Department of Mathematics and Statistics Riemannian geometry Exercise 12 2.5.2013

The course can be passed by an exam (e.g. May 13 (12:00-16:00) or May 16 (12:00-16:00)).

1. Let M be a Riemannian manifold. Suppose that $f: M \to \mathbb{R}$ and $h: \mathbb{R} \to \mathbb{R}$ are smooth. Show that

 $\operatorname{Hess}(h \circ f) = (h'' \circ f)df \otimes df + (h' \circ f) \operatorname{Hess} f.$

- 2. Suppose that $\kappa < 0$ is a constant. Prove that there exists on \mathbb{R}^n , $n \geq 2$, a Riemannian metric g such that (\mathbb{R}^n, g) is complete and of constant sectional curvature κ .
- 3. Recall the exercise 10/5. Prove: If (a) or (b) is satisfied, then there exists $t' \in (0, t_0]$ such that $\gamma^v(t')$ is the cut point of p along γ^v .
- 4. Let M be a complete Riemannian manifold, $p \in M$, and $v \in T_pM$, with |v| = 1. Prove:
 - (a) If q is a cut point of p along γ^v , then p is the cut point of q along the geodesic $-\gamma \colon [0, d(v)] \to M, -\gamma(t) = \gamma^v(d(v) t)$. In particular, $q \in C(p)$ if and only if $p \in C(q)$.
 - (b) If $q \in M \setminus C(p)$, there exists a unique minimizing geodesic from p to q.
- 5. Suppose that M is complete and that there exists $p \in M$ such that p has a cut point along every geodesic starting at p. Prove that M is compact.