1. The standard Riemannian metric of the Euclidean space \mathbb{R}^{n} is

$$
g=\delta_{i j} d x^{i} d x^{j}
$$

Write g in the case of the plane \mathbb{R}^{2} by using the polar coordinates $(r, \vartheta), x^{1}=r \cos \vartheta, x^{2}=r \sin \vartheta$.
2. A surface of revolution is obtained as follows: Consider a smooth simple (i.e. injective) curve $\gamma=(r, z): I \rightarrow \mathbb{R}^{2}, \gamma(t)=(r(t), z(t))$, where $I \subset \mathbb{R}$ is an interval. By rotating this curve around z-axis, we get a surface whose cylindrical coordinate representation is

$$
(t, \vartheta) \mapsto f(t, \vartheta)=(r(t) \cos \vartheta, r(t) \sin \vartheta, z(t)) .
$$

We obtain a natural frame $\partial_{t}, \partial_{\vartheta}$ with coframe $d t, d \vartheta$. Write the induced Riemannian metric $d x^{2}+d y^{2}+d z^{2}$ from \mathbb{R}^{3} in this frame.
3. Let (M, g) be a Riemannian n-manifold. Prove that for every $p \in$ M there exist a neighborhood $U \ni p$ and smooth vector fields $E_{1}, \ldots, E_{n} \in \mathcal{T}(U)$ that form a local orthonormal frame in U, i.e. the vectors $\left(E_{1}\right)_{q}, \ldots,\left(E_{n}\right)_{q}$ form an orthonormal basis for $T_{q} M$ for every $q \in U$. [Hint: Use the Gram-Schmidt algorithm.]

Definitions for problems 4 and 5:
(a) Let $(M, g), g=\langle\cdot, \cdot\rangle$, be a Riemannian manifold, $U \subset M$ open, and $f \in C^{\infty}(U)$ a real-valued function. The gradient of f is a vector field $\nabla f \in \mathcal{T}(U)$ such that

$$
\langle\nabla f, X\rangle=X f
$$

for every $X \in \mathcal{T}(U)$.
(b) We say that a Riemannian metric $\hat{g}=\langle\langle\cdot, \cdot\rangle\rangle$ is obtained from the Riemannian metric $g=\langle\cdot, \cdot\rangle$ by a conformal change if

$$
\begin{equation*}
\langle\langle\cdot, \cdot\rangle\rangle_{p}=\varphi(p)\langle\cdot, \cdot\rangle_{p} \tag{1}
\end{equation*}
$$

for every $p \in M$, where $\varphi: M \rightarrow] 0, \infty\left[\right.$ is a (positive) C^{∞}-function.
4. Let $(M, g), g=\langle\cdot, \cdot\rangle$, be a Riemannian manifold and let $(U, x), x=$ $\left(x^{1}, \ldots, x^{n}\right)$, be a chart. Express the gradient, ∇f, of a C^{∞}-function $f: U \rightarrow \mathbb{R}$ in local coordinates, i.e. by using the coordinate frame $\partial_{1}, \ldots, \partial_{n}$.
5. Let $\left(M^{n}, g\right), g=\langle\cdot, \cdot\rangle$, be a Riemannian n-manifold. Suppose that $\hat{g}=\langle\langle\cdot, \cdot\rangle\rangle$ is obtained from g by a conformal change (1). Let $f: M^{n} \rightarrow \mathbb{R}$ be a C^{∞}-function, ∇f its gradient with respect to
the Riemannian metric $\langle\cdot, \cdot\rangle$, and $|\nabla f|=\langle\nabla f, \nabla f\rangle^{1 / 2}$. Furthermore, let $\hat{\nabla} f$ be the gradient of f with respect to the Riemannian metric $\langle\langle\cdot, \cdot\rangle\rangle$ and $\|\hat{\nabla} f\|=\langle\langle\hat{\nabla} f, \hat{\nabla} f\rangle\rangle^{1 / 2}$.
(a) Express $\hat{\nabla} f$ and $\|\hat{\nabla} f\|$ in terms of the function φ in formula (1), ∇f, and $|\nabla f|$.
(b) Let (U, x) be a chart. Compare the integrals
(2)

$$
\int_{U}|\nabla f|^{n} d \mu
$$

and
(3)

$$
\int_{U}\|\hat{\nabla} f\|^{n} d \hat{\mu}
$$

What do you notice? Above in (2) we integrate with respect to the Riemannian metric g and in (3) with respect to the Riemannian metric \hat{g}. In other words,

$$
\int_{U}|\nabla f|^{n} d \mu=\int_{x U}\left(|\nabla f|^{n} \sqrt{\operatorname{det}\left(g_{i j}\right)}\right) \circ x^{-1} d m
$$

and

$$
\int_{U}\|\hat{\nabla} f\|^{n} d \hat{\mu}=\int_{x U}\left(\|\hat{\nabla} f\|^{n} \sqrt{\operatorname{det}\left(\hat{g}_{i j}\right)}\right) \circ x^{-1} d m
$$

