Department of Mathematics and Statistics Riemannian geometry Exercise 4 14.2.2013

1. Let M be a Riemannian manifold and let $U \subset M$ be an open set. The divergence of a vector field $X \in \mathcal{T}(U)$, denoted by div X, is the trace of the linear map $Y \mapsto \nabla_Y X$. Thus div $X : U \to \mathbb{R}$,

$$(\operatorname{div} X)(p) = \operatorname{tr}(v \mapsto \nabla_v X), \quad v \in T_p M.$$

Suppose that (U, x), $x = (x^1, \ldots, x^n)$, is a chart. Express div X in local coordinates. [Recall that the trace of an $n \times n$ matrix (a_{ij}) is the sum of the diagonal entries $\sum_{i=1}^{n} a_{ii}$.]

- 2. Prove the claims (a), (d), and (e) in Lemma 4.19. That is: Suppose (U, φ) is a normal chart at p. Show that
 - (a) If $v = v^i e_i \in T_p M$, then the normal coordinates of $\gamma^v(t)$ are (tv^1, \ldots, tv^n) whenever $tv \in \mathcal{V}$.
 - (d) If $\varepsilon > 0$ is so small that \exp_p is diffeomorphic in $B(0, \varepsilon) \subset T_p M$, then the set $\{x \in U : r(x) < \varepsilon\}$ is the normal ball $\exp_p(B(0, \varepsilon))$.
 - (e) If $q \in U \setminus \{p\}$, then $\left(\frac{\partial}{\partial r}\right)_q$ is the velocity vector $(=\dot{\gamma})$ of the unit speed geodesic from p to q in U (=unique by (a)), and therefore $|\frac{\partial}{\partial r}| \equiv 1$.
- 3. Prove the claims (c) and (f) in Lemma 4.19. That is: Suppose (U, φ) is a normal chart at p. Show that
 - (c) The components of the Riemannian metric (with respect to the normal chart) at p are $g_{ij}(p) = \delta_{ij}$.
 - (f) $\partial_k g_{ij}(p) = 0$ and $\Gamma^k_{ij}(p) = 0$.
- 4. Suppose that (M, g) and (M, \tilde{g}) are Riemannian manifolds, and $\varphi \colon M \to \tilde{M}$ is an isometry. Let $\tilde{\nabla}$ be the Riemannian connection of (\tilde{M}, \tilde{g}) . Show that the mapping

$$\varphi^* \tilde{\nabla} \colon \mathcal{T}(M) \times \mathcal{T}(M) \to \mathcal{T}(M),$$
$$\left(\varphi^* \tilde{\nabla}\right)_X Y := \varphi^* \tilde{\nabla}(X, Y) = \varphi_*^{-1} \left(\tilde{\nabla}_{\varphi_* X}(\varphi_* Y) \right),$$

is the Riemannian connection of (M, g).

- 5. Suppose that (M, g) and (\tilde{M}, \tilde{g}) are Riemannian manifolds, and $\varphi: M \to \tilde{M}$ is an isometry.
 - (a) Let $\gamma : I \to M$ be a smooth path, $\alpha = \varphi \circ \gamma$, and $D_t : \mathcal{T}(\alpha) \to \mathcal{T}(\alpha)$ the covariant derivative along α . Show that the mapping $\varphi^* \tilde{D}_t : \mathcal{T}(\gamma) \to \mathcal{T}(\gamma)$,

$$(\varphi^* \tilde{D}_t) V = \varphi_*^{-1} \big(\tilde{D}_t(\varphi_* V) \big),$$

is the covariant derivative along γ . [Here φ_*V , $(\varphi_*V)_t = \varphi_*V_t$, is a vector field along α .]

(b) Prove that φ maps geodesics to geodesics. That is, if γ is a geodesic on M such that $\gamma(0) = p$ and $\dot{\gamma}_0 = v$, then $\alpha = \varphi \circ \gamma$ is a geodesic on \tilde{M} such that $\alpha(0) = \varphi(p)$ and $\dot{\alpha}_0 = \varphi_* v$.