Department of Mathematics and Statistics
Riemannian geometry
Exercise 9
4.4.2013

1. Let M be a Riemannian n-manifold and $p \in M$. Show that there exist a neighborhood $U \subset M$ of p and smooth vector fields $E_{1}, \ldots, E_{n} \in \mathcal{T}(U)$ forming a local orthonormal frame in U such that, at $p, \nabla_{E_{i}} E_{j}(p)=0$. [Such a family of vector fields E_{1}, \ldots, E_{n} is called a geodesic frame at p.]
2. Let $A_{i j}: \mathbb{R} \rightarrow \mathbb{R}, i, j=1, \ldots, n$, be smooth mappings and denote $A=\left(A_{i j}\right)$. Suppose that $\operatorname{det} A(0)>0$. Prove that the function $\operatorname{det} A$ has the expansion

$$
\begin{aligned}
& \frac{\operatorname{det} A(t)}{\operatorname{det} A(0)}=1+t \cdot \operatorname{tr}\left(A^{\prime} A^{-1}\right)(0) \\
& +\frac{t^{2}}{2}\left(\operatorname{tr}\left(A^{\prime \prime} A^{-1}\right)(0)-\operatorname{tr}\left(\left(A^{\prime} A^{-1}\right)^{2}\right)(0)+\left(\operatorname{tr}\left(A^{\prime} A^{-1}\right)(0)\right)^{2}\right)+O\left(t^{3}\right)
\end{aligned}
$$

in a neighborhood of 0 .
3. Prove that in the situation of Exercise $8 / 5$,

$$
\operatorname{det}\left(g_{i j}\left(\exp _{p} v\right)\right)=1-\frac{1}{3} \operatorname{Ric}(v, v)+O\left(|v|^{3}\right)
$$

for $\exp _{p} v \in U$.
4. Let $\gamma: I \rightarrow M$ be a geodesic, $0 \in I$, and $p=\gamma(0)$. Prove that, for every $h \in C^{\infty}(p)$, we have

$$
(h \circ \gamma)^{\prime \prime}(0)=\operatorname{Hess} h\left(\dot{\gamma}_{0}, \dot{\gamma}_{0}\right)
$$

5. Let M be a Riemannian manifold, $p \in U \subset M$, and $R_{0}>0$ such that $\exp _{p} \mid B\left(0, R_{0}\right): B\left(0, R_{0}\right) \rightarrow U$ is a diffeomorphism. Define $\rho: U \rightarrow \mathbb{R}$ by setting $\rho(x)=d(x, p)$. Let $\gamma:[0, R] \rightarrow U$ be a unit speed geodesic, $\gamma(0)=p$, and $0<R<R_{0}$. Let $\left.\left.r \in\right] 0, R\right], X \in T_{\gamma(r)} M,|X|=$ $1,\left\langle X, \dot{\gamma}_{r}\right\rangle=0$, and let σ be a geodesic such that $\sigma(0)=\gamma(r)$ and $\dot{\sigma}(0)=X$. Furthermore, let Γ be the variation of γ, where Γ_{s} is the (radial) geodesic from p to $\sigma(s)$. Prove that

$$
\operatorname{Hess} \rho(X, X)=\int_{0}^{r}\left(\left|D_{t} V\right|^{2}-\langle R(V, \dot{\gamma}) \dot{\gamma}, V\rangle\right) d t
$$

where V is the variation field of Γ.

