Department of Mathematics and Statistics Riemannian geometry Exercise 8 21.3.2013

- 1. Complete the proof of Theorem 6.22: Let $\gamma : [a, b] \to M$ be a geodesic. If $p = \gamma_a$ is not conjugate to $q = \gamma_b$ and $v_1 \in T_p M$, $v_2 \in T_q M$, then there exists a unique Jacobi field V along γ such that $V_a = v_1$ and $V_b = v_2$. (Uniqueness is proven in the lecture notes.)
- 2. Let M be a Riemannian manifold with sectional curvature identically zero. Show that, for every $p \in M$, the mapping $\exp_p: B(0,\varepsilon) \to B(p,\varepsilon)$ is an isometry whenever $B(p,\varepsilon)$ is a normal ball at p.
- 3. Let M be complete with $K(\sigma) \leq 0$ for every 2-planes $\sigma \subset T_p M$, $\forall p \in M$. Prove that $\forall p \in M$, $\exp_p : T_p M \to M$ is a local diffeomorphism.
- 4. Let M be a Riemannian manifold, $p \in M$, $x, y, z \in T_p M$, |x| = 1and $\gamma = \gamma^x$. Let Y and Z be Jacobi fields along γ such that $Y_0 =$ 0, $Y'_0 = (D_t Y)_0 = y$, $Z_0 = 0$, and $Z'_0 = (D_t Z)_0 = z$. Prove that $\langle Y_t, Z_t \rangle = t^2 \langle y, z \rangle - \frac{t^4}{3} \langle R(y, x)x, z \rangle + O(t^5).$
- 5. Let e_1, \ldots, e_n be an orthonormal basis of T_pM , (U, φ) the corresponding normal chart at p, and g_{ij} the corresponding component functions of the Riemannian metric. Prove that

$$g_{ij}(\exp_p v) = \delta_{ij} - \frac{1}{3} \langle R(e_i, v)v, e_j \rangle + O(|v|^3),$$

for $\exp_p v \in U$.