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Abstract

At a genomic scale, the patterns that have shaped molecular evolution are believed to be largely heterogeneous.

Consequently, comparative analyses should use appropriate probabilistic substitution models that capture the main features

under which different genomic regions have evolved. While efforts have concentrated in the development and

understanding of model selection techniques, no descriptions of overall relative substitution model fit at the genome

level have been reported. Here, we provide a characterization of best-fit substitution models across three genomic data sets

including coding regions from mammals, vertebrates, and Drosophila (24,000 alignments). According to the Akaike
Information Criterion (AIC), 82 of 88 models considered were selected as best-fit models at least in one occasion, although

with very different frequencies. Most parameter estimates also varied broadly among genes. Patterns found for vertebrates

and Drosophila were quite similar and often more complex than those found in mammals. Phylogenetic trees derived from

models in the 95% confidence interval set showed much less variance and were significantly closer to the tree estimated

under the best-fit model than trees derived from models outside this interval. Although alternative criteria selected simpler

models than the AIC, they suggested similar patterns. All together our results show that at a genomic scale, different gene

alignments for the same set of taxa are best explained by a large variety of different substitution models and that model

choice has implications on different parameter estimates including the inferred phylogenetic trees. After taking into account
the differences related to sample size, our results suggest a noticeable diversity in the underlying evolutionary process. All

together, we conclude that the use of model selection techniques is important to obtain consistent phylogenetic estimates

from real data at a genomic scale.
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Introduction

At large or genomic scales, the patterns that have shaped

molecular evolution are largely heterogeneous. Variations

in nucleotide composition and types of substitution rates

are evident ranging from the large, that is, chromosomes

or chromosomal regions (Lercher et al. 2004), to the small

scale, where variations occur among and within the differ-

ent domains and sites that constitute genomic loci (Yang

1996; Nachman and Crowell 2000).

Initial approaches to the understanding of molecular evo-

lution considered that the variation in rates within genomes

resulted from the interplay of genetic drift and natural selec-

tion on an underlying mutational process that may have

been uniform across the genome. Today, several studies have

provided growing amounts of evidence that the process of
mutation is in itself complex, responding to composition, con-

text dependent, and mechanistic effects which yield region-

ally variable rates of substitution. These effects hold both for

coding and noncoding regions (Subramanian and Kumar

2003; Lercher et al. 2004) and the variation in sequence com-

position together with the chemical properties of nucleotides

(Galtier et al. 2001), the processes of replication (Prioleau

2009) and transcription (Mugal et al. 2009), the mutagenic
nature of recombination in mammals (Galtier et al. 2001), dif-

ferential rates of sex-biased germ line mutation (Nachman

and Crowell 2000), and even cryptic context dependent ef-

fects (Hodgkinson et al. 2009), among others, come together

to produce the underlying mosaic pattern of changes upon

which evolutionary forces may operate.
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Indeed, genome analyses need to consider this large
amount of heterogeneity. In particular, modern phyloge-

netic approaches should use appropriately simple or

complex probabilistic substitution models that take into

account those parameters that capture the features under

which different genomic regions may have evolved (Sullivan

and Joyce 2005). In general, it has been shown that substi-

tution models that are unnecessarily complex can increase

the variance of the estimates, which is likely to make the
estimation of evolutionary history more difficult (Kelchner

and Thomas 2007). Also, when the model of evolution as-

sumed is oversimplified, phylogenetic methods may lose ac-

curacy and consistency leading to incorrect trees more often

or converging to an incorrect tree with increased amounts of

data (Felsenstein 1978; Huelsenbeck and Hillis 1993; Penny

et al. 1994; Bruno and Halpern 1999). At the same time, it is

important to remember that the biological processes under-
lying evolution will be more complex than any of the avail-

able models. All models are wrong, but some are useful (Box

1976). Models themselves are tools, and an adequate

model, rather than capturing the full complexity of under-

lying biological process, can tell us what inferences the data

support (Burnham and Anderson 2003). While several ef-

forts have concentrated on the development and under-

standing of techniques for model selection (for a review,
see Sullivan and Joyce 2005; Kelchner and Thomas

2007), up until now no extensive descriptions of overall

model fit at a complete genomic scale have been reported

in the literature. Notably, next-generation sequencing tech-

nologies are providing vast arrays of biological data, and

phylogenetics will have to deal with very large multigene

or genomic data sets making the understanding of

model-fit heterogeneity fundamental.
Here, three separate genomic data sets consisting of 5

mammals, 15 vertebrate, and 12 Drosophila species were

analyzed in order to characterize substitution model fit

and parameter estimation at a genomic scale. The results

of different model selection strategies, taking model selec-

tion uncertainty into account, and exploring the effect of

variations in the amount of data and divergence present

across the genome, are presented together with an analysis
of the effect of model-fit heterogeneity on phylogenetic

inference.

Materials and Methods

The longest transcripts of orthologous coding genes from the

complete genomes of 5 mammals (human, chimpanzee, rat,

mouse, and dog) and 15 vertebrates (human, chimp, orang-
utan, mouse, rat, dog, cow, horse, chicken, guinea pig, opos-

sum, platypus, stickleback, zebra fish, and fugu) were

obtained from Ensembl version 54 (www.ensembl.org). Se-

quences were aligned using Muscle (Edgar 2004), with a max-

imum running time of 5 h or 9,999 iterations, and filtered

with Gblocks (Castresana 2000) where the minimum number

of sequences for a conserved position and flank position, the

maximum contiguous nonconserved positions, the minimum

block length, and percentage of allowed gaps were set to 3,

4, 8, 10, 0 and 11, 13, 8, 10, 50 for mammals and verte-

brates, respectively (alignments are available from the au-

thors by request). Filtering parameters for vertebrates
were scaled relative to the number of sequences while

choosing a slightly more stringent value for the minimum

number of sequences for a conserved position and allowing

for a higher percentage of gaps per column otherwise. Fil-

tered alignments for the longest transcripts of genes with

orthologs in each of the 12 Drosophila genomes were

obtained from the Drosophila 12 Genomes Consortium

(2007). After eliminating alignments with less than 50
nucleotides, the mammal, vertebrate, and Drosophila
genomic sets consisted of 12726, 4482, and 6664 genes,

respectively.

The jModelTest program (Posada 2008) was used on indi-

vidual alignments of orthologs to estimate the best-fit models

of nucleotide substitution and obtain Phyml’s (Guindon and

Gascuel 2003) maximum likelihood trees and estimates of

model parameters for 88 reversible models of nucleotide sub-
stitution (table 1). Both point estimates and model averaged

estimates of base frequencies, relative substitution rates,

transition/transversion rate ratio (ti/tv), the alpha shape of

the gamma distribution for rate variation among sites (a),

the proportion of invariable sites (pinv), and parameter impor-

tance were considered (see Posada and Buckley 2004). To

make them more comparable across models and data sets,

we scaled the relative substitution rates so they refer the same
unit of time, that in which we expect to see exactly one

change per site. To do this, we divided the estimates reported

Table 1

Model Families and Parameters

Model EF

Rate Partitions

Model UF

K Name Name K

S þ 1 JC rAC 5 rAG 5 rAT 5 rCG 5 rCT 5 rGT F81 S þ 4

S þ 2 K80 rAC 5 rAT 5 rCG 5 rGT, rAG 5 rCT HKY S þ 5

S þ 3 TrNef rAC 5 rAT 5 rCG 5 rGT, rAG, rCT TrN S þ 6

S þ 3 TPM3 rAC 5 rCG, rAT 5 rGT, rAG 5 rCT TPM3uf S þ 6

S þ 3 TPM2 rAC 5 rAT, rCG 5 rGT, rAG 5 rCT TPM2uf S þ 6

S þ 3 TPM1 rAC 5 rGT, rAT 5 rCG, rAG 5 rCT TPM1uf S þ 6

S þ 4 TIM3ef rAC 5 rCG, rAT 5 rGT, rAG, rCT TIM3 S þ 7

S þ 4 TIM2ef rAC 5 rAT, rCG 5 rGT, rAG, rCT TIM2 S þ 7

S þ 4 TIM1ef rAC 5 rGT, rAT 5 rCG, rAG, rCT TIM1 S þ 7

S þ 5 TVMef rAC, rAT, rCG, rGT, rAG 5 rCT TVM S þ 8

S þ 6 SYM rAC, rAT, rCG, rGT, rAG, rCT GTR S þ 9

NOTE.—Twenty-two nucleotide substitution model families with equal (EF) or

unequal (UF) base frequencies and different number of parameters (K) are considered.

A total of 88 individual models can be obtained by specifying a proportion of invariant

sites (þI), gamma-distributed site rates (þG), both (þIþG), or neither for each of the 22

families. K 5 M þ B, where M 5 1 (þI), 1 (þG), 2 (þIþG), or 0 (no rate variation), and

B is the number of branches (B 5 2S � 3, where S is the number of sequences in the

alignment).
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by jModelTest by 2� fA� fC� rAC#þ 2� fA� fC� rAG#þ
2 � fA � fT � rAT# þ 2 � fC � fG � rCG# þ 2 � fC � fT �
rCT# þ 2 � fG � fT � rGT#, where the unscaled relative sub-

stitution rate between nucleotide X and Y is rXY#, and fX is

the stationary frequency of nucleotide X. Descriptive statistics

on parameter distributions were obtained excluding outliers

(those beyond a cutoff value of three times the interquartile

distance for each parameter distribution). Three different

model selection criteria were employed: the Akaike Informa-
tion Criterion (AIC) (Akaike 1974), the Bayesian Information

Criterion (BIC) (Schwarz 1978), and hierarchical likelihood ra-

tio tests (hLRTs) (Posada and Crandall 1998).

The AIC measures the expected distance between the

true model and the estimated model:

AIC5�2ln L þ 2K;

where L is the maximized likelihood score for a model and K
is the number of parameters in the model. It can be inter-

preted as the amount of information lost when we use

a given model to approximate the actual process of molec-

ular evolution. Therefore, the model with the smallest AIC is

preferred. The BIC provides an approximate solution to the

natural log of the Bayes factor:

BIC5�2ln L þ K logn;

where n is the sample size, approximated here by the total

number of characters in the alignment. As with the AIC, the

smaller the BIC, the better the fit of the model to the data. A

nice feature of AIC and BIC is that they offer an instanta-
neous ranking of the models. In this way, we can easily com-

pute the difference for model i:

di 5AICi�min AIC;

In turn, these differences can be used to obtain the

relative weight of any model of R models:

wi 5
expð�1=2diÞ

PR

i5 1

expð� 1=2diÞ
;

Given that the sum of weights for all models add to 1, it is

easy to establish an approximate confidence set of models

by summing the weights from largest to smallest until the
sum reaches the desired threshold. Furthermore, given the

model weights, it is possible to obtain model-averaged es-

timates (also known as multimodel estimates) for any pa-

rameter (Burnham and Anderson 2003). For example,

a model-averaged estimate of the relative substitution rate

between adenine and cytosine (uA–C) using the model

weights (w) for R candidate models would be:

A � C5

PR

i5 1

wiIuA�C
ðMiÞuA�Ci

wþ ðuA�CÞ
;

where wþðuA�CÞ5
PR

i51

wiIuA�C
ðMiÞ and

IuA�C
ðMiÞ5f1 if uA�C is in model Mi

0 otherwise
;

A quite different strategy is the use of hLRTs, where mod-

els are compared in a pairwise fashion using a series of
predefined likelihood ratio tests:

LRT52ðln L1 � ln L0Þ;

where L1 is the maximum likelihood under the more param-
eter-rich complex model and L0 is the maximum likelihood

under the less parameter-rich simple model (null model).

When the two models compared are nested (i.e., the null

model is a special case of the alternative model), and the

null hypothesis is correct, this statistic is asymptotically dis-

tributed as a v2 distribution with a number of degrees of

freedom equal to the difference in number of free param-

eters between the two models. Conveniently AIC and the
BIC can be easily used to compare nested and nonnested

models.

For AIC and BIC, both the best model and the 95% con-

fidence set of models best fitting each alignment in the data

set were considered in the analysis. AIC or BIC model

weights were estimated to examine model selection uncer-

tainty and parameter contribution to the averaged estimates

(see Posada and Buckley 2004). In order to examine the pos-
sible effects of sampling and divergence on the fit of differ-

ent models, we also subdivided the data into sections

according to alignment length and pairwise nucleotide di-

versity (Nei and Li 1979) by selecting genes found in the

same quartile of both parameter distributions (LP hereafter):

‘‘low LP’’ (722 genes; first quartiles), ‘‘mid LP’’ (722 randomly

sampled genes from the second and third quartiles), and

‘‘high LP’’ (554 genes; fourth quartiles). As such, long genes
with low variation and short genes with high variation were

excluded from the analysis. Graphics and statistics were ob-

tained using the R package (R Development Core Team

2008).

In order to understand whether the observed model-fit

heterogeneity along the genome could have substantial ef-

fects in phylogenetic inference, comparisons among the

maximum likelihood trees obtained for the best-fit model
and those of 1) all other models, 2) those contained within

the 95% confidence interval (95% CI), and 3) those outside

of the 95% CI, were evaluated using four different tree dis-

tance metrics: the symmetric difference (RF), which consid-

ers clade differences among trees (Robinson and Foulds

1981), the branch score (BS) (Kuhner and Felsenstein

1994) which measures the square difference between

branch lengths among trees, and the K-tree score (KS) to-
gether with its associated scaling factor (SF) (Soria-Carrasco

et al. 2007) which considers differences in branch length

after minimizing the difference in divergence between
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trees. In order to compare data sets with different numbers
of species (S), the tree distances were rescaled dividing by

the number of clade comparisons in the case of the RF

score, RF# 5 RF/(2 � (S � 3)), and by the number of

branches in for the BS and KS, D# 5 D/(2 � S � 3), where

D is BS or KS. Statistical differences among trees were eval-

uated using pairwise Kishino–Hasegawa (KH) (Kishino and

Hasegawa 1989), Shimodaira–Hasegawa (SH) (Shimodaira

and Hasegawa 1999), and Approximately Unbiased (AU)
tests (Shimodaira 2002).

Results

Heterogeneity of the Best-Fit Model

Figure 1 shows the results obtained using AIC as the selec-

tion criterion for all three genomic sets. Of the 88 reversible

nucleotide substitution models considered, 82 were se-

lected as best-fit models among all genomic sets (JCþI,

F81þI, JCþG, F81þG, JCþIþG, and F81þIþG where never

identified as best-fit models; JC and F81 had a negligible

representation with 1 and 3 genes, respectively). Consider-
ing only the relative substitution parameters and the base

frequencies forming the instantaneous rate matrix of

a model (henceforth the ‘‘model family’’; i.e., the JC family

includes the JC, JCþI, JCþG, and JCþIþG models), 21 of 22

possible families were represented in the best-fit set.

The frequency with which each model was found to be

the best-fit model across the genome varied considerably

among the different genomic sets (table 2). The patterns
found for vertebrates and Drosophila were quite similar

yet different from those found in mammals. In the verte-

brate and Drosophila sets, there was a tendency toward

more complex models (i.e., more parameters) leading to

larger differences among the frequencies of each successive

model when ranked from the most highly represented to the

least represented. In general and considering all three spe-

cies sets, more than a few families (a minimum of 6–10 of
22) or models (a minimum of 11–17 of 88) were required to

explain at least 80% of the genes.

Differences in Parameterization

Best-fit models with particular parameterizations were

much more common than others. This is especially evident

in figure 2, where different base frequency, relative substi-

tution rate, and rate heterogeneity parameterizations are

compared within each of the three species sets analyzed.

Best-fit models usually included unequal base frequencies

(UF) and rate variation among sites (either considering

a proportion of invariable sites (þI), gamma distributed
rates (þG) or both (þIþG)). Within these, models only con-

sidering þI were much more frequent than those with þG
in the mammal set, whereas those considering both þI and

þG were much more frequent in both vertebrate and

Drosophila sets.

Across the genomic sets, the most striking variation in the
relative ratematricesof thebest-fitmodelsoccurredbetween

theF81model (labeledas ti5 tv infig.2) and the restof theUF

variants (ti,tv), indicating that transition and transversions oc-

cur at different rates for the vast majority ofgenes. Within the

latter, best-fit models specifying two types of transitions (2 ti)

were significantly more common than those with only one

transition rate (1 ti). For transversions, best-fit models speci-

fyingonlyonetypeoftransversionweresignificantly lesscom-
mon than those with two or four different transversion rates,

whereas therepresentationofbest-fitmodelswith four trans-

version rates grew with the number of species. Also, consid-

eringthethreepossiblecombinationsofthefourdistincttypes

of transversionsunder twotransversion ratemodels (r1, r2,or

r3 corresponding to: rAC 5 rGT, rAT 5 rCG; rAC 5 rAT,

rCG 5 rGT; or rAC 5 rCG, rAT 5 rGT, respectively), r3 was

always found at a significantly lower proportion. Finally, it
was clear that where partitions among parameters differed

mostamongsets (site rateheterogeneity,numberof transver-

sion rates, andamongpossible combinationsof two transver-

sion rates), parameter partitions were more similar between

the vertebrate and Drosophila sets than either of them was

with the mammal set (fig. 2).

Taking Model Selection Uncertainty into Account

When considering the set of models that fell within the 95%
CI (fig 1, gray bars), results were similar to those observed

for the best-fit models. The only marked difference occurred

in the mammal set, where þIþG models were found highly

represented under the 95% CI, but seldom identified as

best-fit models (only 0.34% of all best-fit models contained

þIþG under this data set).

It is also of interest to consider how model uncertainty

itself varied across the data sets. The distribution of the
number of models in the 95% CI and best model weight

for each species set under the AIC is shown in figure 3.

For the mammal, vertebrate, and Drosophila sets, the max-

imum number of models in the CI was 69, 33, and 48, re-

spectively, with medians of 21, 6, and 6. The bimodal

distribution for the mammal set is further characterized in

supplementary figure S1 (Supplementary Material online),

where a decomposition of model frequencies by number
of models under the CI shows that the valley between both

peaks is due to a lack of power for differentiating among

models other than GTR, TrN, and TIM variants with compa-

rable certainty. Similarly, model weights were highest in the

vertebrate set and smallest in the mammal set.

The Effect of Alignment Length and Pairwise
Nucleotide Diversity

Both parameters considered jointly, hereafter LP, were eval-

uated using the mammal set (table 2, bottom). As LP in-

creased, the minimum number of best-fit AIC models
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required to explain at least 80% of the genes decreased

from 12 to 10 and 7 as subsets of low, medium, and high

LP were considered (see Materials and Methods). Accord-

ingly, the most frequently represented best-fit AIC models

shifted toward more complex relative rate parameteriza-
tions. Under high LP, GTR accounted for approximately

a fourth of all genes (25.09%), followed by TVM

(15.7%), and TIM3 (14.98%). In general, the TVM, TPM3uf

(12.27%), and TMP2uf (5.05%) families were more fre-

quently selected under high LP, decreasing, albeit maintain-

ing, the bias where two instead of one of transition rates

were found with higher frequencies. Also, an increased

LP resulted in a decrease in the size of the 95% CI (number

of models) and an increase in the weight of the AIC model

(data not shown).

Heterogeneity in Parameter Estimates

At a genomic scale, heterogeneity was observed not only in
the best-fit models selected and most frequent parameter-

izations but also in that under any given best-fit model, most

parameter estimates also varied broadly among genes. A

complete table with summarizing statistics of genomic

FIG. 1.—Genome-wide model diversity. Bars represent the percentage of times a given substitution model (x axis) is the best model (black bars, left

y axis) or is included in the 95% CI (95ci: gray bars, right y axis) using AIC. Models are shown grouped according to their base frequency and rate

variation among sites parameterization and ordered by increasing number of parameters within each group (see table 1).
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parameter values is provided in supplementary table S1

(Supplementary Material online). Histograms for most pa-

rameter distributions are shown in figure 4.

The frequencies of the four nucleotide bases (A, C, G, and

T) were similar across species sets and ranged from a mini-
mum value of 0.06 to a maximum of 0.47. While median

values were close to the equal frequency value of 0.25, that

of T showed a general bias toward lower frequencies with

a mean of approximately 0.21. In the mammal set, and

when considering the estimates derived from the best-fit

model only, the distributions of the frequency of A and

C, slightly less that of G, and even less so that of T, were

bimodal around 0.25.

The variation in the transition/transversion rate ratio was

large ranging, from 0.69 to well over 6, with a median of

2.24 in the mammal set, the latter being consistent with

the commonly accepted ratio of transitions being twice

as frequent as transversions on average. On the other hand,
the median for the Drosophila and vertebrate species sets

were 1.35 and 1.78 where only 116–100 genes contained

models with the parameter.

The relative rate parameters (rAC, rAG, rAT, rCG, rCT)

among all three species sets showed wide ranges and dif-

ferent median estimates, (fig. 4, supplementary table S1,

Supplementary Material online). The two transition rates,

rAG and rCT, were consistently higher than the transversion

Table 2

Genome-Wide Model Family Ranking

Data/Count

Rank

1 2 3 4 5 6 7 8 9 10

AIC best model Mammal TIM3 TrN TPM3uf GTR HKY TIM2 TIM1 TPM2uf TVM TPM1uf

10 15.09 12.69 10.39 9.08 9.03 8.37 7.43 4.14 2.81 2.63

Vertebrate GTR TIM2 TIM3 TrN TIM1 TVM TPM3uf

7 28.29 20.73 12.96 7.61 4.26 3.53 3.01

Drosophila TIM2 GTR TIM3 TrN TIM1 TVM

6 28.84 23.2 12.83 9.17 4.98 2.1

AIC 95% CI Mammal TIM3 GTR TrN TIM2 TIM1 TPM3uf HKY TVM TPM2uf TPM1uf

59.34 52.69 51.02 49.43 47.84 41.81 36.01 35.27 34.86 33.48

Vertebrate GTR TIM2 TIM3 TIM1 TrN TVM TPM3uf TPM2uf HKY TPM1uf

32.98 24.7 21.31 15.81 15.37 13.5 10.07 9.95 6.43 5.92

Drosophila GTR TIM2 TIM3 TrN TIM1 TVM TPM2uf TPM3uf HKY SYM

34.95 30.39 24.29 19.68 18.04 11.26 9.89 8.59 6.49 6.31

AIC best model LP mammal Low LP TrN HKY TIM3 TIM1 TPM3uf TPM1uf TIM2 TPM2uf TrNef TIM2ef

12 22.44 14.82 9.56 7.48 5.54 5.12 5.12 4.02 2.35 1.39

Mid LP TIM3 TrN TPM3uf TIM2 HKY GTR TPM2uf TPM1uf TIM1 TVM

10 17.31 14.13 11.08 9.83 9.14 7.34 4.02 3.46 3.19 2.77

High LP GTR TVM TIM3 TPM3uf TPM2uf TIM2 TrN

7 25.09 15.7 14.98 12.27 5.05 4.15 3.79

NOTE.—The set of model families with 1) the highest representation under the best model, 2) the 95% CI, or 3) the best model for different subsets of the mammal set varying in

both alignment length and pairwise nucleotide diversity (‘‘Best Model LP Mammal’’) are shown ranked by their frequency (as a percentage) in each of the three sets of species (labels

under the ‘‘Data’’ column, first and second main rows) or low, median, and high values of LP (labels under the ‘‘Data’’ column, third main row). Only the first ten ranks shown, and

where the best model is considered (first and third main rows), only the minimum number of families required to explain at least 80% of all genes were considered (numbers under the

‘‘Count’’ column).

FIG. 2.—Genome-wide representation of model parameterizations. Bars indicate the percentage of best-fit models in each category. EF and UF

indicate equal or unequal base frequencies, respectively. IG, G, I, and N indicate models þIþG, models þG, models þI, and models without rate

variation, respectively. ti 5 tv and ti,tv correspond to equal or unequal transition and transversion rates. 2 ti and 1 ti indicate 1 or 2 different transition

rates. 1 tv, 2 tv, and 4 tv indicate 1, 2, or 4 different transversion rates. r1, r2, and r3 indicate the index of the TIM and TVM models (see table 1). For ti1–

2, tv1, 2, 4, and r1–3, JC and F81, found to have negligible genome-wide representations, were excluded. Black lines show the expected percentage of

models under each parameterization of the 88 considered. Significantly different proportions among pairwise comparisons (binomial test, P, 0.05) are

labeled with an asterisk.
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rates. They also showed the highest variation among

species sets where both showed higher estimates in the

mammal set, followed by the Drosophila, and vertebrate

sets (supplementary table S1, Supplementary Material

online). Interestingly, the distributions of the point and

model-averaged estimates were very similar (black and
green bars, respectively) in all cases.

The proportion of invariant sites also showed consider-

able variation ranging from 2% to 98% with a median

of approximately 50% and a left skew in the distribution.

The variation in the alpha parameter of the gamma distribu-

tion ranged from values of 0.01 to well over 2 with a median

of 0.41 to 0.53 and a right skew (supplementary table S1,

Supplementary Material online. In general, model-averaged
parameter estimates (blue rows, supplementary table S1,

Supplementary Material online; green bars, fig. 4), obtained

as weighted means of all models within the 95% CI, were in

agreement with best model estimates.

Parameter heterogeneity from the perspective of a CI

can also be looked at through the representation of param-

eter importances (supplementary fig.S2, Supplementary

Material online). Their distributions support the parameter
partitions described thus far.

Considering Alternative Selection Criteria

The results presented so far were obtained using AIC as the
selection criterion. Under BIC, the results (supplementary

fig. S3, Supplementary Material online) were different in

terms of the most frequent model families and parameter

complexity—BIC selected simpler models but suggested

similar model patterns and overall model-fit heterogeneity

when compared with AIC.

Overall, 82/88 models or 22/22 model families were ob-

served for the best-fit BIC model among all three genomic
species sets. The TVMef, TVMefþI, SYM, SYMþI, F81þG,

JCþIþG, F81þIþG models were absent throughout. In this

case, both extremes of model complexity (JC, F81, and GTR)

showed considerably low representations (supplementary

fig. S4, Supplementary Material online) when compared

with the results obtained with AIC. Again, the frequencies

of individual models among species sets and parameteriza-

tions varied, showing patterns that agreed more between

theDrosophila and vertebrate sets and differed in mammals.

However, unlike under AIC, the mammal set showed a ten-

dency toward models with the lowest complexity in rate

parameterization.

In terms of variation among the different types of param-

eterization, the use of BIC (supplementary fig. S4, Supple-

mentary Material online) led to the same general patterns

amongparameterpartitions thanAIC,albeitwithsmalldiffer-

ences. The 95%CI set showedvery similar frequencies agree-

ing with those obtained from the best model (gray vs. black

bars, supplementary fig. S3, Supplementary Material online).

Considering a subset of the mammal set with high values for

length and nucleotide diversity (LP), rate parameterizations

still showed a preference for less parameter rich models

but agreed notably with AIC in terms of rate heterogeneity

and base frequency partitions: þI (56.86%) and þG

(37.00%) were the most frequent and UF models

(90.43%) were much more frequent than their EF analogs.

Also, as LP increased, the minimum number of models re-

quired to explain at least 80% of the genes grew from 4 to

6 in the mammal set. HKY (24.91%) was again the most rep-

resented best-fit model, but K80, which was previously ob-

served as the second most represented model, dropped

from 20.54% to 2.53%. Also, more parameter rich models,

such as TPM3uf (23.83%) and TIM3 (9.39%), were found

among the set of most highly represented models.

Finally, the hLRT showed markedly reduced levels of het-

erogeneity in model fit and in general a preference for much

simpler models (supplementary fig. S5, Supplementary Ma-

terial online). For example, HKY was by far the most fre-

quent best-fit model, followed by TrN, JC, and the TIMuf

variants, notably, without I or G parameterizations (together

covering .80% of all genes) in the mammal set.

FIG. 3.—Distribution of model selection uncertainty. The histograms, depicted as shaded areas, show the number of models in the AIC 95% CI set

(left) and the best AIC weight (right) per gene for all genes in each of the three species sets analyzed.

Arbiza et al. GBE

902 Genome Biol. Evol. 3:896–908. doi:10.1093/gbe/evr080 Advance Access publication August 7, 2011

 by guest on January 28, 2013
http://gbe.oxfordjournals.org/

D
ow

nloaded from
 

http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr080/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr080/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr080/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr080/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr080/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr080/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr080/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr080/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr080/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr080/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr080/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr080/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr080/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr080/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr080/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr080/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr080/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr080/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr080/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr080/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr080/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr080/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evr080/-/DC1
http://gbe.oxfordjournals.org/


The Effect of Model Selection on the Estimation of
Phylogenetic Trees

The effect of different models on phylogenetic reconstruc-

tion were evaluated by comparing the tree obtained from

the best fit AIC model with all the rest (a) and either those

contained (c) or excluded (r) from the AIC 95% CI set. With

respect to tree topology (RF#) and or branch length (BS# and

KS#), the trees derived from models in the 95% CI set

FIG. 4.—Genome-wide parameter estimate distributions. Examples are shown for estimates derived from the AIC best-fit model (black) and the

weighted average of all models in the 95% AIC CI (green). All parameters shown, except alphaIG and pinvIG derived from the 15 species set, are from

the five species set. pinv, pinvIG and alpha, and alphaIG are the proportion of invariant sites and shape parameter of the gamma distribution used to

model rate variation among sites from the þI (with a considerable representation in the mammal set only) or þIþG models (with considerable

representation in the 12 and 15 species sets only), respectively. ti/tv is the transition/transversion rate ratio—considerably represented only in the five

species set. Relative substitution rate estimates were ‘‘scaled’’ to facilitate comparisons (see Materials and Methods).
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showed much less variance and significantly smaller distan-

ces to the tree estimated under the best-fit model than trees

derived from models outside this interval (fig. 5). On the

other hand, when only those models falling outside of

the CI were considered, or when no distinction was made,

the differences in tree distances observed were highly signif-

icant. Similar results were obtained when considering differ-

ences in the amount of global divergence in trees using only
the scaling factor SF. In this case, the 95% CI set average

was equally and proportionally distributed around 1,

whereas the other two groups were generally scaled by

a factor . 1. Overall, the differences in variance and mean

phylogenetic distance grew (r and a groups) with tree size

(mammals , Drosophila , vertebrates) but remained nota-

bly low for the 95% CI set (c) among the various distance

metrics.
Moreover, to evaluate if trees produced by different mod-

els were on average significantly different between these

groups, the analysis was repeated considering the distribu-

tion of P values obtained from the AU test. Figure 6 shows

the mean P value per gene for the trees estimated under

models in groups a, c, or r. Across all three genomic sets,

models within the 95% CI (c) showed a nonsignificant P
value (mean P values5 0.3–0.4), whereas for the other sets,
P values tended to decrease and become significant (a) es-

pecially for the set of models (r) outside the 95% CI (mean P
values 5 0.01–0.03).

Finally, because the use of the most complex model

(GTRþIþG) by default is sometimes common practice, we

computed the number of times the tree topologies inferred

under the GTRþIþG and AIC models were identical

(i.e., RF 5 0). They were 99.5%, 96.0%, and 90.7% for

the mammal, Drosophila and vertebrate sets, respectively,

showing an increasing amount of disagreement as the num-

ber of species increased. Similarly, the mean distance (vari-

ance in parenthesis) between GTRþIþG and the AIC model

increased with the number of species. RF distances between

both models in the mammal, Drosophila, and vertebrate

sets, respectively, were 0.01 (0.03), 0.57 (1.46), and 1.67
(21.89), BS distances were 0.15 (8.33), 0.17 (13.26), and

0.51 (21.89), and the corresponding KS distances were

0.02 (0.17), 0.09 (9.42), and 0.20 (4.66). In most cases,

the AIC and GTRþIþG trees were not statistically different

(P � 0.05) according to the pairwise KH and SH tests. The

KH test was significant in 0.27%, 0.04%, and 0.07% of

the alignments for the mammal, Drosophila, and vertebrate

sets, respectively. The corresponding values for the SH test
were 0.35%, 0.16%, and 0.16%. In addition, the AU tests

rejected the AIC trees 0.3%, 0.2%, and 11% of the time

and the GTRþIþG trees 1.2%, 1.7%, and 8.2% of the

time, respectively. In addition, because we know the pu-

tative species phylogeny for these sets of species (Dro-
sophila 12 Genomes Consortium 2007; Santini et al.

2009; Hallstrom and Janke 2010), we computed the num-

ber of times the estimated gene trees and the known spe-
cies tree showed the exact same topology. When the gene

trees were estimated under the AIC model the percen-

tages were 98.7%, 32.2%, and 3.48% for mammals, Dro-
sophila, and vertebrates, respectively. When we assumed

a GTRþIþG model, the percentages were 98.6%,

32.2%, and 3.39%, respectively. Considering a 50% ma-

jority-rule consensus tree with all genes trees for a given

FIG. 5.—Model selection and tree distances. Boxplots show rescaled mean tree distances to the best-fit model tree from trees estimated under

models within the ci95 set (c), models outside of the ci95 set (r), and all models (a 5 c þ r). Four different metrics are shown: RF# 5 symmetric

difference distance per clade, BS# 5 branch score distance per branch, KS# 5 K-score distance per branch, and SF 5 scaling factor. 99% CIs are shown

as whiskers extending from the red points. CIs were inferred excluding outliers—estimates falling beyond 1.5 times the interquartile distance.
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species set, the resulting topology was identical to that of
the species tree in both cases.

Discussion

Up until now, no extensive descriptions of relative model fit

at the genomic scale had been reported in the literature.
Here, results from three different genomic sets clearly show

that different genes are best explained by different models

of nucleotide substitution, suggesting that selecting among

the variety of substitution models available is justified.

When considering the results from best-fit models or

from the 95% CI set of models, several patterns were dis-

cerned. Most of the 88 models considered were selected as

the best fit for at least one gene, whereas some models, al-
though present, showed a clearly low frequency of repre-

sentation. The effect was mainly due to a marked

preference for different parameterizations where, indepen-

dent of whether AIC or BIC were considered, the most fre-

quent best-fit models assumed unequal based frequencies,

different transition and transversion rates, and some form of

rate variation among sites (either þI or þG).

The patterns of genomic heterogeneity inferred consid-
ering models under the approximate 95% CIs were mark-

edly similar to those obtained using the best-fit model.

However, an exception was observed in the mammal set,

where the representation of þIþG models grew consider-

ably under the AIC 95% CI in relation to the best model.

Conceivably, and given the difference among the mammal

and both the vertebrate and the Drosophila sets, the low

divergence and number of species in the mammal set favor
a scenario where the inclusion of either parameter that is

able to account for some variation in rates among sites

(þI or þG), almost systematically outweighs the cost of in-
cluding both parameters in the AIC score. Albeit, given the

difference in results between the best model and 95% CI

set, this does not occur without a given degree of uncer-

tainty. In terms of both selection criteria, and considering

LP as a proxy for the effect of sampling, rate parameteriza-

tions at a genomic scale are most accurately described as

generally heterogeneous over all possibilities with the ex-

ception of two: no partition (one rate for all transitions
and transversions), which is largely absent, and partitions

among transversions not separating rAC from rGT and

rAT from rCG which are noticeably less frequent (r3, fig.

2). In terms of other parameterizations, irrespective of the

selection criterion used, and taking into account LP and

model selection uncertainty, UF are preferred of EF models,

and the inclusion of at least þI or þG is preferred over mod-

els without parameterization of rate heterogeneity among
sites. The scenario described is that while certain parts of

model space are clearly less frequent, overall model fit at

a genomic scale is largely heterogeneous, where many mod-

els are required to explain sequence evolution, particularly

when taking into account sampling variance and divergence

across a genome.

At the same time, it is important to note that the com-

plexity of the best-fit models was larger for the genomic sets
with higher number of species. For example, the number of

different transversion rates, the proportions of UF to EF and

that of þIþG to þG to þI to the bare model, all increased

with the number of sequences (fig. 2). This is expected given

that model selection procedures aim to minimize parameter-

ization that does not significantly account for variation ob-

served in the data. However, it is also interesting to note that

while the Drosophila and vertebrates are the closest in the

FIG. 6.—Model selection and phylogenetic inference. Boxplots show the distributions of the P values for the AU test estimated under models

within the ci95 set (c), models outside of the ci95 set (r), and all models (a 5 c þ r). Whiskers depict the largest value within 1.5 times the interquartile

distance of each distribution. Values in boxes above plots show the overall mean for each distribution.
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number of sequences analyzed (12 and 15 species, respec-
tively), Drosophila and mammals are the closest in the evo-

lutionary time covered (roughly 100 and 40 Ma, respectively.

Hedges 2002; Springer et al. 2003), as vertebrates cover

.400 Ma (Blair and Hedges 2005). Thus, the result that

the overall genomic evolutionary patterns described by nu-

cleotide substitution model fit, either obey common param-

eterization patterns among all species sets or vary mostly

according to the number of species analyzed, suggests that
the number of species and characters analyzed across the

alignment had a stronger contribution to the variation in

the statistical patterns observed than possible evolutionary

characteristics particular to the species considered in each

set. This observation is also supported by the fact that in-

creased alignment length and diversity as a proxy for the ef-

fect of sampling (LP) also increased model complexity,

decreased model selection uncertainty—as seen from the
distribution of model weights or the size of the 95% CI,

and affected overall model heterogeneity as portrayed

through AIC and BIC. In the last case, it is interesting to no-

tice that increasing LP had similar effects as increasing the

number of species and affected the minimum number of

models required to explain at least 80% of the data. Again

as the number of characters or sequences in the alignment

increased, both criteria moved toward more complex mod-
els, but as where AIC grew away from a more heteroge-

neous representation of rate parameterizations to include

mostly the more complex models, BIC grew into a heteroge-

neous representation of rate parameterizations and away

from the inclusion of mostly simple models. Considering

that AICc provided results that were virtually the same as

those from AIC (data not shown), this can be explained

by the stronger penalization term for the number of param-
eters in BIC when compared with AIC.

In this line, it is also important to highlight the strong dif-

ference in the level of portrayed heterogeneity observed

when considering the hLRTselection strategy. As noted pre-

viously (Kelchner and Thomas 2007), the number of models

observed, and those required to explain at least 80% of the

genomic data sets, was considerably reduced according to

the hLRTs. Yet unlike in Kelchner and Thomas (2007), a slight
skew toward more simple instead of relatively complex

models is found. Moreover, considering that for 86.0%,

100%, and 99.9% of genes under the mammal, vertebrate,

and Drosophila sets, respectively, the best-fit hLRT model

was not included within the AIC 95% CI, the notion that

hLRTcan fall short of portraying the extent of heterogeneity

present at a genomic scale gains importance.

In addition, one can also consider if different parameter-
izations are independent of each other or interact producing

different patterns. Interestingly, especially when comparing

patterns among þI and þG models, the distribution of

model frequencies among rate and frequency parameteriza-

tions between these groups was most notably proportional,

suggesting little or no interaction between I and G param-
eterizations and other model parameters. In the case of fre-

quency parameterization partitions—equal (EF) or unequal

(UF) base frequencies, some slight differences are observed

among the representation of other parameters, suggesting

a possible interaction among nucleotide frequencies and

rate parameters. For example, under all three genomic sets,

TrN was selected more often than TPM3uf, whereas the op-

posite was true for their EF versions—TrNef and TPM3 (sup-
plementary fig. S3, Supplementary Material online). This

suggests that under an EF scenario, considering different

types of transversions tended to be more successful,

whereas under UF, different rates among transitions became

more common among best-fit models.

The considerable amount of variation observed among

genes under any given model particularly supports the no-

tion that evolutionary patterns are largely heterogeneous,
highlighting the importance of model selection to study ge-

nomic data sets. For example, while the median of the tran-

sition/transversion rate estimate in the mammal set was

consistent with the commonly accepted ratio of transitions

being twice as frequent as transversions on average, it

ranged from 0.685 to well over 6. Relative substitution rates

between nucleotides and base frequency estimates also

showed considerable levels of variation among all species
sets. Estimates of the alpha parameter of the gamma distri-

bution used to model rate variation among sites indicated

that there are genes ranging from, those with highly con-

served sites and little rate heterogeneity, to others with

highly heterogeneous rate distributions, whereas most fell

generally under a moderate form of the former pattern.

Point ML and model-averaged estimates were very similar,

which suggests that parameter estimation is quite consis-
tent across different models, especially across those with

a better fit to the data.

The relevance of taking model selection uncertainty into

account in phylogenetic analyses is clear from our results.

Trees derived from models under the 95% CI produced esti-

mates in strong agreement with those obtained under the

best-fit model. At the same time, models falling outside this

interval resulted in significantly different trees. On one hand,
these results show that while there may still be theoretical is-

sues when choosing how to weigh candidate phylogenies re-

sultingfromdifferentmodels,previousdoubtsonthepossible

lack of a relationship between AIC scores and resulting trees

(Ripplinger andSullivan 2008) areputaside.Additionally, tak-

ingintoaccountthatpreviousstudieshaveshownthatbest-fit

models tend to give better trees than less fit models—or at

least equally good trees (Sullivan and Joyce 2005), we con-
clude that the use of model selection techniques is beneficial

to obtain accurate phylogenetic estimates from real data at

a genomic scale. In part because the real substitution process

is more complex than any of the models we consider, some

have advocated the use of the most complex model by
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default,without reference tomodelfit (Yang2006).Here, the
useof themost complexmodel (GTRþIþG) insteadof theAIC

model did not lead to important changes in the resulting phy-

logenetic estimates. The corresponding trees had the same

topology in most cases, and only in very few instances were

theystatisticallydifferent.Logically, thedifferencesgrewwith

the number of sequences but were always scarce, something

expected given that our data consist of ‘‘easy’’ trees, with rel-

atively long branches and few taxa. In summary, the topolog-
ical tests and the comparison with the known trees suggest

that both strategies performed equally well with our data.

In general, using the AIC model should imply less computa-

tional time than the most complex model but depending

among other things on the number of candidate models, se-

quence divergence, and number of sequences. In theory, the

AIC should reduce the variance of the phyogenetic estimate,

although here the observed variances were similar. In order to
clarify their relative behavior in more complex cases, specific

simulation studies are needed.

Most genes recovered the ‘‘known’’ mammalian species

tree, but this was not true for the Drosophila and verte-

brate sets. In the former case, only a third of the genes re-

covered the known species topology, whereas the rest

showed alternatives in which the position of Drosophila
erecta and Drosophila yakuba changed with respect to
the Drosophila melanogaster species. This can be explained

in terms of extensive lineage sorting (Pollard et al. 2006)

and also regarding the relationships of Drosophila grimsha-
wi, Drosophila virilis, and Drosophila mojavenis, which are

known to be problematic. For the vertebrates, only a little

more than 3% of the genes showed the ‘‘expected’’ topol-

ogy. Here, the changes affected mostly the relationships

within the human, chimp, and orangutan clade and the
dog, cow, and horse clade. Lineage sorting is not an impor-

tant force at least in the former clade (Hobolth et al. 2011)

and most of the disagreement probably arises from sam-

pling error. Many of these genes are small and will be un-

able to provide information to resolve the shorter branches.

Also the Phyml search implemented in jModelTest is not the

most thorough. The relationships within the latter clade are

controversial (Hou et al. 2009). Reassuringly, in all three ge-
nomic data sets the consensus trees constructed with all

gene trees were largely compatible with the expected to-

pologies.

In summary, our results have shown that it takes more

than only a few models to explain genomic evolution and

that model choice can affect parameter inference including

phylogenetic trees. This is particularly relevant given that

many studies which rely specifically on these models for test-
ing hypothesis, reconstructing phylogenies, or obtaining pa-

rameter estimates are still found based on single models

(i.e., JC, K80, HKY or GTR), sometimes chosen arbitrarily,

on large sets of concatenated data without consideration

of the possible effects of model choice and model-fit hetero-

geneity. The large heterogeneous nature of genomes and
both current and future availability of increasing amounts

of sequences merit the consideration of methodologies that

can appropriately handle the amount of diversity present in

large scale biological data. While model selection and multi-

model inference will likely not be a broad spectrum strategy

for all challenges, our results suggest that they provide

a valid means to address what is a considerable amount

of diversity across the genome, by selecting a group of
best-fitting models that maximize phylogenetic accuracy.

Supplementary Material

Supplementary figures S1–S5 and table S1 are available at

Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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