Department of Mathematics and Statistics
Riemannian geometry
Exercise 8
21.3.2013

1. Complete the proof of Theorem 6.22: Let $\gamma:[a, b] \rightarrow M$ be a geodesic. If $p=\gamma_{a}$ is not conjugate to $q=\gamma_{b}$ and $v_{1} \in T_{p} M, v_{2} \in T_{q} M$, then there exists a unique Jacobi field V along γ such that $V_{a}=v_{1}$ and $V_{b}=v_{2}$. (Uniqueness is proven in the lecture notes.)
2. Let M be a Riemannian manifold with sectional curvature identically zero. Show that, for every $p \in M$, the mapping $\exp _{p}: B(0, \varepsilon) \rightarrow$ $B(p, \varepsilon)$ is an isometry whenever $B(p, \varepsilon)$ is a normal ball at p.
3. Let M be complete with $K(\sigma) \leq 0$ for every 2 -planes $\sigma \subset T_{p} M, \forall p \in$ M. Prove that $\forall p \in M, \exp _{p}: T_{p} M \rightarrow M$ is a local diffeomorphism.
4. Let M be a Riemannian manifold, $p \in M, x, y, z \in T_{p} M,|x|=1$ and $\gamma=\gamma^{x}$. Let Y and Z be Jacobi fields along γ such that $Y_{0}=$ $0, Y_{0}^{\prime}=\left(D_{t} Y\right)_{0}=y, Z_{0}=0$, and $Z_{0}^{\prime}=\left(D_{t} Z\right)_{0}=z$. Prove that

$$
\left\langle Y_{t}, Z_{t}\right\rangle=t^{2}\langle y, z\rangle-\frac{t^{4}}{3}\langle R(y, x) x, z\rangle+O\left(t^{5}\right)
$$

5. Let e_{1}, \ldots, e_{n} be an orthonormal basis of $T_{p} M,(U, \varphi)$ the corresponding normal chart at p, and $g_{i j}$ the corresponding component functions of the Riemannian metric. Prove that

$$
g_{i j}\left(\exp _{p} v\right)=\delta_{i j}-\frac{1}{3}\left\langle R\left(e_{i}, v\right) v, e_{j}\right\rangle+O\left(|v|^{3}\right),
$$

for $\exp _{p} v \in U$.

