Department of Mathematics and Statistics Quasiconformal mappings and elliptic PDE's Exercise set 3.

19.2.2013

- 1. Calculate the Cauchy transform $\mathcal{C}h(z)$ and the Beurling transform $\mathcal{S}h(z)$ when
 - i) $h(z) = \chi_B(z_0, r)$, $z_0 \in \mathbb{C}$ and r > 0,
 - ii) $h(z) = (z/\overline{z})\chi_{\mathbb{D}}(z)$.

[Hint: Recall the example on p. 60 of the lecture notes.]

2. Suppose $2 and that <math>h \in L^p(\mathbb{C})$. Define the Cauchy integral operator $\mathcal{C}h$ by

$$(\mathcal{C}h)(z) = -\frac{1}{\pi} \int_{\mathbb{C}} \left[\frac{1}{\zeta - z} - \frac{\chi_{\mathbb{C} \setminus \mathbb{D}}(\zeta)}{\zeta} \right] h(\zeta) dm(\zeta)$$

Show that Ch is well defined, and that $|Ch(z) - Ch(w)| \le C|z - w|^{1-2/p}$ for all $z, w \in \mathbb{C}$.

3. Let $||S||_p = \sup\{||S(g)||_{L^p} : ||g||_{L^p} = 1\}$ be the operator-norm of the Beurling transform on $L^p(\mathbb{C})$. Show for all $2 \le p < \infty$ that $||S||_p \ge p - 1$.

[Hint: For each $\alpha > -1/p$ calculate the L^p -norms of ∂u and $\overline{\partial} u$, where $u(z) = z(|z|^{2\alpha} - 1)$ for $\varepsilon < |z| < 1$ with u(z) = 0 for $|z| \ge 1$ and $u(z) = z(\varepsilon^{2\alpha} - 1)$ for $|z| \le \varepsilon$. (Why case $\alpha < -1/p$ is not useful?)

4. Consider the mapping $f(z) = z|z|^{2i}$, for $z \in \mathbb{C}$, with f(1) = 1. Sketch the arc f([-1,1]). Show that the inverse $f^{-1}(z) = \overline{f(\overline{z})}$ and that f is a bilipschitz map of \mathbb{C} .

Hence f is also a quasiconformal map of \mathbb{C} ; determine the complex dilatation $\mu_f(z)$ and the smallest number $1 \leq K$ for which f is K-quasiconformal.

[Hint: Recall that complex exponents are defined by $x^{\alpha} = \exp(\alpha \log(x))$ for $x \in \mathbb{R}_+$ and $\alpha \in \mathbb{C}$.]

5. Let μ and ν be functions in $L^{\infty}(\mathbb{C})$ such that $|\mu(z)| + |\nu(z)| \leq k < 1$ for a.e. $z \in \mathbb{C}$, for a constant $0 \leq k < 1$. Assume also that for |z| > 1 they vanish, $\mu(z) = \nu(z) = 0$ when |z| > 1.

Show that the equation

$$\overline{\partial} f(z) = \mu(z) \partial f(z) + \nu(z) \overline{\partial f(z)}, \quad a.e. \ z \in \mathbb{C},$$

has a unique solution $f \in W^{1,2}_{loc}(\mathbb{C})$ such that $f(z) = z + \mathcal{O}(1/z)$ as $z \to \infty$. Show also using results from the lecture notes, that the solution f is a homeomorphism of \mathbb{C} .