Department of Mathematics and Statistics Riemannian geometry Exercise 2 31.1.2013

1. Let (U, x), $x = (x^1, \dots, x^n)$, be a chart and let $\partial_1, \dots, \partial_n$ be the associated coordinate frame. Verify that the formula (3.11)

$$\nabla_X Y = \left(a^i b^j \Gamma^k_{ij} + X b^k \right) \partial_k,$$

where $X = a^i \partial_i \in \mathcal{T}(U)$ and $Y = b^i \partial_i \in \mathcal{T}(U)$, defines an affine connection in U.

- 2. Let $\gamma: I \to \mathbb{R}^n$ be a C^{∞} -path. Show that a vector field $V \in \mathcal{T}(\gamma)$, $V = (V^1, \ldots, V^n)$, is parallel with respect to the Euclidean connection if and only if its components V^i are constant functions.
- 3. Prove that an affine connection ∇ is symmetric if and only if its Christoffel symbols with respect to any coordinate frame are symmetric, i.e. $\Gamma_{ij}^k = \Gamma_{ji}^k$.
- 4. Let $(M, \langle \cdot, \cdot \rangle)$ be a Riemannian manifold, ∇ an affine connection on $M, (U, x), x = (x^1, \dots, x^n)$, a chart, and $\partial_1, \dots, \partial_n$ the associated coordinate frame. Let $\gamma \colon I \to U$ be a C^{∞} -path, and let $D_t \colon \mathcal{T}(\gamma) \to \mathcal{T}(\gamma)$ be the covariant differentiation given by Theorem 3.7. Suppose that

$$\langle \partial_i, \partial_j \rangle' = \langle D_t \partial_i, \partial_j \rangle + \langle \partial_i, D_t \partial_j \rangle$$

for every $i, j \in \{1, ..., n\}$. Prove that

$$\langle V, W \rangle' = \langle D_t V, W \rangle + \langle V, D_t W \rangle$$

for every $V, W \in \mathcal{T}(\gamma)$.

5. Consider on \mathbb{R}^2 the connection defined by $\Gamma_{11}^1 = x^1$, $\Gamma_{12}^1 = 1$, $\Gamma_{22}^2 = 2x^2$, the other Christoffel symbols vanishing. (Here x^2 refers to the coordinate function of the chart (x^1, x^2) .) Let $\gamma : [0, 1] \to \mathbb{R}^2$ be the path $\gamma(t) = (t, 0)$. Compute the parallel transport along γ of the vector $(\partial_2)_0 \in T_0\mathbb{R}^2$.