Department of Mathematics and Statistics Riemannian geometry
Exercise 2
31.1.2013

1. Let $(U, x), x=\left(x^{1}, \ldots, x^{n}\right)$, be a chart and let $\partial_{1}, \ldots, \partial_{n}$ be the associated coordinate frame. Verify that the formula (3.11)

$$
\nabla_{X} Y=\left(a^{i} b^{j} \Gamma_{i j}^{k}+X b^{k}\right) \partial_{k},
$$

where $X=a^{i} \partial_{i} \in \mathcal{T}(U)$ and $Y=b^{i} \partial_{i} \in \mathcal{T}(U)$, defines an affine connection in U.
2. Let $\gamma: I \rightarrow \mathbb{R}^{n}$ be a C^{∞}-path. Show that a vector field $V \in \mathcal{T}(\gamma), V=$ $\left(V^{1}, \ldots, V^{n}\right)$, is parallel with respect to the Euclidean connection if and only if its components V^{i} are constant functions.
3. Prove that an affine connection ∇ is symmetric if and only if its Christoffel symbols with respect to any coordinate frame are symmetric, i.e. $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$.
4. Let $(M,\langle\cdot, \cdot\rangle)$ be a Riemannian manifold, ∇ an affine connection on $M,(U, x), x=\left(x^{1}, \ldots, x^{n}\right)$, a chart, and $\partial_{1}, \ldots, \partial_{n}$ the associated coordinate frame. Let $\gamma: I \rightarrow U$ be a C^{∞}-path, and let $D_{t}: \mathcal{T}(\gamma) \rightarrow$ $\mathcal{T}(\gamma)$ be the covariant differentiation given by Theorem 3.7. Suppose that

$$
\left\langle\partial_{i}, \partial_{j}\right\rangle^{\prime}=\left\langle D_{t} \partial_{i}, \partial_{j}\right\rangle+\left\langle\partial_{i}, D_{t} \partial_{j}\right\rangle
$$

for every $i, j \in\{1, \ldots, n\}$. Prove that

$$
\langle V, W\rangle^{\prime}=\left\langle D_{t} V, W\right\rangle+\left\langle V, D_{t} W\right\rangle
$$

for every $V, W \in \mathcal{T}(\gamma)$.
5. Consider on \mathbb{R}^{2} the connection defined by $\Gamma_{11}^{1}=x^{1}, \Gamma_{12}^{1}=1, \Gamma_{22}^{2}=$ $2 x^{2}$, the other Christoffel symbols vanishing. (Here x^{2} refers to the coordinate function of the chart $\left(x^{1}, x^{2}\right)$.) Let $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ be the path $\gamma(t)=(t, 0)$. Compute the parallel transport along γ of the vector $\left(\partial_{2}\right)_{0} \in T_{0} \mathbb{R}^{2}$.

