Department of Mathematics and Statistics
Riemannian geometry
Exercise 4
14.2.2013

1. Let M be a Riemannian manifold and let $U \subset M$ be an open set. The divergence of a vector field $X \in \mathcal{T}(U)$, denoted by $\operatorname{div} X$, is the trace of the linear map $Y \mapsto \nabla_{Y} X$. Thus div $X: U \rightarrow \mathbb{R}$,

$$
(\operatorname{div} X)(p)=\operatorname{tr}\left(v \mapsto \nabla_{v} X\right), \quad v \in T_{p} M
$$

Suppose that $(U, x), x=\left(x^{1}, \ldots, x^{n}\right)$, is a chart. Express $\operatorname{div} X$ in local coordinates. [Recall that the trace of an $n \times n$ matrix $\left(a_{i j}\right)$ is the sum of the diagonal entries $\sum_{i=1}^{n} a_{i i}$.]
2. Prove the claims (a), (d), and (e) in Lemma 4.19. That is: Suppose (U, φ) is a normal chart at p. Show that
(a) If $v=v^{i} e_{i} \in T_{p} M$, then the normal coordinates of $\gamma^{v}(t)$ are $\left(t v^{1}, \ldots, t v^{n}\right)$ whenever $t v \in \mathcal{V}$.
(d) If $\varepsilon>0$ is so small that $\exp _{p}$ is diffeomorphic in $B(0, \varepsilon) \subset T_{p} M$, then the set $\{x \in U: r(x)<\varepsilon\}$ is the normal ball $\exp _{p}(B(0, \varepsilon))$.
(e) If $q \in U \backslash\{p\}$, then $\left(\frac{\partial}{\partial r}\right)_{q}$ is the velocity vector $(=\dot{\gamma})$ of the unit speed geodesic from p to q in U (=unique by (a)), and therefore $\left|\frac{\partial}{\partial r}\right| \equiv 1$.
3. Prove the claims (c) and (f) in Lemma 4.19. That is: Suppose (U, φ) is a normal chart at p. Show that
(c) The components of the Riemannian metric (with respect to the normal chart) at p are $g_{i j}(p)=\delta_{i j}$.
(f) $\partial_{k} g_{i j}(p)=0$ and $\Gamma_{i j}^{k}(p)=0$.
4. Suppose that (M, g) and (\tilde{M}, \tilde{g}) are Riemannian manifolds, and $\varphi: M \rightarrow \tilde{M}$ is an isometry. Let $\tilde{\nabla}$ be the Riemannian connection of (\tilde{M}, \tilde{g}). Show that the mapping

$$
\begin{gathered}
\varphi^{*} \tilde{\nabla}: \mathcal{T}(M) \times \mathcal{T}(M) \rightarrow \mathcal{T}(M) \\
\left(\varphi^{*} \tilde{\nabla}\right)_{X} Y:=\varphi^{*} \tilde{\nabla}(X, Y)=\varphi_{*}^{-1}\left(\tilde{\nabla}_{\varphi_{*} X}\left(\varphi_{*} Y\right)\right),
\end{gathered}
$$

is the Riemannian connection of (M, g).
5. Suppose that (M, g) and (\tilde{M}, \tilde{g}) are Riemannian manifolds, and $\varphi: M \rightarrow \tilde{M}$ is an isometry.
(a) Let $\gamma: I \rightarrow M$ be a smooth path, $\alpha=\varphi \circ \gamma$, and $\tilde{D}_{t}: \mathcal{T}(\alpha) \rightarrow$ $\mathcal{T}(\alpha)$ the covariant derivative along α. Show that the mapping $\varphi^{*} \tilde{D}_{t}: \mathcal{T}(\gamma) \rightarrow \mathcal{T}(\gamma)$,

$$
\left(\varphi^{*} \tilde{D}_{t}\right) V=\varphi_{*}^{-1}\left(\tilde{D}_{t}\left(\varphi_{*} V\right)\right)
$$

is the covariant derivative along γ. [Here $\varphi_{*} V,\left(\varphi_{*} V\right)_{t}=\varphi_{*} V_{t}$, is a vector field along α.]
(b) Prove that φ maps geodesics to geodesics. That is, if γ is a geodesic on M such that $\gamma(0)=p$ and $\dot{\gamma}_{0}=v$, then $\alpha=\varphi \circ \gamma$ is a geodesic on \tilde{M} such that $\alpha(0)=\varphi(p)$ and $\dot{\alpha}_{0}=\varphi_{*} v$.

