Department of Mathematics and Statistics Quasiconformal mappings and elliptic PDE's Exercise set 2.
 12.2.2013

1. Consider the radial mapping $f(z)=z \phi\left(|z|^{2}\right)$, where $\phi:(0, \infty) \rightarrow(0, \infty)$ is a continuously differentiable function such that $t \phi\left(t^{2}\right) \rightarrow 0$ when $t \rightarrow 0$. Calculate the derivatives $\bar{\partial} f(z)$ and $\partial f(z), z \neq 0$ and determine the Jacobian determinant $J_{f}(z), z \neq 0$.

Show that f is a homeomorphism (onto its image) if $2 s \phi^{\prime}(s)+\phi(s)>0$ for all $0<s<\infty$, and that in this case $J_{f}(z)>0, z \neq 0$.
[Hint: Recall that $|z|^{2}=z \bar{z}$ and use Problem 1/exercise set 1.]
2. If $f: \mathbb{C} \rightarrow \mathbb{C}$ is a K-quasiconformal mapping, show that f is η-quasisymmetric where

$$
\eta(t)=C \max \left\{t^{K}, t^{1 / K}\right\}, \quad t \geq 0
$$

for some constant $C=C(K)$ depending only on K.
[Hint: Recall our Hölder estimates. If $f: \mathbb{C} \rightarrow \mathbb{C}$ is K-quasiconformal fixing 0 and 1 , so is $f^{-1}(z)$ and $1 / f(1 / z)$.]
3. Prove the Poincare lemma, Lemma 5.3 in the lecture notes:

If Ω is simply connected and if $E \in L^{p}\left(\Omega, \mathbb{R}^{2}\right)$ is a L^{p}-vector field with $\operatorname{curl} E=0 \quad$ (in the weak/distributional sense), then $E=\nabla u$ for some real valued $u \in W_{l o c}^{1, p}(\Omega)$.
[Hint: You may assume the result known for $E \in C^{\infty}\left(\Omega, R^{2}\right) \cap L^{p}\left(\Omega, \mathbb{R}^{2}\right)$.]
4. Suppose $\sigma: \Omega \rightarrow \mathbb{R}^{2 \times 2}$ is strongly elliptic, in the sense that for some $K \geq 1$,

$$
\begin{equation*}
\frac{1}{K}|h|^{2} \leq\langle h, \sigma(x) h\rangle \leq K|h|^{2}, \quad h \in \mathbb{R}^{2}, \quad \text { a.e. } x \in \Omega \tag{1}
\end{equation*}
$$

If Ω is simply connected and $u \in W_{l o c}^{1,2}(\Omega)$ solves the equation $\operatorname{div}(\sigma \nabla u)=0$, let $v \in W_{l o c}^{1,2}(\Omega)$ be its conjugate, with $\nabla v=* \sigma(x) \nabla u$. Show that

$$
\operatorname{div}\left(\sigma^{*}(x) \nabla v\right)=0 \text { in } \Omega, \quad \text { where } \sigma^{*}=-* \sigma^{-1}(x) *
$$

Show also that σ^{*} satisfies the same ellipticity bounds (1), and that if $\operatorname{det} \sigma(x) \equiv 1$ and σ is symmetric, i.e. $\sigma(x)^{t}=\sigma(x)$, then $\sigma^{*}=\sigma$.
5. Suppose $\sigma: \Omega \rightarrow \mathbb{R}^{2 \times 2}$ is symmetric and $\operatorname{det} \sigma(x) \equiv 1$, with Ω simply connected.

Show directly, without referring to Theorem 5.5, that $u \in W_{l o c}^{1,2}(\Omega)$ satisfies the equation $\operatorname{div}(\sigma \nabla u)=0$ if and only if $\bar{\partial} f=\mu \partial f$, where $f=u+i v$, v is the conjugate of u and

$$
\mu=\frac{\sigma_{22}-\sigma_{11}-2 i \sigma_{12}}{2+\operatorname{Tr}(\sigma)} .
$$

