Department of Mathematics and Statistics Riemannian geometry Exercise 10 18.4.2013

- 1. Let M be a connected complete Riemannian manifold such that $K(\sigma) \leq 0$ for every 2-dimensional subspace $\sigma \subset T_p M$ and for every $p \in M$. Prove by using Rauch's theorem that $\exp_p : T_p M \to M$ is a local diffeomorphism for every $p \in M$.
- 2. Suppose that M has constant sectional curvature κ . Let $p \in M$ and let e_1, \ldots, e_n be an orthonormal basis of T_pM , (U, φ) the corresponding normal chart at p such that U is a normal ball, and g_{ij} the corresponding component functions of the Riemannian metric. Prove that

$$g_{ij}(\exp_p v) = \frac{v^i v^j}{|v|^2} + \frac{\mathbf{S}_{\kappa}^2(|v|)}{|v|^2} \left(\delta_{ij} - \frac{v^i v^j}{|v|^2}\right),$$

for $\exp_p v \in U$, $v = v^i e_i \neq 0$. Here

$$\mathbf{S}_{\kappa}(t) = \begin{cases} \frac{1}{\sqrt{\kappa}} \sin(\sqrt{\kappa} t), & \kappa > 0, \\ t, & \kappa = 0, \\ \frac{1}{\sqrt{-\kappa}} \sinh(\sqrt{-\kappa} t), & \kappa < 0. \end{cases}$$

3. Prove Lemma 8.22: Let M be an oriented Riemannian manifold, ω_M its Riemannian volume form, and $V \in \mathcal{T}(M)$. Then the divergence of V,

$$\operatorname{div} V = \operatorname{tr} \left(X \mapsto \nabla_X V \right)$$

satisfies

$$L_V \omega_M = (\operatorname{div} V) \omega_M.$$

[Recall "Cartan's magic formula": $L_V \alpha = di_V \alpha + i_V d\alpha$.]

4. Let M be a Riemannian n-manifold, $p \in M$, and r(x) = d(x, p). Prove that

$$\Delta r(x) = \frac{n-1}{r(x)} + O(r(x))$$

as $x \to p$.

Let M be a complete Riemannian manifold, $p \in M$, and $v \in T_p M$, with |v| = 1. Recall that the distance to the cut point of p along γ^v is defined as

$$d(v) = \sup\{t > 0 \colon tv \in \mathcal{E}_p, d(p, \gamma^v(t)) = t)\}.$$

If $d(v) < \infty$, we say that $\gamma^{v}(d(v))$ is the cut point of p along γ^{v} .

5. Suppose that $\gamma^{v}(t_0)$ is the cut point of $p = \gamma^{v}(0)$ along γ^{v} . Prove that at least one of the following conditions holds

- (a) $\gamma^{v}(t_{0})$ is the first conjugate point of p along γ^{v} , or (b) there exists a unit speed geodesic $\sigma \neq \gamma^{v}|[0, t_{0}]$ from p to $\gamma^{v}(t_{0})$ such that $\ell(\sigma) = t_{0} = \ell(\gamma^{v}|[0, t_{0}])$.