Department of Mathematics and Statistics Quasiconformal mappings and elliptic PDE's Exercise set 1. 5.2.2013

1. a) Suppose the function $f: \Omega \to \mathbb{C}$ is differentiable at point $z \in \Omega$.

Show that with the complex derivatives $\partial f(z)$ and $\overline{\partial} f(z)$ the derivative gets the form

$$Df(z)(h) = \partial f(z)h + \overline{\partial} f(z)\overline{h}$$

b) Show that for any mapping $f : \Omega \to \mathbb{C}$ the derivatives of f and \overline{f} are related by $\overline{\partial f(z)} = \overline{\partial} \overline{f}(z)$, i.e. that $\overline{f_z(z)} = \overline{f_z}(z)$ at every point $z \in \Omega$ where f is differentiable. Show also that the Jacobian determinant $J_f(z) \equiv \det Df(z) = |\partial f(z)|^2 - |\overline{\partial} f(z)|^2$.

c) Show that if g is differentiable at z and f is differentiable at g(z), then the chain rule obtains the form

$$\overline{\partial}(f \circ g)(z) = (\partial f)(gz)\overline{\partial}g(z) + (\overline{\partial}f)(gz)\overline{\partial}g(z) = (\partial f)(gz)\overline{\partial}g(z) + (\overline{\partial}f)(gz)\overline{\partial}\overline{g}(z)$$
$$\partial(f \circ g)(z) = (\partial f)(gz)\partial g(z) + (\overline{\partial}f)(gz)\overline{\partial}g(z) = (\partial f)(gz)\partial g(z) + (\overline{\partial}f)(gz)\partial\overline{g}(z)$$

2. Show that a map $f : \mathbb{C} \to \mathbb{C}$ is a similarity \Leftrightarrow

$$\frac{f(z) - f(w)}{f(z) - f(\zeta)} = \frac{z - w}{z - \zeta}$$
 for all distinct $z, w, \zeta \in \mathbb{C}$.

3. Let $f(z) = |z|^{\alpha}$, $z \in \mathbb{C}$ and $\alpha > -1$. If $g(z) = \frac{\alpha}{2} \overline{z} |z|^{\alpha-2}$, show that $\int_{\Omega} f(z) \partial \phi(z) dm(z) = -\int_{\Omega} g(z) \phi(z) dm(z)$ for every $\phi \in C_0^{\infty}(\mathbb{C})$. Conclude that the weak derivative $\partial f(z) = \frac{\alpha}{2} \overline{z} |z|^{\alpha-2}$.

[Hint: supp $(\phi) \subset \Omega$, denote $\Omega_{\varepsilon} = \Omega \setminus B(0, \varepsilon)$. Use Green's formula $\int_{\partial \Omega_{\varepsilon}} h d\overline{z} = (-1/2i) \int_{\Omega_{\varepsilon}} \partial h \, dm$ from Theorem AII.1 in Appendix II, and let $\varepsilon \to 0$.]

4. Suppose f is η -quasisymmetric in a domain $\Omega \subset \mathbb{C}$. For a disk $B = B(z_0, r)$ write $sB := B(z_0, sr)$.

Show that the measure $\nu(A) = |f(A \cap \Omega)|$ is doubling on disks contained in Ω , i.e.

$$|f(2B)| \le C(\eta)|f(B)| \qquad \text{when } 2B \subset \Omega$$

5. Suppose $A \subset \mathbb{C}$ with $0, 1 \in A$.

a) Show that the family of all η -quasisymmetric mappings f on A with f(0) = 0 and f(1) = 1 is equicontinuous and pointwise bounded. Here η is fixed.

b) By Ascoli-Arzela theorem and a), every sequence (f_n) of η -quasisymmetric maps contains a locally uniformly converging subsequence (f_{n_k}) . Show that the limit $f = \lim_k f_{n_k}$ is η -quasisymmetric on A.

6. Suppose that F is an η -quasisymmetric mapping defined in \mathbb{C} , and with range $F(\mathbb{C}) \subset \mathbb{C}$. Show that necessarily $F(\mathbb{C}) = \mathbb{C}$.

Note: Combined with Theorem 3.22 this shows that quasiconformal maps defined in \mathbb{C} are surjections onto \mathbb{C} .