Department of Mathematics and Statistics Riemannian geometry Exercise 9 4.4.2013

- 1. Let M be a Riemannian *n*-manifold and $p \in M$. Show that there exist a neighborhood $U \subset M$ of p and smooth vector fields $E_1, \ldots, E_n \in \mathcal{T}(U)$ forming a local orthonormal frame in U such that, at $p, \nabla_{E_i} E_j(p) = 0$. [Such a family of vector fields E_1, \ldots, E_n is called a geodesic frame at p.]
- 2. Let $A_{ij} : \mathbb{R} \to \mathbb{R}$, i, j = 1, ..., n, be smooth mappings and denote $A = (A_{ij})$. Suppose that det A(0) > 0. Prove that the function det A has the expansion

$$\begin{aligned} \frac{\det A(t)}{\det A(0)} &= 1 + t \cdot \operatorname{tr} \left(A' A^{-1} \right)(0) \\ &+ \frac{t^2}{2} \left(\operatorname{tr} \left(A'' A^{-1} \right)(0) - \operatorname{tr} \left((A' A^{-1})^2 \right)(0) + \left(\operatorname{tr} \left(A' A^{-1} \right)(0) \right)^2 \right) + O(t^3) \\ & \text{in a neighborhood of } 0. \end{aligned}$$

3. Prove that in the situation of Exercise 8/5,

$$\det(g_{ij}(\exp_p v)) = 1 - \frac{1}{3}\operatorname{Ric}(v, v) + O(|v|^3)$$

for $\exp_p v \in U$.

4. Let $\gamma: I \to M$ be a geodesic, $0 \in I$, and $p = \gamma(0)$. Prove that, for every $h \in C^{\infty}(p)$, we have

$$(h \circ \gamma)''(0) = \operatorname{Hess} h(\dot{\gamma}_0, \dot{\gamma}_0)$$

5. Let M be a Riemannian manifold, $p \in U \subset M$, and $R_0 > 0$ such that $\exp_p |B(0, R_0) : B(0, R_0) \to U$ is a diffeomorphism. Define $\rho : U \to \mathbb{R}$ by setting $\rho(x) = d(x, p)$. Let $\gamma : [0, R] \to U$ be a unit speed geodesic, $\gamma(0) = p$, and $0 < R < R_0$. Let $r \in]0, R]$, $X \in T_{\gamma(r)}M$, |X| = 1, $\langle X, \dot{\gamma}_r \rangle = 0$, and let σ be a geodesic such that $\sigma(0) = \gamma(r)$ and $\dot{\sigma}(0) = X$. Furthermore, let Γ be the variation of γ , where Γ_s is the (radial) geodesic from p to $\sigma(s)$. Prove that

Hess
$$\rho(X, X) = \int_0^r \left(|D_t V|^2 - \langle R(V, \dot{\gamma}) \dot{\gamma}, V \rangle \right) dt,$$

where V is the variation field of Γ .