Department of Mathematics and Statistics
Riemannian geometry
Exercise 10
18.4.2013

1. Let M be a connected complete Riemannian manifold such that $K(\sigma) \leq 0$ for every 2-dimensional subspace $\sigma \subset T_{p} M$ and for every $p \in M$. Prove by using Rauch's theorem that $\exp _{p}: T_{p} M \rightarrow M$ is a local diffeomorphism for every $p \in M$.
2. Suppose that M has constant sectional curvature κ. Let $p \in M$ and let e_{1}, \ldots, e_{n} be an orthonormal basis of $T_{p} M,(U, \varphi)$ the corresponding normal chart at p such that U is a normal ball, and $g_{i j}$ the corresponding component functions of the Riemannian metric. Prove that

$$
g_{i j}\left(\exp _{p} v\right)=\frac{v^{i} v^{j}}{|v|^{2}}+\frac{\mathbf{S}_{\kappa}^{2}(|v|)}{|v|^{2}}\left(\delta_{i j}-\frac{v^{i} v^{j}}{|v|^{2}}\right)
$$

for $\exp _{p} v \in U, v=v^{i} e_{i} \neq 0$. Here

$$
\mathbf{S}_{\kappa}(t)= \begin{cases}\frac{1}{\sqrt{\kappa}} \sin (\sqrt{\kappa} t), & \kappa>0 \\ t, & \kappa=0 \\ \frac{1}{\sqrt{-\kappa}} \sinh (\sqrt{-\kappa} t), & \kappa<0\end{cases}
$$

3. Prove Lemma 8.22: Let M be an oriented Riemannian manifold, ω_{M} its Riemannian volume form, and $V \in \mathcal{T}(M)$. Then the divergence of V,

$$
\operatorname{div} V=\operatorname{tr}\left(X \mapsto \nabla_{X} V\right)
$$

satisfies

$$
L_{V} \omega_{M}=(\operatorname{div} V) \omega_{M}
$$

[Recall "Cartan's magic formula": $L_{V} \alpha=d i_{V} \alpha+i_{V} d \alpha$.]
4. Let M be a Riemannian n-manifold, $p \in M$, and $r(x)=d(x, p)$. Prove that

$$
\Delta r(x)=\frac{n-1}{r(x)}+O(r(x))
$$

as $x \rightarrow p$.
Let M be a complete Riemannian manifold, $p \in M$, and $v \in T_{p} M$, with $|v|=1$. Recall that the distance to the cut point of p along γ^{v} is defined as

$$
\left.d(v)=\sup \left\{t>0: t v \in \mathcal{E}_{p}, d\left(p, \gamma^{v}(t)\right)=t\right)\right\}
$$

If $d(v)<\infty$, we say that $\gamma^{v}(d(v))$ is the cut point of p along γ^{v}.
5. Suppose that $\gamma^{v}\left(t_{0}\right)$ is the cut point of $p=\gamma^{v}(0)$ along γ^{v}. Prove that at least one of the following conditions holds
(a) $\gamma^{v}\left(t_{0}\right)$ is the first conjugate point of p along γ^{v}, or
(b) there exists a unit speed geodesic $\sigma \neq \gamma^{v} \mid\left[0, t_{0}\right]$ from p to $\gamma^{v}\left(t_{0}\right)$ such that $\ell(\sigma)=t_{0}=\ell\left(\gamma^{v} \mid\left[0, t_{0}\right]\right)$.

