Department of Mathematics and Statistics
Riemannian geometry
Exercise 3
7.2.2013

1. Let $\gamma: I \rightarrow M$ be a C^{∞}-path. For $t_{0}, t \in I$, define a mapping (linear isomorphism) $P_{t_{0}, t}: T_{\gamma\left(t_{0}\right)} M \rightarrow T_{\gamma(t)} M$ by $P_{t_{0}, t} v=V(t)$, where $V \in$ $\mathcal{T}(\gamma)$ is the parallel transport of $v \in T_{\gamma\left(t_{0}\right)} M$ along γ. Prove that

$$
D_{t} W\left(t_{0}\right)=\lim _{t \rightarrow t_{0}} \frac{P_{t_{0}, t}^{-1} W(t)-W\left(t_{0}\right)}{t-t_{0}}
$$

for $W \in \mathcal{T}(\gamma)$. [Hint: Use a parallel frame along γ.]
2. Let M be a Riemannian manifold, $\langle\cdot, \cdot\rangle$ the Riemannian metric, and ∇ the Riemannian connection of M. The Hessian of a real-valued function $u \in C^{\infty}(M)$ is a 2-covariant tensor field Hess $f \in \mathcal{T}^{2}(M)$ defined by

$$
\text { Hess } f(X, Y)=\left\langle\nabla_{X}(\nabla f), Y\right\rangle, \quad X, Y \in \mathcal{T}(M)
$$

Prove that Hess f is symmetric and

$$
\text { Hess } f(X, Y)=X(Y f)-\left(\nabla_{X} Y\right) f
$$

3. (a) Prove that the mapping $L: \mathcal{T}(M) \times \mathcal{T}(M) \rightarrow \mathcal{T}(M)$,

$$
L(X, Y)=L_{X} Y
$$

($=$ the Lie derivative of Y with respect to X) is not a connection.
(b) Prove that there exist smooth vector fields $V \in \mathcal{T}\left(\mathbb{R}^{2}\right)$ and $W \in \mathcal{T}\left(\mathbb{R}^{2}\right)$ such that $V=W=\frac{\partial}{\partial x}$ along the x-axis, but the Lie derivatives $L_{V}\left(\frac{\partial}{\partial y}\right)$ and $L_{W}\left(\frac{\partial}{\partial y}\right)$ are not equal on the x-axis. (Conclusion?)
4. Let $Y \in \mathcal{T}(M)$ be a vector field on a Riemannian manifold M such that $|Y|$ is constant. Prove that $\nabla_{X} Y$ is always perpendicular to Y (i.e. $\left\langle\nabla_{X} Y, Y\right\rangle=0$) for all $X \in \mathcal{T}(M)$.
5. Let $A_{i j}: \mathbb{R}^{m} \rightarrow \mathbb{R}, i, j=1, \ldots, n$, be smooth mappings and denote $A=\left(A_{i j}\right)$. Prove that in the open set $\left\{x \in \mathbb{R}^{m}: \operatorname{det} A>0\right\}$ we have

$$
\frac{\partial}{\partial x^{k}} \log \operatorname{det} A=\operatorname{tr}\left(\frac{\partial A}{\partial x^{k}} A^{-1}\right)
$$

for all $k=1, \ldots, m$. [Recall that the trace of an $n \times n$ matrix $\left(a_{i j}\right)$ is the sum of the diagonal entries $\sum_{i=1}^{n} a_{i i}$.]

Note: Recall, for instance from the course "Introduction to differential geometry", that $L_{X} Y=[X, Y]$.

