Department of Mathematics and Statistics Riemannian geometry Exercise 11 25.4.2013

- 1. Let M and \tilde{M} be *n*-dimensional Riemannian manifolds of constant sectional curvature κ . Prove that for any $p \in M$ and $\tilde{p} \in \tilde{M}$ there exists $\delta > 0$ such that the geodesic balls $B(p, \delta) \subset M$ and $B(\tilde{p}, \delta) \subset \tilde{M}$ are isometric.
- 2. Let (U, x) be a chart on a Riemannian manifold and let $f \in C^{\infty}(U)$ be a smooth real valued function. Compute Hess f in local coordinates and verify that Hess f is symmetric.
- 3. Let f be a smooth real valued function on a Riemannian manifold. Prove that

$$\Delta f = \operatorname{div}(\nabla f) = \operatorname{tr} \operatorname{Hess} f$$

with respect to the Riemannian metric.

- 4. Prove that, for a complete Riemannian manifold, inj(p) = d(p, C(p)) provided $C(p) \neq \emptyset$, where C(p) is as in Definition 8.15.
- 5. Prove that $p \mapsto inj(p)$ is a continuous positive function on any Riemannian manifold.