants a and b.