Department of Mathematics and Statistics Riemannian geometry Exercise 7 14.3.2013

- 1. Let M be a smooth manifold, N a Riemannian manifold and $f: M \to N$ a surjective local diffeomorphism. Introduce on M a Riemannian metric such that f is a local isometry. Furthermore, show by examples that M (equipped with the Riemannian metric introduced above) need not be complete even if N is complete.
- 2. Prove that for all $f, g \in C^{\infty}(M)$
 - (a) $R(fX_1 + gX_2, Y)Z = fR(X_1, Y)Z + gR(X_2, Y)Z;$
 - (b) $R(X, fY_1 + gY_2)Z = fR(X, Y_1)Z + gR(X, Y_2)Z;$
 - (c) R(X,Y)(fZ) = fR(X,Y)Z;
 - (d) R(X,Y)(Z+W) = R(X,Y)Z + R(X,Y)W.
- 3. Let M be a Riemannian manifold. Prove that
 - (1) R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0;
 - (2) $\langle R(X,Y)Z,W\rangle = \langle R(Z,W)X,Y\rangle;$
 - (3) $\langle R(X,Y)Z,W\rangle = -\langle R(X,Y)W,Z\rangle.$
- 4. Let $P \subset T_p M$ be a 2-dimensional subspace and let $u, v \in P$ be linearly independent. Prove that K(u, v) is independent of the choice of $u, v \in P$.
- 5. Show that any connected Riemannian manifold (M, g) admits a Riemannian metric $\tilde{g} = \varphi g$, where $\varphi \colon M \to \mathbb{R}$ is a positive C^{∞} -function, such that (M, \tilde{g}) is complete.