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Chapter 1

Propositional logic

1.1 Introduction

Welcome to the Logic One course. During this course
we learn the very basics of logic. The course is divided
into short lectures, sets of solved problems and sets of
problems for you to solve. Emphasis in this course is in
learning some basic methods that can be used to solve
problems involving concepts from logic.

In this lecture we start the first of the two main topics
of this course, the topic of propositional logic. Proposi-
tional logic is a method for understanding how we use the
words “and”, “or”, “not”, etc in everyday language and
in science. During the course we find systematic ways
to check whether an argument involving these so called
connectives is correct or not.

It is important to understand that most sentences in ev-
eryday language and in science have in addition to the
above mentioned connectives also other logical concepts,
so when we only focus on “and”, “or”, “not”, etc, we
make a huge simplification. However, this is a useful sim-
plification! Later during this course we learn how to deal
with more complex expressions.

In some sense logic is one of the fundamental building
blocks of science, something that mankind realized cen-
turies ago. Nowadays it is also true that a lot of the elec-
tronic environment we live in, such as internet, computers,
mobile phones, etc are based on logic. In a sense, logic is
a common language between humans and computers, and
perhaps the only common language. Therefore it is not
surprising that logic has an important position not only
in mathematics and philosophy, but also in computer sci-
ence.

1.2 Propositional formulas

1.2.1 Introduction
Now we shall introduce the concept of a propositional for-
mula. Intuitively, a propositional formula is an assertion,
a sentence, which expresses how things are, something
which can be thought to be true or false. Here are some
examples:

• x < 10

• x < 10→ x2 < 100

• (x = 10 ∧ y = 12) ∧ (z = 4 ∨ z = 5)

• It is raining or snowing.

The first three examples are from the arithmetic of natu-
ral numbers, and they are true or false depending on what
x, y and z are. The last example is from natural language
and it is true or false depending on—well—the weather.

Not all sequences of words are propositional formulas.
Take for example

• x+ 10

• sin(x)

• I promise that he comes.

• Stop that!

The first two are mathematical formulas. They have
some value, depending on the value of x, but they do
not have a meaning as something that is true or false.

11
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The third one, “I promise that he comes” is a kind of
speech act, but it is not a true or false sentence, although
“I promised that he comes” would be. The last example,
“Stop that!” is also a speech act, not a true or false sen-
tence.

In this course it is not very important to have a sharp
ear to what is a propositional formula and what is not. In
fact, we will give now a mathematical definition of propo-
sitional formulas and then everything is clear.

1.2.2 Atomic formulas
We now give a mathematical definition of propositional
formulas. The advantage of a mathematical definition is
that we can then use mathematical methods for the study
of such formulas. The phrase “mathematical definition”
means here more or less the same as a “precise defini-
tion”. When some language is defined in this kind of
precise way it becomes what is called a formal language.
Nobody speaks a formal language, except perhaps a com-
puter when it is “thinking”. A formal language is a model
of a real language.

The simplest propositional formulas are the mere
proposition symbols

p0, p1, p2, ...

We call these simplest formulas atomic formulas.
When we look at a mathematical sentence like

If x < 10 then x > 5, and if not x < 10 then x > 15.

the atomic formulas are x < 10, x > 5, and x > 15. We
could replace them by proposition symbols p0, p1, and
p2. It doesn’t matter which pn we use as long as we are
systematic. When we replace, say x < 10, by p0 we lose
some information because obviously x < 10 is more in-
formative than mere p0. This loss of information is essen-
tial in propositional logic. By giving up some information
we achieve freedom which is useful, as we see later. So
don’t worry when you see information disappear when we
pass from natural or mathematical language to the formal
language of propositional logic.

In the sentence

If it rains then it blows,
and if it blows then it gets cloudy.

the atomic formulas are “it rains”, “it blows” and “it gets
cloudy”. They are atomic because we cannot break them
into smaller pieces by means provided by propositional
logic. Again we can replace them by p0, p1 and p2 and
from the point of view of propositional logic the meaning
of the sentence would not change.

Perhaps some resistance builds up in your mind: How
can you take such nice sentences like “it rains”, “it
blows”, “it gets cloudy” and replace them with those cold
technical symbols p0, p1 and p2, and still maintain that
this tells us something about the original sentence. Wel-
come to the world of propositional logic! Even after the
bold replacement we can see the logical structure of the
original sentence. This is the point of logic. But let us
carry on.

1.2.3 Propositional operations
The propositional operations are:

Negation ¬ not
Conjunction ∧ and
Disjunction ∨ or
Implication → if ... then...
Equivalence ↔ if and only if

Parentheses (,) are used for clarity. These are the so
called connectives. They are used to form more complex
sentences from atomic one. Natural language abounds
these little words and we have a pretty good understand-
ing about their meaning. However, we shall in a moment
define their meaning mathematically and thereby arrive at
exact methods to investigate complex propositional for-
mulas.

There are also other connectives, such as “but”, “un-
less”, etc. but we focus on the above most important ones.
There are also operations that look like connective but are
not, such as “possibly”, “until”, etc. We shall see later
why these cannot be treated the same way as the above
connectives.

In the example

If x < 10 then x > 5, and if not x < 10 then x > 15.

we can see two occurrences of implication, one of nega-
tion, and one of conjunction.

In the example
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If it rains then it blows,
and if it blows then it gets cloudy.

we can see one occurrence of conjunction and two occur-
rences of implication.

1.2.4 Propositional operations (contd.)

We are ready to give an exact definition of propositional
formulas. The propositional formulas are of the form

pn
¬A

(A ∧B)
(A ∨B)
(A→ B)
(A↔ B)

where A and B are again propositional formulas. Note
that we use parentheses in each case except for negation.

This is an inductive definition in the sense that we build
propositional formulas by starting from p0, p1, ... and then
use successively ¬,∧,∨,→ and ↔. Whenever we have
obtained in this way some formulasA andB, we can form
a new formula by applying negation to one of them, or
applying conjunction, disjunction, implication or equiv-
alence to the two. And there are no other propositional
formulas—each one has to come up like this.

In a moment we look at examples of propositional for-
mulas, but let us first look at the use of parentheses in
propositional formulas.

1.2.5 Parentheses

The role of parentheses is to indicate priority and help
avoid ambiguity. For example, (A ∧ (B ∨ C)) is quite
different from ((A ∧B) ∨C), not only in appearance but
also in meaning. The former is a conjunction while the
latter is a disjunction. For this reason we have not allowed
propositional formulas of the form A ∧ B ∨ C. Also,
A → B → C would be utterly ambiguous. With proper
use of parentheses this should be either (A→ (B → C))
or ((A → B) → C). Other ambiguous formulas, results
of wrongful omission of parantheses, are A→ B∧C and
A ∨B → C.

However, some parentheses are unnecessary. The defi-
nition of propositional formulas produces more parenthe-
ses than is in practice necessary. Therefore we make the
following convention about parentheses:

Parentheses are left out unless necessary for unambigu-
ous reading. A ∧ B ∧ C means either ((A ∧ B) ∧ C) or
(A ∧ (B ∧ C)). Similarly for A ∨B ∨ C.

The reason why it is usually not necessary to make a
distinction between ((A ∧ B) ∧ C) and (A ∧ (B ∧ C))
is that, when we learn to assign meaning to propositional
formulas, we see that these formulas have the same mean-
ing, which is—intuitively speaking—that A, B and C are
all three true.

If for some special reason it is necessary to emphasize
whether we are talking about ((A∧B)∧C) or (A∧ (B∧
C)) we can do it by leaving the parentheses where they
are.

We also often leave the outmost parentheses away, for
simplicity.

1.2.6 Examples

Here are some examples of propositional formulas

• A disjunction: p0∨p1. This is just about the simplest
propositional formula we can think of apart from the
proposition symbols alone. Note that we have left
the parentheses away, according to our convention.
So officially this is the formula (p0 ∨ p1).

• An implication between a disjunction and an atomic
formula: (p1 ∨ p2) → p3. Intuitively this for-
mula says that if either p1 or p2 is true, then so is
p3. But we have not defined yet the meaning of
propositional formulas. Until we do so, we assign
to this propositional formula just an intuitive mean-
ing, coming from the everyday use of the words “or”
and “if...then”. When we do define the meaning
of propositional formulas in mathematical terms, it
turns out that the meaning reflects our everyday use
of the words “or” and “if...then” pretty well, but there
are also some surprises. But we are getting ahead of
ourselves.

• A negation of a disjunction: ¬(p1 ∨ p2). Intuitive
meaning of this formula is that it is not the case that
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(pause) p1 is true or p2 is true. Note that in spo-
ken language we do not use parentheses but indicate
with intonation what we mean. If the formula was
¬p1 ∨ p2, the intuitive meaning would be that it is
not the case that p1 is true (pause) or (pause) p2 is
true, something that could be said a bit clearer as:
either it is not the case that p1 is true or else p2 is
true.

• A conjunction of an atomic formula and a disjunc-
tion of two atomic formulas: p0 ∧ (p1 ∨ p2). When
we read this formula we also read the parentheses.
Also, when we say the intuitive meaning, we may
have to add explanatory words because intonation is
not sufficient. So we can say: the intuitive mean-
ing of this formula is that p0 is true and, in addition,
either p1 or p2 is true.

• A negation of an implication: ¬(p3 → (p2 → p1)).
The intuitive meaning of this is that it is not the case
that if p3 is true then, if p2 is true, then p1 is true. Let
us not pretend that it is easy to discern what this re-
ally means. Both implication and negation are rather
complicated operations, and when they are combined
and iterated, one has to take paper and pencil to cal-
culate the exact meaning.

• A disjunction of four formulas: (p0∧p2∧p5)∨(¬p1∧
¬p3∧¬p4)∨(¬p1∧¬p4∧p5)∨(p0∧¬p3∧p4). This
kind of disjunctions, even quite long ones, are com-
mon in industrial uses of logic. This could be, for
example, a condition under which a car engine has
to switch itself off. There are a number of situations,
described by the disjuncts, in which the car engine
has to switch itself off. If just one of the disjuncts
happens to be the case, the engine stops. The mean-
ings of the proposition symbols would be proposi-
tions of the type: thermometer indicates overheating,
air-intake is blocked, parking break is pulled, etc.

• A conjunction of four formulas: (p0 ∨ ¬p1 ∨ p2) ∧
(p1 ∨ ¬p5 ∨ ¬p6) ∧ (¬p1 ∨ ¬p4 ∨ p5) ∧ (p0 ∨ p3 ∨
p4). This type of conjunctions, again possibly quite
long, are typical in industrial applications, just as the
above disjunctions. An example could be a safety
condition for a train to keep moving. There are a
number of conditions each one of which has to be

satisfied for the train to be allowed to keep moving.
The meanings of the proposition symbols would be
propositions of the type: a proceed signal is green, a
proceed signal is yellow, a proceed signal is red, cab
signal is green, crossing warning signal is red, the
speed is over 80, etc.

1.2.7 Proposition symbols explained
Let us now focus on the simplest propositional formulas,
the proposition symbols, and discuss in detail, what are
they for and what can they do for us.

Recall that the proposition symbols are denoted
p0, p1, . . .. They denote basic states of affairs which can
be true or false such as:

• It is raining.

• The lamp is lit.

• 4 < 10

• x < 10

• The door is closed.

• The train is moving.

• The switch is on.

• I am in Rome.

In all the above examples one cannot further analyze the
sentence in terms of propositional operations. Simply put:
the words “not”, “and”, “or”, “if...then”, and “if and only
if” do not occur in them.

The act of giving states of affairs, such as the above,
a name such as pn, is very much like denoting the speed
of an object by v and mass by m, or denoting the length
of a trip by a and time spent by t. The only difference
is that the proposition symbols p0, p1, ... do not denote
magnitudes, such as speed, mass, etc, but states of affairs,
whether something holds or not. This is the difference be-
tween logic and mathematics in general. In logic the fun-
damental concept is that of a proposition holding or not
holding, being true of false. in mathematics the funda-
mental concept is that of a magnitude, something that can
be measured, typically by real numbers. In the mid 19th
century George Boole made the momentous invention that
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propositional logic can actually be seen as the mathemat-
ics of the numbers 1 (for “true”) and 0 (for “false”).

1.2.8 Negation explained
The negation of A, denoted ¬A, is intuitively simply the
denial of A. Here are some examples:

• ¬ It rains: It is not the case that it rains; it does not
rain.

• ¬ 4 > 10: 4 is not greater than 10.

• ¬ The door is closed: The door is not closed.

In natural language negation is not as simple as in the
formal language of propositional logic. In propositional
logic, if we want to deny a sentence, we just put a negation
sign in front of the sentence. Not so in natural language.
In natural language you have to find the proper place for
the negation. It would perhaps be understandable, if we
said “It is not the case that the door is closed”, but “The
door is not closed” is how it is said.

Note that the negation of “¬ The door is closed” is “¬¬
The door is closed”. If we denote “The door is closed” by
p0, then “¬ The door is closed” is ¬p0 and “¬¬ The door
is closed” is ¬¬p0. We may have the temptation to give
“¬¬ The door is closed” the intuitive meaning “The door
is closed”, because we may think that the negations can-
cel each other out. This is how it is in natural language.
If I say “The door is not closed” and you say that actually
that is not the case, we both realize that the door is indeed
closed. However, we are making here already logical con-
clusions. If we abstain from logical conclusions, ¬¬p0
is what it is—a proposition symbol with two negations
in front of it. Only when we define meaning of proposi-
tional formulas we may conclude that ¬¬p0 and p0 have
the same meaning. This is an important point, because
we could also choose to define the meaning of negation
somewhat differently—as is done in so-called intuitionis-
tic logic—and then ¬¬p0 and p0 would not have the same
meaning.

1.2.9 Conjunction explained
The conjunction of A and B, denoted A ∧ B, says intu-
itively that both A and B hold. The sentences A and B

are called the conjuncts. So a conjunction A ∧ B is the
conjunction of two conjuncts. Here are some typical con-
junctions:

• It rains and it blows.

• 4 < 10 and 7 < 3.

• The door is closed and the train is moving.

Conjunction is the easiest of our logical operations. It is
really unproblematic, and we quickly move to disjunction,
which provides formidable challenges.

1.2.10 Disjunction explained
The disjunction of A and B, denoted A ∨ B, says intu-
itively that one of A and B holds or perhaps both hold.
The sentences A and B are called the disjuncts of the dis-
junction.

• I am in Rome or I have lost my way.

• 4 < x or y < 3.

• The train is at a station or the train is moving.

There are many subtleties involved in the disjunction,
as we will see later. Let us at this point only note that dis-
junction can, in principle, be used in two different mean-
ings: The first is the inclusive meaning which allows both
disjuncts to be true, as in the intended meaning of the
sentence “You can sit next to an English-speaker or you
can sit next to a logician.” Well, conceivably an English-
speaker can also be a logician. The other reading of dis-
junction is the exclusive meaning which does not allow
both disjuncts to be true as in the intended meaning of the
sentence “I can carry two small bags or else I can carry
one large bag”. We favor the inclusive reading when the
choice is not clear. Accordingly, when we give a mathe-
matical definition of the meaning of disjunction, it is go-
ing to be the inclusive meaning.

1.2.11 Implication explained
The implication from A to B, denoted A→ B, says intu-
itively that if A then B. Note that this says nothing about
B in the case that A is false. A is called the antecedent,
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or hypothesis of A → B. B is called the consequent, or
conclusion ofA→ B. When implication is used in math-
ematical or natural language it has the meaning that there
is something in A which is sufficient for the truth of B,
or that A causes B. But in propositional logic we take
the very simple approach to implication that the truth of
A→ B is completely determined by the truth or falsity of
A and the truth or falsity of B with no regard to whether
there is some connection between the two. The fact that
this does not quite fit our everyday use of “If...then” is
the price we pay for using the formal language of propo-
sitional logic. There are more involved formal languages
which avoid this but then one pays other prices.

Let us look at some examples:

• If it rains then the streets are wet. Note that this sen-
tence says nothing about the wetness of streets when
it does not rain. Maybe the streets are dry or maybe
people are hosing their gardens and the streets are
wet. The sentence in question makes no claims about
those situations. All it says is that if it happens to be
raining, then the streets are wet.

• If x < 3 then x < 10. This seems like a true state-
ment about the integers. Of course, depending on
x, it may be that x < 10 even though it is not the
case that x < 3. The sentence makes no claims
about such x that do not satisfy x < 3. Even though
we know that in such cases it is still possible that
x < 10, this sentence does not claim that. The sen-
tence is only concerned with the cases that x < 3.
All other situations are irrelevant from the point of
view of this sentence.

• If the train is moving then the door is closed. This
sentence calls for a more careful analysis:

Let p0 be the atomic proposition

“The train is moving”

and p1 the atomic proposition

“The door is closed”.

Then p0 → p1 says

“If the train is moving, then the door is closed”.

Note that p0 → p1 makes no claim about situations in
which the train is not moving. We can imagine that the
computer inside the train is following some indicators all
the time, or let’s say once every 3 seconds, making sure
that certain safety constraints are met, one of which is
p0 → p1. The computer checks every 3 seconds whether
the train is moving. If the train is not moving, the con-
straint p0 → p1 gives no reason for action and the com-
puter moves to the next constraint. This happens every 3
seconds, until the train starts moving. Then the computer
detects the movement and rushes to make sure the door—
or rather the doors–are closed. The computer simply
makes sure that every 3 seconds the implication p0 → p1
is true. For the computer the meaning of p0 → p1 is: If
p0 is false, move on, but if p0 is true, then make sure also
p1 is true. This is the genuine meaning of implication in
propositional logic.

1.2.12 Equivalence explained
The equivalence of A and B, denoted A ↔ B, says intu-
itively that A holds if and only if B holds. Here are some
examples of its uses.

• The lamp is lit if and only if the switch is on.

• x < 10 if and only if x+ 5 < 15.

• The door is locked if and only if the train is moving.

In each case the intuitive meaning of A ↔ B is that
either both A and B are true or else they are both false.
Equivalence is a relatively unproblematic logical opera-
tion, nothing like disjunction and implication.

1.2.13 Main connective
The main connective is a useful technical notion related
to formulas. Locating the main connective is quite easy.

The main connective of
¬A is negation ¬
A ∧B is conjunction ∧
A ∨B is disjunction ∨
A→ B is implication →
A↔ B is equivalence ↔

For example, the main connective of (A∨¬B)→ (C∨
D) is implication.
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Logical analysis of a formula usually starts by identi-
fying its main connective. Therefore the first thing a logi-
cian does upon seeing a formula is to locate its main con-
nective, and depending on this connective, the logician
decides on further action. Our rules concerning the use
of parentheses guarantee that every formula has a unique
main connective, that is, it does not happen that one tries
to find the main connective and once it is conjunction, but
another time with the same formula it is disjunction.

1.2.14 Subformula
Another useful technical notion related to formulas is that
of a subformula. Intuitively, the subformulas of a given
formula are the smaller formulas that the given formula is
built from. We accept the formula itself as its own subfor-
mula.

The subformulas of
pn are pn itself only
¬A are ¬A and the subformulas of A

A ∧B are A ∧B and the subformulas of A and B
A ∨B are A ∨B and the subformulas of A and B
A → B are A → B and the subformulas of A and B
A ↔ B are A ↔ B and the subformulas of A and B

For example, the subformulas of

(p0 ∨ ¬p1)→ (p2 ∧ p1)

are: (p0 ∨ ¬p1)→ (p2 ∧ p1), p0 ∨ ¬p1, p2 ∧ p1, p0,¬p1,
p2, and p1.

Special among subformulas are immediate subformu-
las. They are just as easy to find as the main connective,
discussed above.

The immediate subformulas of
pn are none
¬A is A
A ∧B are A, B
A ∨B are A, B
A→ B are A, B
A↔ B are A, B

Example: The immediate subformulas of (p0∨¬p1)→
(p2 ∧ p1) are (p0 ∨ ¬p1) and (p2 ∧ p1).

Thus a propositional formula is always formed by
connecting the immediate subformulas by the main
connective. This sound so easy that one may ask is this
knowledge of any use. Yes it is, a whole lot of use. All

fundamental methods in logic are based on analyzing for-
mulas in terms of their immediate subformulas. We learn
several of them:

• Evaluating truth

• Natural deduction

• Semantic tree

So it is worth being comfortable with the concepts of
main connective and immediate subformula. This ends
the first lecture on propositional logic. In the next lecture
we shall discuss truth tables.

1.2.15 Solved problems
Let’s try to solve some simple problems related to the con-
cepts that we have learnt.

Problem 1 Write the sentence
“If it rains, then I will not go out without an umbrella.”

as a propositional formula, and indicate its main connec-
tive.

Solution: The atomic parts are “it rains”, and “I will go
out without an umbrella”. These are atomic, in the context
of propositional logic, because we cannot build them from
smaller parts by means of “not”, “and”, “or”, “if...then”,
and “...if and only if...”

The sentence is of the form p0 → ¬p1. Its main con-
nective is implication.

We see here clearly that propositional logic simplifies
natural language sentences substantially. But in proposi-
tional logic we only want to get the logical structure of
the sentence, and even so, only the structure that pertains
to the structure that propositional logic is capable of han-
dling. 2

Problem 2 Write the sentence
“If y′ = ax+ by, then y′′ = ax′ + by′”

as a propositional formula, and indicate its main connec-
tive.

Solution: The atomic parts are y′ = ax + by, and
y′′ = ax′ + by′. These atomic parts clearly have their
internal structure as equations but this structure is not one
that propositional logic focuses on.
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The sentence is of the form p0 → p1. Its main connec-
tive is implication.2

Problem 3 Write the sentence
“If the door is not closed or the train is at a station, the

green light is on.”
as a propositional formula and indicate its main connec-
tive and immediate subformulas.

Solution: This is a good example of the use of implication
in natural language. The atomic parts of the sentence are

p0 : the door is closed

p1 : the train is at a station

p2 : the green light is on

The sentence is of the form (¬p0 ∨ p1)→ p2. Its main
connective is implication and its immediate subformulas
are (¬p0 ∨ p1) and p2. 2

Problem 4 Write the sentence
“EitherA buys Z and Z does not buy U , or elseB buys

both Z and U .”
as a propositional formula, and indicate its main connec-
tive and immediate subformulas.

Solution: Solution. The atomic parts are

p0 : A buys Z

p1 : Z buys U

p2 : B buys Z

p3 : B buys U

The sentence is of the form (p0 ∧ ¬p1) ∨ (p2 ∧ p3). Its
main connective is disjunction and its immediate subfor-
mulas are (p0 ∧ ¬p1) and (p2 ∧ p3).

Here we have used “either ..., or else ... both ...” in
natural language to indicate where the parentheses should
go, because the mere

“ A buys Z and Z does not buy U or B buys Z and B
buys U .”
would be ambiguous, or at least could be ambiguous.
2

1.2.16 Problems
Problem 5 Which of the following are propositional for-
mulas?

1. If the lamp is on, the room is lit.

2. The room is dark, if the lamp is broken.

3. I declare you man and wife.

4. The priest declared them man and wife.

5. Let x be a real number.

6. x is a real number.

Problem 6 Which of the following are propositional for-
mulas?

1. Unless the lamp is on, the room is dark.

2. The room is dark, only if the lamp is broken.

3. I declared you man and wife.

4. The priest, the man, the wife.

5. g is the derivative of f.

6. Suppose g is the derivative of f .

Problem 7 Which of the following are unambiguous
propositional formulas?

1. (p2 ↔ ¬p1)→ (p2 → p3)

2. p0 ∧ ¬p1 ∨ (p2 ∧ p1)

3. ¬(p0 → (p1 → (p2 → p3)))

4. ¬¬p0 → p0

Problem 8 Which of the following are unambiguous
propositional formulas?

1. p2 ↔ p1 ↔ p2

2. p0 ∨ ¬p1 ∨ (p2 → p0)

3. (p0 ∧ p1)→ p0 ∧ (p0 ∧ p1)→ p1

4. (p0 ∧ ¬p1 ∧ p2) ∨ (p0 ∧ p1 ∧ ¬p2)
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Problem 9 The main connective of
(p2 ↔ ¬p1)→ (p2 → p3)
is

1. Negation

2. Conjunction

3. Disjunction

4. Implication

5. Equivalence?

Problem 10 The main connective of
¬((p2 ∨ ¬p1) ∧ (p2 ∨ p3)) is

1. Negation

2. Conjunction

3. Disjunction

4. Implication

5. Equivalence?

Problem 11 The main connective of
(p2 ∧ ¬p1) ∨ (p2 ∧ p3) is

1. Negation

2. Conjunction

3. Disjunction

4. Implication

5. Equivalence?

Problem 12 The main connective of
((p2 → ¬p1) ∨ ((p2 ∨ p6) ∧ p3))→ p3 is

1. Negation

2. Conjunction

3. Disjunction

4. Implication

5. Equivalence?

Problem 13 • Write the sentence

“If mn is even, then m is even or n is even.”

as a propositional formula and indicate the main
connective and immediate subformulas.

• Write the sentence

“a is a prime if and only if a2 + 6a+ 1 is a prime.”

as a propositional formula and indicate the main
connective and immediate subformulas.

Problem 14 • Write the sentence

“The gate was not open and the lights were not on.”

as a propositional formula and indicate the main
connective and immediate subformulas.

• Write the sentence

“If either A buys both Z and U or else A buys V ,
then B does not sell W .”

as a propositional formula and indicate the main
connective and immediate subformulas.

Problem 15 • Write the sentence

“If the door is open and the train is not moving, the
green light is on.”

as a propositional formula and indicate the main
connective and immediate subformulas.

• Write the sentence

“If the file can be accessed then either John can ac-
cess it or Bob can access it but not both.”

as a propositional formula and indicate the main
connective and immediate subformulas.

Problem 16 • Write the sentence

“We go to the beach or to the park, unless it rains.”

as a propositional formula and indicate the main
connective and immediate subformulas.

• Write the sentence

“The train moves only if doors are closed and the
security lamp is green.”

as a propositional formula and indicate the main
connective and immediate subformulas.
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Problem 17 Write the sentence
“You are not only able to leave comments on this photo,

but you can also upload your own photos in our photo
section and participate on our blogs.”
as a propositional formula and indicate the main connec-
tive and immediate subformulas.

Hint: Do not worry if you cannot replicate in proposi-
tional logic all the stylistic aspects of the sentence. Just
capture the essential structure.

Problem 18 Write the sentence
“Thick snow covered everything, but houses could be

clearly seen, and here and there one could see a car.”
as a propositional formula and indicate the main connec-
tive and immediate subformulas.

Hint: Do not worry if you cannot replicate in proposi-
tional logic all the stylistic aspects of the sentence. Just
capture the essential structure.

1.3 Truth table

1.3.1 Truth values
Atomic propositional formulas, that is, the mere proposi-
tion symbols, denote states of affairs, such as

• It is raining.

• The train is moving.

Such states of affairs hold or not—are true or false—
depending on the circumstances. One day it rains, another
it does not. It may rain in Helsinki but not in Warsaw. The
train may be moving or not. We call truth and falsity truth
values and denote them by the numbers 1 and 0. The more
complex propositional formulas ¬A, A ∧ B, A ∨ B, etc
denote likewise states of affairs, only more complicated
ones. Intuitively they are also true or false, depending on
the circumstances, so they, too, have a truth value, 1 or 0.

1.3.2 Truth values contd.
Propositional formulas of the simplest form p0, p1, ... can
have truth value 1 or 0 according to our choice. But if
we give them truth values, then the truth values of formu-
las built from them such as p0 ∨ p1 and p0 → p1 will be

completely determined by the rules that we give. So giv-
ing truth values to p0, p1, ... is really the crucial thing, it
decides everything else. A choice of truth values for the
proposition symbols is called a valuation.

If we use propositional logic to investigate everyday
phenomena around us, we may take propositional sym-
bols to denote such states of affairs as “It is raining” or
“The train is moving”. Then a natural valuation would
give “It is raining” the truth value 1 if it indeed is rain-
ing and 0 otherwise, and to “The train is moving” the
truth value 1 if the train is indeed moving and 0 other-
wise. However, the point of propositional logic is not to
investigate phenomena around ourselves as they are, but
rather as they could be. It is raining but it could also be the
case that it is not. The train is moving but it could be also
standing. In fact, in propositional logic we study propo-
sitional formulas under any valuation what so ever. This
freedom to change the truth values of proposition sym-
bols in every which way is the essence of propositional
logic. It is what distinguishes logic from empirical sci-
ence. In empirical science one builds on observed facts,
which means, in a sense, that the valuation of the atomic
propositions is fixed. Mind you, this is not quite true of
quantum physics. Also, in scientific tests it may be es-
sential to vary atomic propositions freely, for example, if
we drop balls of the same size from the Leaning Tower of
Pisa, we may want to vary the weight of the balls and the
height from where the drop is made in order to see how
the time of descent depends on the weight and the height.

1.3.3 Valuation

Valuations assign truth values 1 (true) or 0 (false) to
proposition symbols. Thus a valuation is a function with
proposition symbols as its domain and values in the set
{0, 1}.

Valuations are the building blocks of truth tables,
which we will next introduce. The truth tables constitute
a systematic tool for analyzing complicated propositional
formulas. They can be avoided, but they do help a lot.

1.3.4 Valuation Contd.

Valuations extend to all formulas by means of truth ta-
bles. This extension is heavily based on the analysis of a
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propositional formula in terms of its main connective and
its immediate subformulas.

The truth value v(A) of an arbitrary propositional for-
mulaA can be easily computed in terms of the truth values
of the immediate subformulas of A and the truth table of
the main connective.

1.3.5 Truth table
The truth table of a propositional formula is a table of
truth values of the formula and its sub formulas under all
possible valuations. Before we can build even the first
truth table, we have to determine how truth values behave
in the logical connectives:

• Conjunction

• Disjunction

• Negation

• Implication

• Equivalence

Truth tables reflect our intuition of the meaning of each
connective.

1.3.6 Conjunction
Intuitively, a conjunction A∧B is true if and only if both
conjunctsA andB are true. This intuition is easily written
into the following truth table:

A B A ∧B
1 1 1
1 0 0
0 1 0
0 0 0

It is good to remember that the truth table of conjunc-
tion has exactly one row on which the conjunction has
truth value 1.

In a truth table like this we allow A and B to be the
same formula, but we want the table to describe the most
general case and therefore we take into account the possi-
bility that A and B can both get the value 1 or 0, indepen-
dently of each other.

1.3.7 Disjunction
Intuitively, a disjunctionA∨B is true if and only if one of
the disjuncts A and B is true. What if both are true? We
make the decision that we call such disjunctions true, as
well. Thus when we now give meaning to the disjunction
sign ∨, we give it the inclusive meaning, that is, both can
be true in a true disjunction.

A B A ∨B
1 1 1
1 0 1
0 1 1
0 0 0

It is good to remember that the truth table of disjunction
has exactly one row on which the disjunction has truth
value 0, namely when both disjuncts have value 0.

1.3.8 Negation
Negation is a very simple case in this context. A negation
¬A is true if and only if A is false. The negation is a kind
of truth value switcher. It switches 1 to 0 and 0 to 1.

A ¬A
1 0
0 1

1.3.9 Implication
We now have to decide what the truth value of A → B
is, if we already know the truth values of A and B. In-
tuitively A → B should be true if B “follows” from A.
However, with two truth values it is not really possible to
express the “follows”-concept. We make the decision that
A→ B is true if B is true but also if A is false.

A B A→ B
1 1 1
1 0 0
0 1 1
0 0 1

It is good to remember that the truth table of impli-
cation has exactly one row on which the implication has
truth value 0, namely when the hypothesis has value 1 but
the conclusion has value 0.
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There are more involved systems of propositional logic,
which give a meaning to implication which is closer to
the intuition of “follows”. The choice we have made
works surprisingly well. On the other hand, it renders
such unintuitive implications as “If the Moon is cheese,
then 2 + 2 = 5” and “If 0 6= 0, then 2 + 2 = 4” true.

1.3.10 Interpretation of implication
Let us look at a real life example of implication. Let p
be the basic proposition “Jukka lives in Helsinki”. Let q
be the basic proposition “Jukka lives in Finland”. Since
Helsinki is in Finland, the formula p→ q is true, whether
Jukka lives in Helsinki or not. This truth is based on
Helsinki being in Finland, and is unaffected if Jukka in
fact does not live in Helsinki. The only thing that would
shatter the truth of p→ q is if Jukka lived in Helsinki but
not in Finland, in which case we would have to review our
geography.

1.3.11 Interpretation of implication contd.
One way to understand the truth table of implication is
the following: Think of A and B as subsets of {0}. There
are just two subsets: ∅ and {0}. Let us identify these two
subsets with 0 and 1.

We can now think of A→ B as “ A is contained in B”

{0} ⊆ {0} so 1st row is 1
{0} 6⊆ ∅ so 2nd row is 0
∅ ⊆ {0} so 3rd row is 1
∅ ⊆ ∅ so 4th row is 1.

A B A→ B
1 1 1
1 0 0
0 1 1
0 0 1

1.3.12 Equivalence
Perhaps surprisingly, equivalence is easier to understand
than implication. We give the equivalence A ↔ B the
truth value 1 exactly in the case that A and B have the
same truth value.

A B A↔ B
1 1 1
1 0 0
0 1 0
0 0 1

1.3.13 Example
Let us now look at a full truth table. We consider the
propositional formula

¬(p0 ∨ p1)↔ (¬p0 ∧ p1).

We write the proposition symbols that occur in the for-
mula to the left most columns and form a row for each
possible combination of truth values of the proposition
symbols. To the right we form a column under each oc-
currence of a proposition symbol in the formula as well as
a column under each connective.

Every connective in a formula is the main connective
of some subformula. The truth value that we write under
that connective is the truth value of that subformula.

First we fill in the proposition symbols. We just copy
them from the columns on the left:

p0 p1 ¬ (p0 ∨ p1) ↔ (¬ p0 ∧ p1)
1 1 1 1 1 1
1 0 1 0 1 0
0 1 0 1 0 1
0 0 0 0 0 0

Then we fill the column of negation. That is easy—just
swap zeros and ones:

p0 p1 ¬ (p0 ∨ p1) ↔ (¬ p0 ∧ p1)
1 1 1 1 0 1 1
1 0 1 0 0 1 0
0 1 0 1 1 0 1
0 0 0 0 1 0 0

Now we can fill in the conjunction. Note that the con-
juncts of this conjunction are ¬p0 and p1. So we have to
look at the columns corresponding to ¬p0 and p1.

p0 p1 ¬ (p0 ∨ p1) ↔ (¬ p0 ∧ p1)
1 1 1 1 0 1 0 1
1 0 1 0 0 1 0 0
0 1 0 1 1 0 1 1
0 0 0 0 1 0 0 0

Now the disjunction:

p0 p1 ¬ (p0 ∨ p1) ↔ (¬ p0 ∧ p1)
1 1 1 1 1 0 1 0 1
1 0 1 1 0 0 1 0 0
0 1 0 1 1 1 0 1 1
0 0 0 0 0 1 0 0 0

Next we deal with the negation on the left. Note that
we cannot compute the column of the equivalence-symbol
before we take care of the negation, because ¬(p0∨p1) is
an immediate subformula of the big formula.
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p0 p1 ¬ (p0 ∨ p1) ↔ (¬ p0 ∧ p1)
1 1 0 1 1 1 0 1 0 1
1 0 0 1 1 0 0 1 0 0
0 1 0 0 1 1 1 0 1 1
0 0 1 0 0 0 1 0 0 0

Finally the equivalence:

p0 p1 ¬ (p0 ∨ p1) ↔ (¬ p0 ∧ p1)
1 1 0 1 1 1 1 0 1 0 1
1 0 0 1 1 0 1 0 1 0 0
0 1 0 0 1 1 0 1 0 1 1
0 0 1 0 0 0 0 1 0 0 0

The truth table of the given formula is ready. We can
see that the formula gets value 1 if p0 has value 1 and
otherwise it gets value 0. This can be a very useful piece
of information. All that complicated sentence is trying to
say is that p0 is true.

1.3.14 Example

Here is a bigger truth table. This is built just like the previ-
ous one, column by column, starting from the proposition
symbols, goin up to bigger and bigger subformulas, al-
ways inserting the truth value of the subformula beneath
its main connective:

At first look it may seem that the propositional formula
in question is incomprehensible, as such a long formula
might very well be. As it happens, this formula seems to
state a kind of transitivity of implication: If p0 implies p1,
and p1 implies p2, then p0 implies p2. Be it as it may, our
task here is to fill in the truth table quite mechanically with
no concern to any exterior meaning. But we can make the
interesting observation that the formula in question gets
the truth value 1 whatever the valuation is. We have a
special name for such formulas (“tautology”) and we will
pay special attention to them in a while.

1.3.15 Inefficiency of truth tables

Truth tables become eventually too large. If we have n
proposition symbols, we are going to have 2n rows in the
truth table. Thus the truth table grows exponentially in the
number of proposition symbols. This limits the applica-
bility of the truth table method in practical applications.
During this course we learn two other methods to analyze
propositional formulas. Those other methods will be a bit
more complicated but at the same time quite a bit more
useful.

1.3.16 Solved problems

Problem 19 Suppose v(p0) = 1 and v(p1) = 0. Cal-
culate v(¬(p0 ∨ p1)): The truth values of p0 and p1 are
given. So we can compute the truth value of their disjunc-
tion. Then we compute the truth value of the negation of
the disjunction, and we are done.

¬ (p0 ∨ p1)
0 1 1 0

The answer is 0.

Problem 20 Suppose v(p0) = 1 and v(p1) = 0. Cal-
culate v(¬p0 → p1): The truth values of p0 and p1 are
given. We can immediately calculate the truth value of
¬p0. Then we compute the truth value of the implication
¬p0 → p1, and we are done.

¬ p0 → p1
0 1 1 0

The answer is 1.

Problem 21 Suppose v(p0) = 1, v(p1) = 0 and v(p2) =
1. Calculate v(p0 ∧ (p1 ∨ p2)): The truth values of p0, p1
and p2 are given. We can immediately calculate the truth
value of the disjunction. Then we compute the truth value
of the conjunction, and we are done.

p0 ∧ (p1 ∨ p2)
1 1 0 1 1

The answer is 1.
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Problem 22 Draw the truth table of p0 ↔ ¬p1. There
are two proposition symbols so we have four rows in the
truth table. We first fill in the columns of the proposition
symbols by simply copying from the left. Then we fill in
the column of the negation, and finally of the equivalence.

p0 p1 p0 ↔ ¬ p1
1 1 1 0 0 1
1 0 1 1 1 0
0 1 0 1 0 1
0 0 0 0 1 0

Problem 23 Draw the truth table of ¬p0 ∨ p1. There are
two proposition symbols so we have four rows in the truth
table. We first fill in the columns of the proposition sym-
bols by simply copying from the left. Then we fill in the
column of the negation, and finally the column of the dis-
junction.

p0 p1 ¬ p0 ∨ p1
1 1 0 1 1 1
1 0 0 1 0 0
0 1 1 0 1 1
0 0 1 0 1 0

Problem 24 Draw the truth table of¬(p0∧p1)↔ (¬p0∨
p1). There are two proposition symbols so we have four
rows in the truth table. We first fill in the columns of the
proposition symbols by simply copying from the left. Then
we fill in the column of the conjunction. Next the nega-
tion on the left. Then the negation on the right. Then the
remaining disjunction. And finally the equivalence. Note
that the order in which we proceed allows some varia-
tion. For example, after we have filled in the proposition
symbol columns we could fill in the negation on the right,
rather than that of the conjunction. However, one has to
be careful with the order. A wrong order usually yields a
wrong answer.

p0 p1 ¬ (p0 ∧ p1) ↔ (¬ p0 ∨ p1)
1 1 0 1 1 1 0 0 1 1 1
1 0 1 1 0 0 0 0 1 0 0
0 1 1 0 0 1 1 1 0 1 1
0 0 1 0 0 0 1 1 0 1 0

1.3.17 Problems
Problem 25 Suppose v(p0) = 1, v(p1) = 1 and v(p2) =
0 Compute v(p0 → (p1 → p2)).

Problem 26 Suppose v(p3) = 1, v(p6) = 0 and v(p9) =
0 Compute v((p3 → p9) ∨ (p6 → p9)).

Problem 27 Suppose v(p0) = 1, v(p1) = 0 and v(p2) =
0 Compute v((p0 ∨ p1)↔ (p2 ∧ ¬p0)).

Problem 28 Suppose v(p0) = 1, v(p1) = 0 and v(p2) =
0 Compute v(¬(¬p0 → ¬p1) ∨ ¬(¬p1 → ¬p2)).

Problem 29 Fill in the missing values:

p0 p1 ¬ (p0 ∨ p1) ∧ (¬ p0 ∧ ¬ p1)

1 1 0 1 1 1 0 0 1 0 0 1
1 0 0 1 1 0 0 0 1 0 1 0
0 1 0 1 1 1 0 0 1
0 0 0 0 0 0

Problem 30 Fill in the missing values:

p0 p1 ¬ (p0 ∧ p1) ∨ (¬ p0 → ¬ p1)

1 1 0 1 1 1 1 0 1 1 0 1
1 0 1 1 0 0 0 1 1 0
0 1 1 0 0 1 1 1 0 0 1
0 0 1 0 0 0 0 0

Problem 31 Prove

1. v(¬A) = 1− v(A)

2. v(A ∧B) = v(A) · v(B)

3. v(A ∨B) = v(A) + v(B)− v(A) · v(B)

4. v(A→ B) = 1− v(A) + v(A) · v(B)

5. v(A↔ B) = 1− v(A)− v(B) + 2 · v(A) · v(B)

Problem 32 Exclusive disjunction is the connective “ A
or B but not both”. Here are some examples of exclusive
disjunction in everyday language If today is Friday, I am
in Rome or I am in Madrid. You get your luggage back or
the airline pays a full compensation. Draw the truth table
of exclusive disjunction.

Problem 33 Let M be the set of all valuations. Let for
each propositional formula A: [A] = {v ∈ M : v(A) =
1}. Show

1. [A ∧B] = [A] ∩ [B]

2. [A ∨B] = [A] ∪ [B]



1.4. USING TRUTH TABLES 25

3. [¬A] =M − [A]

4. [A→ B] =M iff [A] ⊆ [B]

5. [A↔ B] =M iff [A] = [B]

Problem 34 Let M be the set of all valuations of
p0, . . . , pn−1. Consider propositional formulas A in
proposition symbols p0, . . . , pn−1. Let #(A) be the num-
ber of v in M such that v(A) = 1. Let p(A) = #(A)/2n.
We call p(A) the probability of A. Show

1. p(A ∨B) + p(A ∧B) = p(A) + p(B)

2. p(¬A) = 1− p(A)

Problem 35 Recall that p(A) the probability of A.

1. All else being equal, which of the following is more
probable? (In other words: which has a greater
probability):

• p0 ∧ p1
• p0 → p1

2. All else being equal, which of the following is more
probable? (In other words: which has a greater
probability):

• (p0 ∧ ¬p1) ∨ (p1 ∧ ¬p2)
• p0 ∨ (p1 ∧ p2)

Problem 36 Suppose X is a set of valuations. We say
that

1. X is of type pi if v(pi) = 1 for all v in X .

2. X is of type ¬pi if v(pi) = 0 for all v in X .

3. X is of type A ∧B if it is of type A and of type B.

4. X is of type A∨B if X = Y ∪Z, where Y is of type
A and Z is of type B.

5. X is of type ¬(A ∧B) if it is of type ¬A ∨ ¬B.

6. X is of type ¬(A ∨B) if it is of type ¬A ∧ ¬B.

7. X is of type A→ B if it is of type ¬A ∨B.

8. X is of type ¬(A→ B) if it is of type A ∧ ¬B.

9. X is of type A↔ B if it is of type (A→ B)∧ (B →
A).

10. X is of type ¬(A ↔ B) if it is of type (A ∧ ¬B) ∨
(¬A ∧B).

Show that X is of type A iff v(A) = 1 for all v in X .

1.4 Using truth tables

1.4.1 Tautology
In everyday language a person utters a tautology if he or
she says something which is true but only because of its
form, such as “It rains or it doesn’t rain”. Ordinarily utter-
ing a tautology sounds a bit silly. It is like saying some-
thing which has no content. On the other hand, in a con-
versation a person may say something which at first seems
clever but in closer scrutiny turns out to be a tautology,
such as “If Caesar built a bridge over the Rhine, then Cae-
sar went to Gaul or Caesar built a bridge over the Rhine”.
Despite this negative reputation of tautologies in social
contexts, it is of utmost importance to be able to distin-
guish between a tautology and a non-tautology. For large
formulas this is so difficult that finding a good algorithm
for it is a famous open problem (called the P = NP -
problem1). Tautologies can help us squeeze information
from known facts without acquiring new data. In simple
cases like the above Caesar example, this may seem su-
perfluous, but when the formulas are complex it is not so
easy any more.

A propositional formula is a tautology if its truth value
is 1 under any valuation. This can be checked with a truth
table.

Example 1.1 The following are examples of tautologies:

(p0 ∨ p1)↔ (p1 ∨ p0)

A ∨ ¬A

¬(A ∨B)↔ (¬A ∧ ¬B)

¬(A ∧B)↔ (¬A ∨ ¬B)

(A→ B)↔ (¬A ∨B)

1http://en.wikipedia.org/wiki/P_versus_NP_
problem

http://en.wikipedia.org/wiki/P_versus_NP_problem
http://en.wikipedia.org/wiki/P_versus_NP_problem
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In each case one can draw the truth table to see that the
formula is a tautology.

1.4.2 Satisfiability

A formula is satisfiable if its truth value is 1 under some
valuation. This can be checked with a truth table.

Uttering something which is satisfiable is like saying
something which could in principle be true. For exam-
ple, if I say “It rains but it is not snowing”, I may be right
or wrong about the current weather but surely it could be
the case that it rained and at the same time did not snow.
Likewise, the sentence “The train is moving and the door
is open” seems by all means satisfiable, for we can imag-
ine a situation, perhaps undesirable, in which a train is
moving and someone has left the door open. In proposi-
tional logic we can decide the satisfiability of a formula
simply by examining the truth table of the formula.

Example 1.2 The following are examples of satisfiable
formulas:

(p0 → p1) ∧ ¬p0 ∧ ¬p1

(p0 ∨ (p1 ∨ p2)) ∧ ¬p0 ∧ ¬p2

¬(p0 ∨ p1)↔ (¬p0 ∧ p1)

In each case one can draw the truth table to see that
the formula is satisfiable.

1.4.3 Contingency

A formula is contingent if its truth value is 1 under some
valuation and 0 under another valuation. This can be
checked with a truth table.

In everyday language a contingency is something that
may be the case but most likely is not the case. An air-
plane may lose one engine and still fly safely, but los-
ing two engines may have catastrophic consequences. For
such a contingency the pilots probably have special emer-
gency routines to follow. In propositional logic a conti-
nent formula is one that is satisfiable—i.e. may be true—
but also the negation is satisfiable—i.e. the formula may
also be false, with no concern as to which possibility is
more likely.

Example 1.3

(p0 → p1) ∧ ¬p0 ∧ ¬p1

¬(p0 → (p0 → p1))

¬(p0 ∨ p1)↔ (¬p0 ∧ p1)

In each case one can draw the truth table to see that the
formula is contingent.

1.4.4 Refutability
A formula is refutable if its truth value is 0 under some
valuation. This can be checked with a truth table.

In everyday language a refutable statement is one
which may happen to be true but can certainly be false,
too, such as “If it rains, then it blows from the west”. A
teacher may yell at a student: “Either you are late, or you
have left your books home!” But the student may reply:
“Two days ago I was on time and I had all my books with
me”. So what the teacher had said was refutable. When
someone makes a statement claiming that it is a universal
truth, he or she may prompt a person present to point out
that the statement can be refuted and therefore cannot be a
universal truth. In propositional logic refutability of a for-
mula has a technical meaning. It just means that there is at
least one valuation (row in the truth table) which renders
the formula false.

Example 1.4 Here are some refutable propositional for-
mulas:

(p0 → p1) ∧ ¬p0 ∧ ¬p1
¬(p0 → (p0 → p1))

¬(p0 ∨ p1)↔ (¬p0 ∧ p1)

In each case one can draw the truth table to see that
the formula is refutable.

1.4.5 Contradiction
In everyday language a person utters a contradiction if he
or she says something which is false merely because of
its form, such as “It rains and it doesn’t rain”. The con-
tradiction may be more hidden, as in “It is not that it rains
or it blows, but it certainly rains.” In a conversation a
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person may make a statement which others find contro-
versial, and the statement may be under fire from all di-
rections, but if the statement turns out to be contradictory,
or in contradiction with something else that the person has
just said, the statement is not taken seriously any more.

A propositional formula is a contradiction, or contra-
dictory, if its truth value is 0 under any valuation. This
can be checked with a truth table.

Example 1.5 Here are some examples of contradictions:

(p0 ∨ p1) ∧ ¬p1 ∧ ¬p0

A ∧ ¬A

(A→ B) ∧A ∧ ¬B

(A ∨B) ∧ ¬A ∧ ¬B

In each case one can draw the truth table to see that
the formula is contradictory.

1.4.6 The categories of propositional for-
mulas

Every propositional formula is either tautological, con-
tradictory or contingent. This is simply because in the
truth table of a propositional formula we have under the
main connective—indicating the truth value of the for-
mula itself—either a column of ones, a column of zeros or
a column that has both ones and zeros. In the first case—
all ones—we have a tautology, in the second case—all
zeros—we have a contradiction, and in the third case—
both ones and zeros—we have a contingency. There are
no other possibilities.

Moreover, it follows immediately that every satisfiable
formula is either a tautology or a contingency, and ev-
ery refutable formula is either a contradiction or a contin-
gency.

When a logician looks at a propositional formula, he or
she immediately tries to figure out whether the formula is
a tautology, a contradiction or a contingency. These are
the basic qualities of propositional formulas, and know-
ing the quality of the formula gives a hint which way to
proceed next with the formula.

1.4.7 Million dollar question

Now comes a hot question: Given a formula, can you de-
cide in polynomial time whether it is a tautology, a con-
tradiction or a contingency? Polynomial time means here
the following: There is a number k such that you need to
perform only nk basic operations if the input formula has
n symbols. One million dollars has been promised by the
Clay Mathematical Institute in Toronto2. This question is
also known as the P = NP -problem3.

1.4.8 Inefficiency of Truth Tables

Why not use truth tables to decide whether a given propo-
sitional formula is a tautology, a contradiction or a contin-
gency? This is perfectly possible, but it is not polynomial
time. Truth tables become eventually too large. With n
propositional symbols we have 2n rows in the truth ta-
ble. So truth tables grow exponentially in the number
of proposition symbols. With 100 proposition symbols,
which is quite feasible in industrial applications, we have
more than 1030 rows in the truth table. Tricky!

1.4.9 Logical equivalence and logical conse-
quence

Two propositional formulas A and B are called (logically)
equivalent if A ↔ B is a tautology. In other words, the
formulas have the same truth value in every valuation.
Equivalence of formulas is used in everyday language and
in science all the time, often without paying much atten-
tion to it. For some well-known equivalences, see Fig-
ure 1.1.

A propositional formula B is a logical consequence of
the propositional formula A if A → B is a tautology.
In other words, in every valuation where A gets value 1
also B gets value 1. Just like logical equivalence, logical
consequence is used in everyday language and in science
all the time, often without paying much attention to it. For
some simple logical consequences, see Figure ??.

2http://www.claymath.org/millennium/
3http://en.wikipedia.org/wiki/P_versus_NP_

problem

http://www.claymath.org/millennium/
http://en.wikipedia.org/wiki/P_versus_NP_problem
http://en.wikipedia.org/wiki/P_versus_NP_problem
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Figure 1.1: Logical equivalences.

Figure 1.2: Logical consequences.

1.4.10 Solved problems
Problem 37 Use the truth table method to decide
whether the formula ¬p0 ∨ ¬¬p0 is a tautology, a con-
tingency or a contradiction.

The truth table has just two rows, so this is going to
be easy. We first fill in the columns corresponding to the
proposition symbol p0. Then the three negations. And
finally the disjunction:

p0 ¬ p0 ∨ ¬ ¬ p0
1 0 1 1 1 0 1
0 1 0 1 0 1 0

It is a tautology.

Problem 38 Use the truth table method to decide
whether the formula ¬p0 → p1 is a tautology, a contin-
gency or a contradiction.

We have four rows in the truth table. First we fill in the
columns corresponding to the proposition symbols. Then
the negation. And finally the implication:

p0 p1 ¬ p0 → p1
1 1 0 1 1 1
1 0 0 1 1 0
0 1 1 0 1 1
0 0 1 0 0 0

It is contingent.

Problem 39 Use the truth table method to decide
whether the formula ¬(p0 → p1) ∧ ¬p0 is a tautology,
a contingency or a contradiction.

Again we have four rows. First we fill in the columns
corresponding to the proposition symbols. Then the im-
plication. Next the two negations. And finally the con-
junction:

p0 p1 ¬ (p0 → p1) ∧ ¬ p0

1 1 0 1 1 1 0 0 1
1 0 1 1 0 0 0 0 1
0 1 0 0 1 1 0 1 0
0 0 0 0 1 0 0 1 0

It is a contradiction.

1.4.11 Problems
Problem 40 Use the truth table method to solve the fol-
lowing problems:
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1. Decide whether the formula p0 → ¬p0 is a tautol-
ogy, a contingency, or a contradiction.

2. Decide whether the formula p0 ∨ ¬(p0 ∧ p1) is a
tautology, a contingency, or a contradiction.

Problem 41 Use the truth table method to solve the fol-
lowing problems:

1. Decide whether p0 → p1 is equivalent to ¬(p1 →
p0) or not.

2. Decide whether ¬p0 ∨ p1 is equivalent to ¬(p0 ∧ p1)
or not.

Problem 42 Use the truth table method to prove the
equivalence of

1. ¬(A ∧B) and ¬A ∨ ¬B

2. ¬¬A and A

3. A ∧A and A

4. A ∨A and A

Problem 43 Use the truth table method to prove the
equivalence of

1. A→ B and ¬A ∨B

2. A↔ B and (A→ B) ∧ (B → A)

Problem 44 Use the truth table method to prove the
equivalence of

1. A ∨ (B ∨ C) and (A ∨B) ∨ C

2. A ∧ (B ∧ C) and (A ∧B) ∧ C

Problem 45 Use the truth table method to prove the
equivalence of

1. A ∧ (B ∨ C) and (A ∧B) ∨ (A ∧ C)

2. A ∨ (B ∧ C) and (A ∨B) ∧ (A ∨ C)

Problem 46 Use the truth table method to prove the
equivalence of

1. A→ (B → C) and B → (A→ C)

2. A→ (B → C) and (A ∧B)→ C

Problem 47 Show that a conjunction of implications
pi → pi∗ is not a tautology if and only if there is an i
such that i is not i∗.

Problem 48 Define for formulas built up using just ¬ , ∧
and ∨:

1. (pi)
+ = pi, (pi)

− = ¬pi

2. (¬A)+ = A−, (¬A)− = A+

3. (A ∧B)+ = A+ ∧B+, (A ∧B)− = A− ∨B−

4. (A ∨B)+ = A+ ∨B+, (A ∨B)− = A− ∧B−

A+ is called the Negation Normal Form ofA. It has nega-
tions only in front of proposition symbols.

1. Find (¬((p0 ∧ p1) ∨ p2))+.

2. Show that A+ and A are equivalent.

3. Show that A− and ¬A are equivalent.

Problem 49 Define for formulas built up using just ¬ , ∧
and ∨, which are in negation normal form:

1. (pi)
∗ = pi

2. (¬pi)∗ = ¬pi

3. (A ∧B)∗ = A∗ ∨B∗

4. (A ∨B)∗ = A∗ ∧B∗

The formula A∗ is the dual of A. It is obtained from A by
switching conjunctions to disjunctions. What is the dual
of (p0 ∨ ¬p1) ∧ p2? Show that if A is a tautology, so is
¬A∗. Show that if A and B are equivalent, then so are
A∗ and B∗.

Problem 50 Suppose A is a propositional formula in
which the proposition symbols p0, . . . , pn−1 occur. LetAi

be for each i = 0, . . . , n − 1 an arbitrary propositional
formula. Let A′ be the result of substituting everywhere
in A the formula Ai for pi. Show that if A is a tautology,
then so is A′.
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Problem 51 A topological interpretation is a topological
space E and a function f from proposition symbols to
open sets in E. We extend this to propositional formulas
built up from ∧, ∨ and ¬ :

1. f(A ∧B) = f(A) ∩ f(B)

2. f(A ∨B) = f(A) ∪ f(B)

3. f(¬A) = Int(E − f(A)), the interior of the com-
plement of f(A) in the topological sense.

Show that A is a tautology iff f(A) = E in every topo-
logical interpretation where E is a discrete space. A is
said to be a constructive tautology if f(A) = E in every
topological interpretation. Show that ¬(A ∧ ¬A) is, but
A ∨ ¬A is not a constructive tautology.

1.5 Truth functions

1.5.1 What are truth functions
Truth functions are generalizations of the familiar connec-
tives ¬,∧,∨,→,↔. By focusing on the general concept
of a truth function, rather than each individual connective
separately, we can understand the nature of connectives
better.

One of the main reasons to study truth functions is that
computers are ultimately based on truth functions that are
welded into microprosessors inside the computer. Also,
truth functions have interesting mathematical properties,
and truth functions turn out to have a close connection to
propositional formulas.

1.5.2 Truth function
A truth function (also called a connective) is any function
f from the set {0, 1}n to the set {0, 1}, for some n. A
truth function of n variables is called n-ary. A 2-ary truth
function is called binary. Truth functions can be identi-
fied with truth tables, because we can simply list all the
values of a truth function. Note that there is a big dif-
ference to functions on infinite domains such as N and
R. A truth function has only finitely many arguments and
we can simply make a list of all of them, together with
the values that the truth function gets on those arguments.
Such tables we call truth tables.

We have already defined the connectives

¬,∧,∨,→,↔ .

We identify these with the corresponding truth functions.
So, a connective is a symbol with certain meaning but we
can also think of it—indeed identify it with—a truth func-
tion. Negation is the truth function which maps 0 to 1 and
1 to 0. Conjunction is the binary truth function which
maps (1, 1) to 1, (0, 1) to 0, (1, 0) to 0, and (0, 0) to 0.
Similarly the other connectives.

1.5.3 More binary truth functions
Here are some examples of truth functions. In the first one

x y f(x, y)
1 1 1
1 0 1
0 1 1
0 0 1

the value of the function is constant 1. This may not be
the most interesting truth function but it is a truth function
all the same. In the second truth function

x y f(x, y)
1 1 0
1 0 1
0 1 1
0 0 0

the value of the function is 1 if the arguments x and y have
a different value. The third truth function

x y f(x, y)
1 1 0
1 0 0
0 1 0
0 0 0

is again a constant function, this time constant 0. Again
we leave aside the question how interesting this function
is, because, from a mathematical point, all functions are
equal. Our fourth truth function

x y f(x, y)
1 1 1
1 0 0
0 1 0
0 0 1
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may look familiar: this is the truth table of the connective
↔. Our familiar connectives pop up as truth functions but
there are also others.

1.5.4 There are exactly 16 binary truth
functions

Here is a table of all binary truth functions. The table
starts on the left, after the column for the arguments x and
y, with the rather boring constant 0 truth function. Then
comes a function that is 1 only if both x and y are 0. After
an odd one we can see the truth table of the negation of x.
Then again an odd one and then the negation of y.

x y ¬ ∧ ↔ → ∨
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

We skip over two functions and come to the truth table
of conjunction, and immediately after that the truth table
of equivalence. Then we have the identity function y, af-
ter which comes the important truth table of implication.
Then we have the identity function x. After the truth table
of y → xwe find the truth table of disjunction, and finally
the constant function 1.

The important connectives ¬,∧,∨,→,↔ seem to ap-
pear somewhat nondescriptly in the table of all binary
truth functions. Their important role in our everyday lan-
guage does not jump on our face. In fact, many of the
binary truth functions could have emerged in our lan-
guage and overshadowed connectives such as disjunction
and implication. Why this has not happened? When we
proceed, we may—perhaps—get a clue what is so special
about ¬,∧,∨,→,↔.

If we made a similar table of all ternary (3-ary) truth
functions, there would be much more cases simply be-
cause there are much more ternary functions than binary
ones.

1.5.5 A ternary truth function

Here is an example of a ternary truth function.

x y z f(x, y, z)
1 1 1 1
1 1 0 0
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 1
0 0 1 0
0 0 0 0

This truth function does not have any particular intuitive
interpretation, but in a moment we will learn how to asso-
ciate a propositional formula to each truth function. The
propositional formula can then give a kind of intuitive pic-
ture of the truth function.

1.5.6 Sheffer stroke
Here is an important new connective, called Sheffer
stroke:

A B A | B
1 1 0
1 0 1
0 1 1
0 0 1

This connective can be read in natural language as
“not...and”. When we learn about definability in a mo-
ment, we can see that Sheffer stroke has remarkable prop-
erties. It’s importance is not in that people might use it in
everyday language as “not ... and”, but rather in its power
to define every other connective, as we shall now see.

1.5.7 Definability of truth functions
Definability is an important concept in logic and occurs in
many disguises. A truth function f is said to be definable
in terms of truth functions g1, ..., gm if f can be obtained
by composition from g1, ..., gm. What this means in prac-
tice is the following:

Disjunction can be defined in terms of negation and
conjunction:

A ∨B = ¬(¬A ∧ ¬B).

Technically speaking, the connective∨ can be obtained by
composition from the connective ¬ and ∧. Composition
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means roughly speaking the same as successive applica-
tion, as in the above definition of A ∨ B we first apply
negation to A and B, then conjunction to the result and
then finally once again negation. Sheffer stroke A|B can
be defined in terms of negation and conjunction:

A|B = ¬(A ∧B).

Negation and conjunction can be defined in terms of the
Sheffer stroke:

¬A = A|A

A ∧B = (A|B)|(A|B)

So we see the interesting property of Sheffer stroke that
negation and conjunction can be defined in terms of it.
Since disjunction can be defined in terms of negation and
conjunction we may conclude that disjunction too can be
defined in terms of the Sheffer stroke. This interesting
property of the Sheffer stroke is called universality.

1.5.8 Universal sets of connectives
A set T of truth functions is universal if every truth func-
tion can be defined in terms of functions in T . A function
f is universal if the set {f} is. It turns out—we will give
an argument to this effect in a moment—that every truth
function can be defined in terms of the Sheffer stroke, i.e.
the Sheffer stroke is a universal connective. Micropro-
cessors are built from “gates” that are essentially connec-
tives. It suffices to manufacture Sheffer stroke (also called
NAND) gates as all others can be built from them. The
sets {¬,∧}, {¬,∨}, {¬,→} are also universal. All this
needs, of course, to be proved. So let us move on.

1.5.9 Propositional formulas define truth
functions

Suppose A is a propositional formula built from propo-
sition symbols p1, ..., pn. A defines the following truth
function:

fA(x1, ..., xn) = the truth value of A
under the valuation
that gives pi the value
xi for i = 1, ..., n

For example,
f¬p1

(x1) is the truth value of ¬p1 under the valuation
v(p1) = x1. So f¬p1

(x1) is 1 if x1 = 0 and 0 if x1 = 1.
Also, fp1∧p2

(x1, x2) is the truth value of p1 ∧ p2 under
the valuation v(p1) = x1, v(p2) = x2. So fp1∧p2

(x1, x2)
is 1 if x1 = x2 = 1 and 0 otherwise.

Finally, f¬p1∨p2(x1, x2) is the truth value of ¬p1 ∨ p2
under the valuation v(p1) = x1, v(p2) = x2. So
f¬p1∨p2

(x1, x2) is 0 if (as we can see after a little cal-
culation) x1 = 1 and x2 = 0, and 1 otherwise.

Whatever propositional formula A is given, we can
quite easily define the truth function fA by simply build-
ing the truth table of A. This turns out to be a very useful
method for creating truth functions. In fact so useful that
every truth function is of the form fA for some A.

1.5.10 Propositional formulas cover all
truth functions

We shall now indicate—without giving a rigorous proof—
that every truth function is of the form fA for some propo-
sitional formula A.

Theorem: Every truth function is defined by some
propositional formula.

Let us look at the truth table of the truth function f and
focus on the rows where f gets value 1. We simply forget
the rows where f gets value 0. We represent f as the
“disjunction” of those rows.

To see how this is done we consider an example:

x y z f(x, y, z)
1 1 1 1
1 1 0 0
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 1
0 0 1 0
0 0 0 0

There are 3 rows where f gets the value 1. Let us call
these 1-rows. Now we use a trick: we know that a disjunc-
tion of several formulas has truth value 1 exactly when at
least one of the formulas has. So we look for a disjunction
of three formulas—because there are three ones—such
that each disjunct picks exactly one of the three 1-rows.
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1.5.11 Capturing a truth function with a
formula

We look for a propositional formula the truth table of
which has 1 on exactly the same rows as f , i.e. on the
1-rows.

A = (p0 ∧ p1 ∧ p2) ∨
(p0 ∧ ¬p1 ∧ p2) ∨
(¬p0 ∧ p1 ∧ ¬p2)

This choice works wonderfully. Let us try: On the first
1-row of the truth table of f we have x = y = z = 1. This
corresponds to the valuation v(p0) = v(p1) = v(p2) = 1.
With this valuation the first (top) disjunct p0 ∧ p1 ∧ p2
and hence the whole disjunction A becomes true. What
about the second 1-row. Here we have x = z = 1, y = 0.
This corresponds to the valuation v(p0) = v(p2) = 1,
v(p1) = 0. And, surprise, surprise, the second (middle)
disjunct is true with this valuation. Finally, the third 1-row
likewise gives rise to a valuation which renders A true.

But, now comes the catch, what about the other rows,
all those rows where f gets value 0. What happens to A
on those rows. Let us assume we have a valuation which
gives A the value 1. Then it gives value to at least one
disjunct, say the last one ¬p0 ∧ p1 ∧ ¬p2. Hence v(A) =
0 for the valuation which satisfies v(p0) = v(p2) = 0,
v(p1) = 1. But this is the third 1-row of the truth table of
f . Going through all the cases where v(A) can be 1 one
can be convinced that, indeed, f = fA.

If there are no 1-rows, we let A be p0 ∧ ¬p0.

1.5.12 Applications
A side-result of the trick we just learnt for representing ev-
ery truth function in the form fA is that every truth func-
tion can be defined by means of ¬, ∧ and ∨. Namely,
these are the only connectives that occur in the A that we
constructed. Thus {¬,∧,∨} is a universal set of con-
nectives, even just {¬,∧}, because ∨. Moreover, every
propositional formula A gives rise to a truth function fA
and then for this fA we can find a propositional formula
B by using just ¬, ∧ and ∨ with fA = fB . So now A
and B have the same truth table. We call such formulas
logically equivalent. Thus, every propositional formulaA

can be expressed in a logically equivalent form

A1 ∨ ... ∨An,

where each Ai is of the form

B1 ∧ ... ∧Bm,

and each Bi is a proposition symbol or its negation. This
is called a disjunctive normal form (denoted DNF) of A.
It is not at all unique, the one and same A may have the
same truth table with many different formulas that are all
in disjunctive normal form.

For example, a mechanically built disjunctive normal
form of p0 → p1 is

(p0 ∧ p1) ∨ (¬p0 ∧ p1) ∨ (¬p0 ∧ ¬p1).

However, this is not at all the simplest way to represent
p0 → p1 in disjunctive normal form. Here is a much
simpler one

¬p0 ∨ p1.
Finding a disjunctive normal form for a propositional for-
mula is an important tool for a better understanding of
the formula. For example, seeing p0 → p1 in the form
¬p0 ∨ p1 is often most useful, so this form is worth keep-
ing in mind.

1.5.13 Solved problems
Problem 52 Find the truth function defined by the propo-
sitional formula (p0 ∧ ¬p1)→ p2.

Solution: This is essentially the problem of finding the
truth table of (p0 ∧ ¬p1) → p2. The truth function is a
function of three variables, as there are three proposition
symbols in the formula. Let us denote the value of p0
by x0, the value of p1 by x1, and the value of p2 by x2.
So we need a function f(x0, x1, x2) of the three variables
x0, x1 and x2, so that if x0 = v(p0), x1 = v(p1), and
x2 = v(p2), then f(x0, x1, x2) = v((p0 ∧ ¬p1) → p2).
We build the table of f step by step.

To find the value of f(1, 1, 1) we compute what the
truth value of (p0 ∧ ¬p1) → p2 is when p0, p1, p2 are
all true. It is clearly 1.

We now make an observation: (p0 ∧ ¬p1)→ p2 is true
when p2 is true. So we can immediately fill three more
values to the table of f .
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The next observation is that (p0 ∧ ¬p1) → p2 is true
also if p0 is false, because then p0∧¬p1 is false and hence
the implication true.

There are just two values left to compute. In the first
case we need a value for f(1, 1, 0). The value is 1, And
finally f(1, 0, 0) is 0. The table is ready.

x0 x1 x2 f(x0, x1, x2)
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

2

Problem 53 In each case below, find a propositional for-
mula using ¬, ∧ and ∨ which defines the given truth func-
tion.

The first truth function:

x0 x1 f(x0, x1)
1 1 1
1 0 1
0 1 1
0 0 1

It is a column of ones. This truth function is a constant
function, constant 1. So if we take the formula p0 ∨ ¬p0,
it is a perfect answer. This formula is a tautology, so its
truth value is always 1. It does not matter that p1 does not
occur in the formula. But there is no problem adding it to
the formula either, and we get the formula (p0∨¬p0)∨p1,
but this is superfluous.

The second truth function:

x0 x1 f(x0, x1)
1 1 0
1 0 1
0 1 1
0 0 0

This is a non-constant function and we apply the
method of disjunctive normal forms to it. There are two

one-rows, the second and the third. So we build a dis-
junction of two formulas. The first disjunct is p0 ∧ ¬p1,
and the second disjunct is ¬p0 ∧ p1. So the formula is
(p0 ∧ ¬p1) ∨ (¬p0 ∧ p1). Now one can easily check that,
indeed, this formula defines the given truth function f .
This can be seen by simply going through the possible ar-
guments x0, x1 and checking in each of the four cases that
the two functions, the given function f , and the truth func-
tion defined by our formula, give the same answer.

The third truth function:

x0 x1 f(x0, x1)
1 1 0
1 0 0
0 1 0
0 0 0

This is again a constant function. There are no one-
rows, so we could not use the disjunctive normal form
method even if we wanted. Instead we use common sense.
Any contradiction is false under any valuation. So we
take, for example, p0 ∧ ¬p0. This formula defines a truth
function which is constant 0.

The final truth function:

x0 x1 f(x0, x1)
1 1 1
1 0 0
0 1 0
0 0 1

Again we have two one-rows. We have to build a for-
mula using only ¬, ∧ and ∨, so we cannot take the for-
mula p0 ↔ p1, although this formula clearly defines the
given truth function. So we use the method of disjunc-
tive normal forms. There are two one-rows, the first and
the fourth. So we build a disjunction of two formulas.
The first disjunct is p0 ∧ p1, and the second disjunct is
¬p0 ∧ ¬p1. So the formula is (p0 ∧ p1) ∨ (¬p0 ∧ ¬p1).
Now it remains to check that, indeed, this formula defines
the given truth function. As above, this can be seen by
simply going through the possible arguments x0, x1 and
checking in each of the four cases that the two functions,
the given function f , and the truth function defined by our
formula, give the same answer.

Problem 54 Find a propositional formula using ¬,∧ and
∨ which defines the truth function of Figure 1.3:
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x0 x1 x2 f(x0, x1, x2)
1 1 1 0
1 1 0 1
1 0 1 1
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
0 0 0 1

Figure 1.3: A ternary truth function

Solution:
This problem clearly calls for an application of the dis-

junctive normal form method. Let us see how it works.
There are 6 one-rows and 2 zero-rows. It is too bad that
the disjunctive normal form method focuses on the one-
rows, and there are so many of them. Let us use a trick.
By focusing on the zero-rows we can build a formula
whose negation is the requested formula. So we start our
defining formula with a negation and then write a formula
which has truth value 1 on exactly the zero-rows. There
are two zero rows, so we build—inside the negation—a
disjunction of two formulas. The first is p0 ∧ p1 ∧ p2 and
the second is ¬p0 ∧ p1 ∧ p2. The final formula is

¬((p0 ∧ p1 ∧ p2) ∨ (¬p0 ∧ p1 ∧ p2)).

This formula works, but at the same time it looks suspi-
ciously independent of the truth value of p0, so let us try
a simpler formula

¬(p1 ∧ p2).

We need to check that the truth function defined by
¬(p1 ∧ p2) is the function f . This is easy to do. We note
that f(x0, x1, x2) is independent of x0, just as the truth
function defined by our formula is. For the 4 possible val-
ues of x1, x2 we note f and the truth function defined by
our formula give the same value, so we are done.
2

Problem 55 Show that the ternary truth function of Fig-
ure 1.3 is universal.

Solution: Note that f(x, x, x) = 1− x and f(x, x, y) =
1− xy. Thus

f(f(x, x, y), f(x, x, y), f(x, x, y)) = xy.

This shows that we can express negation and conjunction
in terms of f . But we already know that {¬,∧} is a uni-
versal set of connectives. So we are done.

2

Problem 56 Show that the set {∧,∨} of connectives is
not universal.

Solution: It is easy to see that any connective
f(x1, ..., xn), defined in terms of ∧ and ∨ , satisfies
f(1, ..., 1) = 1. How? This property holds for ∧ and
∨, and the property is preserved by composition of func-
tions. Therefore it holds for every connective defined in
terms of ∧ and ∨. Thus it follows that negation cannot be
defined in terms of ∧ and ∨.

2

1.5.14 Problems
Problem 57 In each case below, find a propositional for-
mula using ¬ and → which defines the given truth func-
tion.

x0 x1 f

1 1 1
1 0 1
0 1 1
0 0 1

x0 x1 f

1 1 1
1 0 0
0 1 0
0 0 1

x0 x1 f

1 1 0
1 0 0
0 1 0
0 0 0

x0 x1 f

1 1 0
1 0 1
0 1 1
0 0 1

Problem 58 Show that {→} is not universal. Hint: Show
first that any connective f(x1, . . . , xn), defined in terms
of→, satisfies f(1, . . . , 1) = 1.

Problem 59 Show that {¬} is not universal. Hint: Think
carefully first what kind of truth functions can be defined
in terms of negation only. Maybe they are all of a rather
simple form.



36 CHAPTER 1. PROPOSITIONAL LOGIC

Problem 60 Show that {∧,↔} is not universal.

Problem 61 Which of the following formulas are in dis-
junctive normal form:

1. p1

2. p0 ∨ p1

3. ¬p0 ∧ p1

4. p0 ↔ p2

5. (¬p0 ∧ p1 ∧ p2)∨ (p0 ∧¬p1 ∧ p3)∨ (¬p0 ∧ p2 ∧ p3)

6. (¬p0 ∨ p1 ∨ p2)∧ (p0 ∨¬p1 ∨ p3)∧ (¬p0 ∨ p2 ∨ p3)

7. (p0 → p1) ∧ (¬p0 → p2)

Problem 62 Write the following formulas in an equiva-
lent disjunctive normal form:

1. p0 → p1

2. ¬(p0 → p1)

3. (p0 ∨ p1) ∧ (¬p0 ∨ p2)

4. (¬p0 ∨ p1 ∨ p2)∧ (p0 ∨¬p1 ∨ p3)∧ (¬p0 ∨ p2 ∨ p3)

Problem 63 How many n-ary truth functions are there?

Problem 64 Recall the definition of the probability p(A)
of A in Problem 34. Show

1. A is a tautology iff p(A) = 1

2. A is a contradiction iff p(A) = 0

3. A is a contingency iff 0 < p(A) < 1.

1.6 Natural deduction

1.6.1 What is deduction?
A deduction—also called an inference, derivation or a
proof—is a sequence of formulas formed by obeying cer-
tain fixed rules, so called deduction rules, or rules of in-
ference, or rules of proof.

The rules reflect “correct thinking”.

A deduction is a simplified model of proving theorems
in mathematics or in any other science. It tries to capture
the rules of correct inference. Deductions are also called
(formal) proofs.

The study of deduction goes back to Aristotle, who
gave the first set of rules of correct inference, so called
syllogisms, such as the following:

Every man is mortal.
Socrates is a man.
Therefore, Socrates is mortal.

This does not only sound convincing but it is even con-
vincing if “Socrates”, “man” and “mortal” are changed
to anything else, for example “Anna”, “Finn” and “Euro-
pean”:

Every Finn is European.
Anna is a Finn.
Therefore, Anna is European.

It is important to acknowledge right in the beginning
of the discussion on deductions (or proofs) that in prac-
tice one seldom writes proofs as carefully as we do in
this course. Maybe a computer does, but humans talk-
ing or writing with paper and pencil certainly don’t. In
practice proofs are so called informal proofs. With an
informal proof a scientist becomes convinced—and can
convince also fellow scientists—that some conclusion is
a valid one. For example, a scientist may perform various
experiments and then draw a conclusion. The conclusion
is usually not just a statement that such and such results
were obtained in the experiments. Rather, the scientist is
supposed to make also some conclusions of the type that
a hypothesis made in the research project has been con-
firmed or rejected by the experiments. The conclusions
may be based on an ingenious combination of conclusions
from known theories and the new experiments. A need for
a proof of a different kind may be the need to prove that

• a bridge does not collapse,

• a dam does not burst,

• a nuclear reactor does not go to meltdown,

• an operating system does not crash,

• a rocket does not explode on take off,
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• and so on.

In such cases the proof—if such even exists—may be so
complicated that is has to be written in a manner that
a computer can understand and check for correctness.
This manner may very well be the kind of pedantic for-
mal proof that we now learn. There are computer based
proof assistants4 that help humans write very exact formal
proofs.

The point of introducing an exact concept of deduction
is that on the one hand it throws light on the important
process of making correct conclusions from given hypoth-
esis, and on the other hand it subjects the concept of de-
duction to mathematical investigation.

1.6.2 Complexity of deduction

It is easy to check if a given deduction is correct, that
is, whether it is written according to the deduction rules.
Even a computer can check correctness of deductions.
The difficulty is in finding the deduction. A big part of
the creative work of a mathematician, or of a researcher
of some other science, consists of trying to prove some-
thing that one believes must be true.

1.6.3 Natural deduction

Natural deduction is a particular system of writing deduc-
tions. As its name indicates, it attempts to imitate as far
as possible human thinking.

In natural deduction we have some assumptions
B1, ..., Bn, and we want to derive a conclusion A from
them. If we can, we write {B1, . . . , Bn} ` A. If no such
deduction exists, we write {B1, . . . , Bn} 6` A.

Deductions are built from simpler deductions and as-
sumptions by means of introduction and elimination rules.

1.6.4 A simple natural deduction

Here is a simple natural deduction:

A B
A ∧B ∧ I

A B
A ∧B ∧ I

(A ∧B) ∧ (A ∧B)
∧ I

4see e.g. http://coq.inria.fr/

Let us look at its components. On the top there are as-
sumptions A and B. Each horizontal line represents an
application of an inference rule. The name of the rule, in
this case ∧I , is next to the inference line. The conclusion
(A ∧B) ∧ (A ∧B) is at the bottom.

We can see that this inference (or deduction) has

A B
A ∧B ∧ I

as a sub inference, even twice. This is the general pat-
tern of deductions (i.e. inferences): they consist of pieces
we put together and each piece is a smaller inference. The
smallest inferences are like the one above in that they con-
sist of just on inference line.

1.6.5 Rules for conjunction

The essence of a deduction is that it is built by combin-
ing certain rules. The rules governing conjunction, trying
to capture how we understand the word “and”, are as fol-
lows:

∧-Introduction Rule:

A B
A ∧B ∧ I

∧-Elimination Rules:

A ∧B
A

∧ E
A ∧B
B

∧ E

The idea of the the ∧-Introduction Rule is very simple:
If we knowA and we knowB, we know their conjunction
A ∧ B. Similarly for the ∧-Elimination Rule if we know
A ∧B, we know both A and we know B.

1.6.6 Deriving (A∧B)∧C from A∧(B∧C)

Let us look at a deduction involving the rules governing
conjunction. We derive (A ∧B) ∧ C from A ∧ (B ∧ C).

Assuming A∧ (B∧C) we know in principle that A, B
and C hold and can be derived from A ∧ (B ∧ C) by the
rule ∧E.

To derive (A ∧ B) ∧ C we first derive A ∧ B and then
combine this with C, which again can be derived from
A ∧ (B ∧ C) by the rule ∧E, to get (A ∧B) ∧ C.

http://coq.inria.fr/


38 CHAPTER 1. PROPOSITIONAL LOGIC

A ∧ (B ∧ C)
A

∧ E

A ∧ (B ∧ C)
B ∧ C ∧ E

B
∧ E

A ∧B ∧ I

A ∧ (B ∧ C)
B ∧ C ∧ E

C
∧ E

(A ∧B) ∧ C
∧ I

Figure 1.4: Deriving (A ∧B) ∧ C from A ∧ (B ∧ C)

Now the deduction. First we derive A, then B, and so
we haveA∧B. Next we deriveC, and finally put together
what we have got.
For the entire deduction, see Figure 1.4.

1.6.7 An example of a proof by cases
Proof by cases is common in mathematics. Here is an
example.

Suppose we want to show that n2 + 7n is even for all
n. A possible proof proceeds as follows:

• We know that every number is even (of the form 2m)
or odd (of the form 2m+ 1).

• Let us take an arbitrary natural number n.

• Case 1: n is even i.e. n = 2m: n2 + 7n = 4m2 +
14m = 2(2m2 + 7m) even.

• Case 2: n is odd i.e. n = 2m + 1: n2 + 7n =
(2m+1)2+7(2m+1) = 4m2+4m+1+14m+7 =
4m2 + 18m+ 8 = 2(2m2 + 9m+ 4) even.

• So in either case n2 + 7n is even.

• So n2 + 7n really is always even.

1.6.8 The structure of the proof
The structure of the above proof by cases is the following.
We want to prove that n2 +7n is even. We know that n is
even or odd. Note that this is a disjunction. We also know
that if n is even, then n2 +7n is even, and also that if n is
odd, then n2 + 7n is even. And that is all we have to do,
we are convinced that n2 + 7n is even whether n is even
or odd. Schematically we can think of this proof in this
form:

n is even or odd

n is even....
n2 + 7n is even

n is odd....
n2 + 7n is even

n2 + 7n is even

1.6.9 Proof by cases
If we analyze further what is going on in the above proof
by cases we can think of it as an application of a rule of
the form

A ∨B

[A]....
C

[B]....
C

C

We knowA∨B, and we can prove C if we assumeA, but
also if we assume B. So since A ∨ B is established, we
are convinced of C.

1.6.10 Making assumptions
In proofs by cases we make temporary assumptions (“n
even”, “n odd”). In a natural deduction we can make tem-
porary assumptions, postulate a formula which is not an
assumption, as long as we are able to eliminate the as-
sumption at some point. When a temporary assumption
A is eliminated it is put into square brackets [A]. Elim-
inating a temporary assumption is not always necessary.
It is a right, not a duty. However, a temporary assump-
tion which is not eliminated remains an assumption of the
deduction and usually ruins the goal of the deduction.

It is important to learn to distinguish assumptions and
temporary assumptions from each other. Temporary as-
sumptions arise typically when we know a disjunction and
we want to make some conclusion. The we temporarily
assume first one disjunct and then the second, to see what
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happens. In the above proof that n2+7n is even we knew
that n itself is even or odd but we did not know which. So
we assumed first that n is even and then that n is odd.

1.6.11 Rules for Disjunction
We are ready now to lay down the rules that govern dis-
junction in natural deduction.

∨-Introduction Rules:

A
A ∨B ∨ I

B
A ∨B ∨ I

∨-Elimination Rules:

A ∨B

[A]....
C

[B]....
C

C
∨E

The ∨-Introduction Rule is rather obvious: If we know
a disjunct, we know the disjunction. It is ∨-Elimination
Rule that is more interesting and features the just dis-
cussed proof by cases. The idea is that if we know A ∨B
and we know C whether we make the temporary assump-
tion A or B, then we can conclude C.

1.6.12 Eliminating disjunction
We derive C from the assumption (A ∧ C) ∨ (B ∧ C).
Let us first think why C follows from (A∧C)∨ (B∧C):
(A ∧ C) ∨ (B ∧ C) says that A ∧ C or B ∧ C (or both)
is the case. But whether A ∧ C or B ∧ C is the case, we
have anyway C.

1.6.13 Eliminating disjunction
Here is the natural deduction for a derivation of C from
the assumption (A ∧ C) ∨ (B ∧ C).

(A ∧ C) ∨ (B ∧ C)
[A ∧ C]
C

∧ E
[B ∧ C]
C

∧ E

C
∨ E

It is one big application of ∨-elimination. We just have to
use ∧-elimination to take care of the temporary assump-
tions.

1.6.14 Introducing disjunction

We derive (A∨C)∧(B∨D) from the assumptionA∧B.
Let us first think intuitively why (A∨C)∧(B∨D) seems
to follow fromA∧B. IfA∧B is the case, then bothA and
B are the case. From A follows A ∨ C. From B follows
B ∨D. So we have (A ∨ C) ∧ (B ∨D).

1.6.15 Introducing disjunction

Now we build the required natural deduction for deriving
(A ∨ C) ∧ (B ∨D) from the assumption A ∧B.

We attempt to use the ∧-Introduction Rule. In order to
get A ∨ C we need to apply first the ∨-Elimination Rule
to get A and then the ∨-Introduction Rule to get A ∨ C.
The same with B ∨D.

1.6.16 Derivation of A from A ∨ A

Here we derive A from A∨A. This is a somewhat singu-
lar case, but note that we are now dealing with deductions
that also computers may use. It is obvious to us thatA fol-
lows fromA∨A, but it may not be obvious to a computer.
Also, there are logical systems, for example so called de-
pendence logic 5, where one cannot derive A from A∨A.
In dependence logic the disjunction A ∨ A is satisfied by
a “team”X if and only ifX can be represented as a union
Y ∪ Z such that both Y and Z satisfy A, and a team X
may very well satisfyA∨Awithout satisfyingA, roughly
for a similar reason why five euros may be the exact fare
for two tram tickets but not for one tram ticket.

Here is the deduction of A from A ∨A:

A ∨A [A] [A]

A

Note that A is both the assumption and conclusion of the
one sentence derivation

A.

This is a singular deduction but a deduction all the same.

5en.wikipedia.org/wiki/Dependence logic

http://en.wikipedia.org/wiki/Dependence_logic
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1.6.17 Solved problems
Problem 65 B ∧A is derivable from A ∧B.

We deriveB fromA∧B, and alsoA. Then we combine
the two derivations and derive B ∧A.

A ∧B
B

∧ E
A ∧B
A

∧ E

B ∧A ∧ I

Problem 66 A ∨B is derivable from A ∧B
This is an easy one. We derive A from A∧B, and then

immediately A ∨B from A.

A ∧B
A

∧ E

A ∨B ∨ I

Note that there is another equally good solution which
goes via B:

A ∧B
B

∧ E

A ∨B ∨ I

A deduction is not something that is unique.

Problem 67 The train is moving or else both the door is
open and the green light is on. Derive that the train is
moving or the green light is on?

We have to derive p0∨p2 from p0∨(p1∧p2). One might
first try to use the ∨-Introduction Rule, but that does not
seem to lead anywhere. The next idea is to use the ∨-
Elimination Rule to the assumption p0 ∨ (p1 ∧ p2), and
this actually works.

By assumption either p0 or p1∧p2 holds. In both cases
p0 ∨ p2 follows. In order to use the ∨-Elimination Rule
we set up the stage:

p0 ∨ (p1 ∧ p2)
p0

p1 ∧ p2

p0 ∨ p2 ∨ E

Now we have to infer p0 ∨ p2 first from p0 and then again
from p1 ∧ p2. But both tasks are easy:

p0 ∨ (p1 ∧ p2)
[p0]

p0 ∨ p2 ∨ I

[p1 ∧ p2]
p2

∧ E

p0 ∨ p2 ∨ I

p0 ∨ p2 ∨ E

Problem 68 Derive (A ∨B) ∨ C from A ∨ (B ∨ C)?
Our assumption is the disjunction of A and B ∨ C, so

we use the ∨-Elimination Rule. We note that from A fol-
lows A ∨ B and hence (A ∨ B) ∨ C. On the other hand,
from B ∨ C also follows (A ∨ B) ∨ C by an application
of the ∨-Elimination Rule, that is, a proof by cases:

Case 1: Assume B. Then A ∨B, hence (A ∨B) ∨ C.
Case 2: Assume C. Then (A ∨B) ∨ C.

The deduction is ready. (See Figure 1.5.)

1.6.18 Problems
Problem 69 Use natural deduction to derive: A∧(B∨C)
from A ∧ C.

Problem 70 Use natural deduction to derive: A∧(B∨C)
from (A ∧ B) ∨ (A ∧ C). Hint: A temporary assumption
can very well be used several times before it is eliminated.

Problem 71 Use natural deduction to derive: A∨(B∧C)
from (A ∨B) ∧ (A ∨ C).

Problem 72 Use natural deduction to derive: (A∧B)∨
(A ∧ C) from A ∧ (B ∨ C).

Problem 73 Use natural deduction to derive: (A∨B)∧
(A ∨ C) from A ∨ (B ∧ C).

1.7 Natural deduction: Implication

1.7.1 Rules for Implication
We shall now learn an elimination rule as well as an intro-
duction rule for implication.

These rules are the following:

The→-Elimination Rule is:

A→ B A
B

→ E

The→-Introduction Rule is:

[A]....
B

A→ B
→ I
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A ∨ (B ∨ C)

[A]

A ∨B ∨ I

(A ∨B) ∨ C
∨ I

[B ∨ C]

[B]

A ∨B ∨ I

(A ∨B) ∨ C
∨ I

[C]

(A ∨B) ∨ C
∨ I

(A ∨B) ∨ C
∨ E

(A ∨B) ∨ C
∨ I

Figure 1.5: Deriving (A ∨B) ∨ C from A ∨ (B ∨ C)

1.7.2 Rules for Implication
Learning to use these rules requires a little practice. How-
ever, let us first look at these rules a bit more carefully.
The content of the→-Elimination Rule is that if we have
derived both A and A → B, then we can conclude B.
This is how we think of implication A → B. We even
read A → B as “If A, then B”. So if we have A, we
should indeed conclude B.

What about the →-Introduction Rule? This rules says
that if we can derive B under the assumption A, then we
may conclude A → B without any assumptions. This
rule establishes a tight relationship between derivability
and →, and corresponds to the intuition that implication
is a formalization of logical consequence.

1.7.3 Eliminating Implication
Here is an example of the use of the→-Elimination Rule:
We derive C from A and (A ∨B)→ C.

We prepare ourselves to using the→-Elimination Rule.
For this to work we have to deriveA∨B fromA. But this
can be done by means of the ∨-Introduction Rule:

(A ∨B)→ C
A

A ∨B ∨ I

C
→ E

1.7.4 Introducing implication
Here is an example of the use of the→-Introduction Rule:
We derive A → C from the assumptions A → B and
B → C. First we prepare ourselves for an application of
the→-Introduction Rule. So we make the temporary as-
sumption A and try to derive C. Our assumption A→ B,
together with the temporary assumption A immediately

gives B. From this and the other assumption B → C we
get C.

B → C

A→ B [A]

B
→ E

C
→ E

A→ C
→ I

1.7.5 Example: Derivation of A→ A

This is again a somewhat singular case! Let us again re-
mark that proving such an extreme case as A → A may
seem totally unnecessary, but it is good to check because
these extremely short deductions are building blocks of
bigger ones. If this is a simple case, it should be easy for
us.

The formula A is both the assumption and conclusion
of this one-sentence derivation:

A

Now the assumption A can be eliminated to derive
A→ A:

[A]

A→ A

1.7.6 Rules for equivalence
Dealing with equivalence is like dealing with two impli-
cations at the same time. The rules governing equivalence
are:

The↔-Elimination Rule s are:

A↔ B A
B

↔ E
A↔ B B

A
↔ E
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The↔-Introduction Rule is:

[B]....
A

[A]....
B

A↔ B
↔ I

1.7.7 Rules for equivalence
What is behind the rules of the equivalence-connective?
The ↔-Elimination Rule says that if we can derive both
A andA↔ B, then we can concludeB. The intuition be-
hind should be obvious. After all,A↔ B says thatA and
B are “equivalent”. So if we have derived A, we should
accept B, too, and vice versa. As to the ↔-Introduction
Rule, it says that if we can derive B under the assump-
tion A, and also A under the assumption B, then we may
conclude A ↔ B without any assumptions. The deriv-
ability of A and B from each other is interpreted as the
equivalence of A and B, i.e. as A↔ B.

1.7.8 Eliminating equivalence
As an example of the ↔-Elimination Rule we derive C
from A and (A ∨ B) ↔ C. First we prepare the ground
for an application of the↔-Elimination Rule. For this to
work, we have to somehow deduce A ∨ B. So what do
we have, what can we use to deduce A ∨ B. One of our
assumptions is A. But of course we can deduce A ∨ B
from A, this is just ∨-Introduction Rule. So we are ready:

(A ∨B)↔ C
A

A ∨B ∨ I

C
↔ E

1.7.9 Introducing equivalence
As an example of the ↔-Introduction Rule we derive
A ↔ C from the assumptions A ↔ B and B ↔ C.
First we set the stage for an application of↔-Introduction
Rule. We then make the temporary assumptionA trying to
derive C and at the same time we make the temporary as-
sumption C trying to derive A. We now use the assumed
equivalences A ↔ B and B ↔ C, applying successively
the ↔-Elimination Rule, getting C on the left and A on
the right. We have derived C from A and A from C:

B ↔ C

A↔ B [A]

B
↔E

C
↔E

A↔ B

B ↔ C [C]

B
↔E

A
↔E

A↔ C
↔I

1.7.10 Solved Problems
Problem 74 Derive (A ∧B)→ C from A→ (B → C).

What is the idea? We assume A ∧ B. Thus we have A
and B. From A and A → (B → C) we get B → C.
From B and B → C we get C. We are done. We can
draw the deduction.

We set the stage for an application of →-Introduction
Rule. We want to derive an implication and we have a
conjunction as a temporary assumption. We use the ∧-
Elimination Rule twice to get A and B. Then we use the
assumption to get first B → C and then finally C. Now
the→-Introduction Rule finishes the job.

[A ∧B]

A
∧ E

A→ (B → C)

B → C
→ E

[A ∧B]

B
∧ E

C
→ E

(A ∧B)→ C
→ I

Problem 75 Derive A→ (B → A)
We prepare ourselves to applying→-Introduction Rule.

For this end we make the temporary assumption A.
Now we use the→-Introduction Rule to conclude B →

A and at the same time eliminate the temporary assump-
tion B. Oops! We do not have B as a temporary assump-
tion, so how can we eliminate it? Nothing to worry about.
No need to eliminate B because the temporary assump-
tion B was never made. We have deduced B → A from
the temporary assumption A, without even using A.

A
B → A

We get A → (B → A) with another application of the
→-Introduction Rule, and at the same time we can elim-
inate the temporary assumption A. Now the deduction is
ready:

[A]

B → A
A→ (B → A)
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Problem 76 Derive (A → B) → (A → C) from A →
(B → C).

We assume A→ B. To derive A→ C we next assume
A and try to deriveC. FromA andA→ (B → C) we get
B → C. From A → B we also get B. So from B → C
we get finally C. Now we can use the →-Introduction
Rule to get A → C and at the same time we can elim-
inate the temporary assumption A, in two places. An-
other application of→-Introduction Rule give the desired
(A → B) → (A → C), and the temporary assumption
A → B can be eliminated. For the complete deduction
see Figure 1.6

1.7.11 Problems
Problem 77 Use natural deduction to derive: B →
(A→ C) from A→ (B → C).

Problem 78 Use natural deduction to derive: (A∧B)→
(C ∧D) from (B ∧A)→ (D ∧ C).

Problem 79 Use natural deduction to derive: A→ (C ∨
B) from A→ (B ∨ C).

Problem 80 Use natural deduction to derive: A→ (B∨
C) from (A→ B) ∨ (A→ C).

Problem 81 Use natural deduction to derive: A → B
from (A ∧ C)↔ B and C.

Problem 82 Use natural deduction to derive: (A →
B)→ ((B → A)→ (A↔ B)).

1.8 Natural deduction: Negation
The deduction methods we have so far learnt are so-called
direct deductions, that is, deductions in which we start
from given assumptions and derive step by step to the de-
sired conclusion. We have also learnt the method of proof
by cases, that is, the use of the disjunction elimination
rule. Now we learn to prove negated statements.

1.8.1 Proving a contradiction
The basic idea behind proving ¬A is to derive contradic-
tion from A. In other words, we take A as a temporary

assumption and derive a contradiction B ∧ ¬B for some
formula B. The formula B can in principle be A but it is
more likely to be something else.

When we have derived a contradictionB∧¬B from the
temporary assumption A, we consider ¬A proved. At the
same time the temporary assumptionA can be eliminated.

Let us try to understand the idea of proving a negated
sentence. In all simplicity it is the following idea: Sup-
pose I come into a house from outside and make the state-
ment that it is not raining. Someone may doubt and ask
for a “proof”. I can say: Look, if it rained my coat would
be wet, but my coat is completely dry, so it cannot be rain-
ing outside. So we accept the negation of “it is raining”
because “it is raining” would lead to a contradiction with
what we can clearly see with our own eyes.

For another example, let us see why it is easy to accept
the negation of “The earth is flat”. If the earth was flat
the shadow of the earth on the moon in a lunar eclipse
would not be round, at least not always, but anyone who
has observed a lunar eclipse has seen that the shadow of
the earth on the moon is round. Also, people on long dis-
tance flights as well as captains of long distance ocean
ships would observe “coming to the edge of the world”-
type phenomena but what they actually observe is that the
horizon is always equally far away and very distant ob-
jects seem to be partially behind the horizon as if the earth
was everywhere equally round. So the assumption that the
earth is flat leads to conclusions that defy known observed
facts. So we accept the negation of “The earth is flat” as
true.

The point of these two examples—and there are of
course many more—is that in everyday language we ac-
cept negation of a statement if the statement leads to an
absurdity. This is why also in natural deduction we prove
¬A by assuming A and deriving a contradiction.

1.8.2 Practice
Let us practice deriving a contradiction from given as-
sumptions. We derive a contradiction from (A → B) ∧
A ∧ ¬B. Intuitively, we have a contradiction, because
from A → B and A be get B, and on the other hand, we
assume ¬B. So in the natural deduction we first derive
A → B from the assumption by means of ∧-Elimination
Rule (See Figure 1.7). Then we also derive A from the
assumption by means of another application of the ∧-
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[A] [A→ B]

B
→ E

[A] A→ (B → C)

B → C
→ E

C
→ E

A→ C
→ I

(A→ B)→ (A→ C)
→ I

Figure 1.6: Deriving (A→ B)→ (A→ C) from A→ (B → C)

Elimination Rule. Then we apply the→-Elimination Rule
to A → B and A, obtaining B. Finally we get ¬B from
the assumption again by means of the∧-Elimination Rule.
So an application of the ∧-Introduction Rule finishes the
deduction of the contradiction B ∧¬B from the given as-
sumption (See Figure 1.7).

1.8.3 Introducing negation
The rule for introducing a negation is:

The ¬-Introduction Rule is:

[A]....
B ∧ ¬B
¬A ¬ I

We learnt above how to derive a contradiction from
(A→ B)∧A∧¬B. With the ¬-Introduction Rule we can
now write down a deduction for ¬((A → B) ∧ A ∧ ¬B)
without any assumptions. We simply take (A→ B)∧A∧
¬B as a temporary assumption, repeat the above deriva-
tion of B ∧ ¬B from the given assumption, then use ¬-
Introduction Rule to derive the negation of the assump-
tion, and at the same time the temporary assumption is
eliminated, in three places. The full deduction is in Fig-
ure 1.8.

1.8.4 Deriving ¬¬A from A

Let us then look at the derivation of ¬¬A from A. This is
perhaps a little difficult derivation because the derivation
is very short and it may be difficult to see what is going on.
The rough idea is the following: We assume A and want
to show that ¬A leads to a contradiction. Well, of course
it leads to a contradiction because it blatantly contradicts

the assumption A. So let us write down this natural de-
duction. We make the temporary assumption ¬A, and get
immediatelyA∧¬A by means of the∧-Introduction Rule.
So now we have derived a contradiction and we can use¬-
Introduction Rule to derive ¬¬A, eliminating at the same
time the temporary assumption ¬A. We are done.

A [¬A]
A ∧ ¬A ∧ I

¬¬A ¬ E

1.8.5 Indirect deductions
The toughest deductions are the indirect deductions that
we shall now introduce. These deductions are called in-
direct because during the deduction we make a temporary
assumption which seems to come out of the blue. In a
typical indirect proof, often called reductio ad absurdum,
we want to prove A and start by making the temporary
assumption ¬A. If we can now derive a contradiction we
know, intuitively, that A must be true, as ¬A leads to a
contradiction. Strictly speaking, what happens, is that we
get ¬¬A by the ¬-Introduction Rule and then we let the
two negations cancel each other out. For this to be permis-
sible in a deduction we need a new rule, a ¬-Elimination
Rule, which we shall now introduce:

The ¬-Elimination Rule is:

¬¬A
A

¬ E

Let us repeat the reasoning behind the ¬-Elimination
Rule. The reasoning is extremely simple: Assuming ¬¬A
means assuming that it is not the case that ¬A, so it must
be the case thatA, because, well, eitherA or ¬A has to be
true, so if it is not¬A it must beA. This reasoning is often
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(A→ B) ∧A ∧ ¬B
A→ B

∧ E
(A→ B) ∧A ∧ ¬B

A
∧ E

B
→ E

(A→ B) ∧A ∧ ¬B
¬B ∧ E

B ∧ ¬B ∧ I

Figure 1.7: Deriving a contradiction from (A→ B) ∧A ∧ ¬B

[(A→ B) ∧A ∧ ¬B]

A→ B
∧ E

[(A→ B) ∧A ∧ ¬B]

A
∧ E

B
→ E

[(A→ B) ∧A ∧ ¬B]

¬B ∧ E

B ∧ ¬B ∧ I

¬((A→ B) ∧A ∧ ¬B)
¬ I

Figure 1.8: Deriving ¬((A→ B) ∧A ∧ ¬B)

called reasoning in classical logic because there is also a
different kind of logic, non-classical logic. In fact, non-
classical logics come in different varieties but a common
feature to them is that they are not based on the idea that
there are just two truth values. A famous example from
Aristotle is the sentence “Tomorrow a sea battle will take
place”. Let us call this sentence A. To say that A is true,
seems unfounded, as something may happen which makes
the sea battle impossible or unnecessary. Should we then
accept ¬A as true? This seems equally unfounded simply
because we do not know what tomorrow brings about. So
it seems most reasonable to say that neither A nor ¬A is
(yet) true. The sentence A is an example of a formula of
temporal logic.

We have now introduced the two rules that govern de-
duction about negation in propositional logic:

The ¬-Introduction Rule:

[A]....
B ∧ ¬B
¬A ¬ I

The ¬-Elimination Rule:

¬¬A
A

¬ E

1.8.6 Deriving A→ B from ¬A

To prove A → B, we assume A. From A and the as-
sumption ¬A we get A ∧ ¬A, i.e. a contradiction. By the
negation introduction rule we get ¬¬B. We could elim-
inate the assumption ¬B, if we had made this temporary
assumption, but we did not. By negation elimination rule
we get B. Now we finish the deduction by appealing to
the→-Introduction Rule.

[A] ¬A
A ∧ ¬A ∧ I

¬¬B ¬ I

B
¬ E

A→ B
→ I

1.8.7 Deriving A from ¬(A→ B)

This is a typical indirect proof. We have to prove A so
make the temporary assumption ¬A. In a sense, we check
how would the opposite of A, namely ¬A, fit our situa-
tion. So assume ¬A. As above, we can derive A → B.
From ¬(A→ B) we get ¬(A→ B) ∧ (A→ B). So the
assumption ¬A has led to a contradiction. By negation in-
troduction we get¬¬A, and at the same time we eliminate
the temporary assumption ¬A. By negation elimination
we get A.
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¬(A→ B)

[A] [¬A]
A ∧ ¬A ∧ I

¬¬B ¬ I

B
¬ E

A→ B
→ I

¬(A→ B) ∧ (A→ B)
∧ I

¬¬A ¬ I

A
¬ E

1.8.8 Deriving B ∧ ¬B from A ∧ ¬A
This looks a little odd, but it shows that it does not matter
which formula you have in a contradiction.

From the contradiction A ∧ ¬A we get ¬¬B and then
B. Note that we have to go via the double negation of B
because we do not have a rule which would allow us to
infer B directly from a contradiction. Similarly we infer
¬B from A ∧ ¬A. Now we do not have to go via double
negation. Finally we put B and ¬B together, and we are
done.

A ∧ ¬A
¬¬B ¬ I

B
¬ E

A ∧ ¬A
¬B ¬ I

B ∧ ¬B ∧ I

1.8.9 Solved problems
Problem 83 ¬A ∧ ¬B can be derived from ¬(A ∨ B).
(This is one of the so-called De Morgan laws..)

Solution: Let us first think intuitively why ¬A ∧ ¬B
should follow from ¬(A ∨ B). Say, it is not true that it
rains or snows. Why can we conclude that it neither rains
nor snows? Well, because if it for example rained, then it
would a fortiori rain or snow, so we would contradict the
made assumption. We try to make this formal.

Let us continue thinking intuitively why ¬A ∧ ¬B
should follow from ¬(A ∨ B). Since we are proving a
conjunction we can take each conjunct separately. Let us
look at ¬A. Assuming A gives A ∨ B, contradicting im-
mediately the assumption¬(A∨B). So we must conclude
¬A. Similarly we get ¬B.

So we start by writing down the assumption ¬(A ∨B)
and by making the temporary assumption A in order to
derive a contradiction and be able to derive ¬A.

We get a contradiction immediately by a using the ∨-
Introduction Rule and then the ∧-Introduction Rule.

With an application of the ¬-Introduction Rule we get
¬A, and we can eliminate the temporary assumption A.

We do the same with B, obtaining ¬B.
An application of the ∧-Introduction Rule finishes the

proof.

¬(A ∨B)

[A]

A ∨B ∨ I

¬(A ∨B) ∧ (A ∨B)
∧ I

¬A ¬ I

[B]....
¬B

¬A ∧ ¬B ∧ I

2

Problem 84 ¬A ∨ ¬B can be derived from ¬(A ∧ B).
(Another example of the so-called de Morgan laws.)

Solution: This is more difficult! We want to conclude
¬A ∨ ¬B, so the temptation is to try to derive one of
¬A and ¬B. But which one?? This kind of problem in
logic—the problem of deriving a disjunction without see-
ing a way to derive either disjunct separately—is related
to the difference between non-classical logic and classi-
cal logic. In this course our logic is classical, so we use
indirect inference.

Let us first think intuitively why ¬A ∨ ¬B should fol-
low from ¬(A ∧ B). Say, a dish does not contain both
cream and meat. Why can we conclude that either cream
is missing or meat is missing? Well, because if both cream
and meat were there, we would contradict the made as-
sumption, so one of cream and meat must be missing. We
try to make this formal.

Let us still think intuitively why ¬A ∨ ¬B should fol-
low from ¬(A ∧ B). Let us assume ¬A ∨ ¬B is false
i.e. ¬(¬A∨¬B) and work towards a contradiction. Now
clearly ¬A leads to a contradiction, so ¬¬A i.e. A. Re-
spectively B. So A ∧B. This contradicts the assumption
¬(A ∧B). So we get ¬¬(¬A ∨ ¬B) i.e. ¬A ∨ ¬B.

For the derivation, see Figure 1.9.
We start be writing down the assumption ¬(A∧B) and

the denial ¬(¬A ∨ ¬B) of what we try to prove. Since
we have denied the our claim, we are using an indirect
inference, and we try to derive a contradiction.
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We observe, that if ¬A was taken as a temporary as-
sumption, we can derive ¬A∨¬B, which contradicts our
assumption ¬(¬A ∨ ¬B). So with the double negation
trick we can conclude A, and eliminate the temporary as-
sumption ¬A.

Now we do the same for B.
In the end we can derive A∧B, leading to a contradic-

tion.
The deduction is ready (see see Figure 1.9).
2

Problem 85 A ∨ ¬A is derivable. (This is the so called
Law of Excluded Middle.)

Solution: Intuition: We use indirect proof. So we as-
sume ¬(A∨¬A) and derive a contradiction. Now A leads
to A ∨ ¬A and hence to a contradiction. Thus we may
conclude ¬A. But this leads to A ∨ ¬A and hence to a
contradiction, and we are done.

For the derivation, see Figure 1.10.
We start by writing down the main temporary assump-

tion, namely the denial of the conclusion, that is, ¬(A ∨
¬A). So from now on we try to reach a contradiction, in
order to be able to use the ¬-Introduction Rule and the
¬-Elimination Rule and thereby reach the claim A ∨ ¬A.

Now we make a new temporary assumption A. From
this we get immediatelyA∨¬A, contrary to our first tem-
porary assumption. So we ¬A and can eliminate the tem-
porary assumption A.

But from ¬A we can derive A ∨ ¬A, again a con-
tradiction with our first—and now the only remaining—
temporary assumption.

So we can use the ¬-Introduction Rule to derive the
negation ¬¬(A ∨ ¬A) of our only remaining temporary
assumption, which, by the way, is now eliminated. So we
getA∨¬A and there are no remaining temporary assump-
tions, so we are done (see see Figure 1.10).

2

1.8.10 Problems
Problem 86 Derive (A→ B)→ (¬B → ¬A).

Problem 87 Derive ¬A ∨B from ¬¬B ∨ ¬A.

Problem 88 Derive ¬(A ∧B) from ¬A ∨ ¬B.

Problem 89 Derive (¬B → ¬A)→ (A→ B).

Problem 90 Derive A ∧B from A ∧ (B ∨ C) and ¬C.

Problem 91 Derive ¬((A ∨B) ∧ ¬A ∧ ¬B).

Problem 92 Derive ¬(A ∨B) from ¬A ∧ ¬B.

Problem 93 Derive ¬A ∨B from ¬(A ∧ ¬B).

Problem 94 Derive A ∧ ¬B from ¬(¬A ∨B).

Problem 95 Derive (A→ B) ∨ (B → A).

1.9 Natural deduction—Recap
We can collect now all the introduction and elimination
rules of propositional logic to a table, see Figure 1.11.

1.10 Soundness
Soundness of deduction means that if we accept some for-
mulas as true and then deduce another formula from them,
then also that other formula is true. This is the whole point
of logic.

More exactly, soundness of natural deduction means
that deductions respect truth in the following sense:
If a formula A can be derived from the assumptions
B1, . . . , Bn, and v(B1) = . . . = v(Bn) = 1 for some
valuation v, then also v(A) = 1.

Theorem 1.6 Suppose v is a valuation. If A has a nat-
ural deduction from B1, . . . , Bn, and v(B1) = . . . =
v(Bn) = 1, then v(A) = 1.

Proof: The proof is “by induction” on the structure of a
natural deduction. We show that every deduction is sound
in the sense that if in any valuation the assumptions of
the deduction have value 1, then so does the conclusion.
We proceed from shorter deductions to longer ones. The
shortest possible deduction consists of just one formula
A and this formula is both the assumption and the con-
clusion of the deduction. Of course such a deduction is
sound.

Next we look at deductions in which some rules have
been actually used. Every deduction has a unique conclu-
sion and some last rule that has been used to derive that
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[¬(¬A ∨ ¬B)]

[¬A]
¬A ∨ ¬B ∨ I

(¬A ∨ ¬B) ∧ ¬(¬A ∨ ¬B)))
∧ I

¬¬A ¬ I

A
¬ E

¬B....
B

A ∧B ∧ I ¬(A ∧B)

(A ∧B) ∧ ¬(A ∧B)
∧ I

¬¬(¬A ∨ ¬B)
¬ I

¬A ∨ ¬B ¬ E

Figure 1.9: Deriving ¬A ∨ ¬B from ¬(A ∧B)

[¬(A ∨ ¬A)]

[¬(A ∨ ¬A))]
[A]

A ∨ ¬A ∨ I

¬(A ∨ ¬A) ∧ (A ∨ ¬A)
∧ I

¬A ¬ I

A ∨ ¬A ∨ I

¬(A ∨ ¬A) ∧ (A ∨ ¬A)
∧ I

¬¬(A ∨ ¬A)
¬ I

A ∨ ¬A ¬ E

Figure 1.10: Deriving A ∨ ¬A.
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Connective Introduction Elimination

Conjunction
A B
A ∧B ∧ I

A ∧B
A

∧ E
A ∧B
B

∧ E

Disjunction
A

A ∨B ∨ I
B

A ∨B ∨ I
A ∨B

[A]....
C

[B]....
C

C
∨ E

Implication

[A]....
B

A→ B
→ I

A→ B A
B

→ E

Equivalence

[A]....
B

[B]....
A

A↔ B
↔ I

A↔ B A
B

↔ E
A↔ B B

A
↔ E

Negation

[A]....
B ∧ ¬B
¬A ¬ I

¬¬A
A

¬ E

Figure 1.11: The rules of natural deduction.
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conclusion. All the deductions that have been built before
the last rule was applied are shorter. Since we assume
that shorter deductions are sound, we may assume that
when the last rule is applied all the previous deductions
are sound.

So if we assume that a valuation v give value 1 to the
assumptions of a big deduction, the value 1 in a sense
“flows” along the rules until it reaches the conclusion, and
then the conclusion also has truth value 1.

1. Conjunction introduction rule

A B
A ∧B ∧ I

We assume v(A) = v(B) = 1. We show v(A ∧
B) = 1. But this is trivial! Almost all cases of this
proof are trivial, because the inference rule and the
definition of the truth value are both based on the
same idea. So we have set up the system so that this
proof goes through smoothly.

2. Conjunction elimination rule

A ∧B
A

∧ E
A ∧B
B

∧ E

We assume v(A∧B) = 1. We show v(A) = v(B) =
1. But this is again trivial!

3. Disjunction introduction rule

A
A ∨B ∨ I

B
A ∨B ∨ I

We assume v(A) = 1. We show v(A ∨B) = 1. But
this is trivial!

In the other case, we assume v(B) = 1. We show
v(A ∨B) = 1. Again, this is trivial!

4. Disjunction elimination rule

A ∨B

[A]....
C

[B]....
C

C
∨ E

We assume v(A ∨ B) = 1. We also assume that the
derivation ofC fromA, as well as the derivation ofC

from B, are sound i.e. if v(A) = 1, then v(C) = 1,
and if v(B) = 1, then v(C) = 1. We show v(C) =
1. But v(A∨B) = 1 implies v(A) = 1 or v(B) = 1.
In either case we have v(C) = 1. Hence, indeed
v(C) = 1.

5. Implication introduction rule

[A]....
B

A→ B
→ I

We assume that the derivation of B from A is sound,
i.e. if v(A) = 1, then v(B) = 1. We prove v(A →
B) = 1. Case 1: v(A) = 0. Clear. Case 2: v(A) =
1. By assumption, in this case v(B) = 1, so v(A →
B)=1.

6. Implication elimination rule

A→ B A
B

→ E

We assume v(A → B) = v(A) = 1. We show
v(B) = 1. This is trivial!

7. Equivalence introduction rule

[A]....
B

[B]....
A

A↔ B
↔ I

We leave both the formulation of the claim, and the
details of the proof as an exercise.

8. Equivalence elimination rule

A↔ B A
B

↔ E
A↔ B B

A
↔ E

We leave both the formulation of the claim, and the
details of the proof as an exercise.

9. Negation introduction rule

[A]....
B ∧ ¬B
¬A ¬ I
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We assume that the inference of B ∧ ¬B from A
is sound i.e. if v(A) = 1, then v(B ∧ ¬B) = 1.
But v(B ∧ ¬B) = 0 always. So v(A) = 0. Hence
v(¬A) = 1.

10. Negation elimination rule

¬¬A
A

¬ E

We assume v(¬¬A) = 1. We show v(A) = 1.
Clear!

2

1.10.1 Soundness Theorem
The Soundness Theorem of propositional logic says that
if a propositional formula has a natural deduction, then it
is a tautology. More generally, if a propositional formula
A has a natural deduction from assumptions which have
truth value 1 in a valuation v, then also v(A) = 1.

We have just proved this important basic fact. It is re-
markable that also the converse is true: if a propositional
formula is a tautology, then it has a natural deduction.
This is called the Completeness Theorem of proposi-
tional logic. Its proof is not very difficult but we omit
it.

1.10.2 Applications of Soundness
We can show that a formula B is not derivable by natural
deduction from a formula A by finding a valuation v such
that v(A) = 1 and v(B) = 0. For example, we can show
that p0∨(p1∧p2) is not derivable from (p0∨p2)→ p1 by
letting v(p0) = v(p1) = v(p2) = 0. Then v((p0 ∨ p2)→
p1) = 1, but v(p0 ∨ (p1 ∧ p2)) = 0. It is important
and useful to be able to write derivations, but it is equally
important to be able to say why in some cases a derivation
is not possible.

1.10.3 Solved Problems
Problem 96 Show that the following inference is not cor-
rect:

• Suppose x > 10 or y > 10.

• Suppose additionally that not both x > 10 and y >
10.

• Then if not x > 10, then not y > 10.

Solution: Denote “x > 10” by p0 and “y > 10” by
p1. The assumptions are p0 ∨ p1 and ¬(p0 ∧ p1). The
conclusion is ¬p0 → ¬p1.

The problem is to show that there is no natural deduc-
tion of ¬p0 → ¬p1 from p0 ∨ p1 and ¬(p0 ∧ p1).

The claim follows from the Soundness Theorem as
follows: If we let v(p0) = 0 and v(p1) = 1, then
v(p0 ∨ p1) = 1 and v(¬(p0 ∧ p1)) = 1 but v(¬p0 →
¬p1) = 0. So there cannot be any natural deduction of
¬p0 → ¬p1 from p0 ∨ p1 and ¬(p0 ∧ p1).

Note that to find valuations v with prescribed properties
one can use truth tables! 2

Problem 97 Show that there is no natural deduction of
p0 ∧ ¬p1 from ¬(p0 ∨ p1)

Solution: If v(p0) = v(p1) = 0, then v(¬(p0 ∨ p1)) = 1
but v(p0 ∧ ¬p1) = 0. So by the Soundness Theorem
p0∧¬p1 cannot have a natural deduction from ¬(p0∨p1).
2

Problem 98 Show that the following inference is incor-
rect:

• The train is moving and in addition either the door
is open or the green light is on.

• It is not the case that the green light is not on.

• Hence the train is moving and the door is open.

Solution: Denote “train is moving” by p0, “door is open”
by p1, and “green light is on” by p2.

Let A be the formula p0 ∧ p1, B the formula p0 ∧ (p1 ∨
p2) and C the formula ¬¬p2.

We are asked, why we cannot inferA fromB andC? In
other words, we are asked to show that there is no natural
deduction of A from B and C.

If v(p1) = 0 and v(p0) = v(p2) = 1, then v(B) =
1 and v(C) = 1 but v(A) = 0. So by the Soundness
Theorem, A cannot have a natural deduction from B and
C.
2
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1.10.4 Problems
Problem 99 Show that the following inference is not cor-
rect:

1. If grandmother can fly, then grandmother is not a
stone.

2. Grandmother cannot fly.

3. Hence grandmother is a stone.

Problem 100 Show that the following inference is not
correct:

1. If it rains in Warsaw, then it rains in Vienna or it
snows in Helsinki.

2. It does not rain in Vienna, but it snows in Helsinki.

3. Hence it rains in Warsaw.

Problem 101 Show that there is no natural deduction of
¬(p0 → p1) from ¬p0 → p1

Problem 102 Show that there is no natural deduction of
¬p0 ∧ ¬p1 from ¬(p0 ∧ p1)

Problem 103 Show that there is no natural deduction of
¬(p0 ∨ p1) from ¬p0 ∨ ¬p1

Problem 104 Show that the following inference is incor-
rect:

1. If the envelope contains a password and the green
light is on, then the door can be opened.

2. The green light is not on.

3. Hence if the door cannot be opened, the envelope
does not contain a password.

1.11 Semantic trees
Semantic proofs (also known as tableaux methods) are
among the most effective and easiest to use. In a seman-
tic proof of A we show that the negation ¬A of A is not
satisfiable, by building a so called semantic tree for ¬A
and observing that the tree closes, as we say. The closing
of the tree implies that A must be a tautology. Intuitively

the closing of the tree means that all alternatives for satis-
fying ¬A have been checked and found impossible, so A
must be a tautology.

A semantic tree for a formula A codes a contemplation
on what else must be true if A is true. For example, if
A ∧ B is true, then A and B must be true, so we write
them underneath A ∧B:

A ∧B

A

B

IfA∨B is true, thenA orB is true but we do not know
which, so we split the tree at this point into two branches,
one for A and the other for B.

A ∨B

A B

1.11.1 The rules for semantic trees
The rules of forming semantic trees follow the idea that
we write underneath a formula whatever immediately fol-
lows from the formula in view of its main connective. For
each connective (except negation) we need two rules. The
rules are as follows:

• Disjunction:

A ∨B

A B

¬(A ∨B)

¬A

¬B

• Conjunction:

A ∧B

A

B

¬(A ∧B)

¬A ¬B

• Negation:

¬¬A

A
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• Implication:

A→ B

¬A B

¬(A→ B)

A

¬B

• Equivalence:

A↔ B

¬A

¬B

A

B

¬(A↔ B)

¬A

B

A

¬B

1.11.2 Semantic proofs

A branch of a semantic tree is closed (or closes) if it con-
tains both B and ¬B for some B. A semantic proof of A
is a semantic tree for ¬A in which all branches are closed.
The semantic proof demonstrates that A is a tautology by
showing that the assumption that¬A is true leads to a con-
tradiction, namely that both B and ¬B are true for some
B.

1.11.3 An example

A semantic proof of A ∨ (A → B) is a semantic tree
for ¬(A ∨ (A → B)) in which all branches close. We
shall now build this tree, step by step. First we use the
disjunction rule:

¬(A ∨ (A→ B))

¬A

¬(A→ B)

Then we use the implication rule:

¬(A ∨ (A→ B))

¬A

¬(A→ B)

A

¬B

The resulting tree has only one branch and this branch
closes because it has both A and ¬A. Hence this tree is
a semantic proof of A ∨ (A → B). One can say that we
tried what would ¬(A∨ (A→ B)) be like, and we found
that it leads to a contradiction ( A and ¬A), so we have
to abandon ¬(A ∨ (A → B)), and this is a proof that
A ∨ (A→ B) itself is a tautology, as it is.

1.11.4 Splitting

Applying the relevant rule to a formula of the form A∨B
or to a formula of the form ¬(A ∧ B) causes the tree to
split. It is important that the splitting takes place at the
end of each branch going through the formula. See next
example!

We form the semantic tree of (A∨B)∧ (C ∨D). First
we use the conjunction rule:

(A ∨B) ∧ (C ∨D)

A ∨B

C ∨D

Then we use the disjunction rule to C ∨D and the tree
splits:

(A ∨B) ∧ (C ∨D)

A ∨B

C ∨D

C D

But we can still use the disjunction rule to A ∨ B. SO
we split both branches that go through A ∨B:

(A ∨B) ∧ (C ∨D)

A ∨B

C ∨D

C

A B

D

A B
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1.11.5 Completeness of the semantic tree
method

The method of semantics trees satisfies the Soundness
Theorem: Every formula that has a semantic proof, is a
tautology.

Even better: The method of semantics trees satisfies the
Completeness Theorem: A formula has a semantic proof
if and only if it is a tautology.

Proofs are not hard, but still omitted.

1.11.6 Solved Problems
Problem 105 Give a semantic proof of ¬(A ∧ B) →
(¬A ∨ ¬B)

Solution:
¬(¬(A ∧B)→ (¬A ∨ ¬B))

¬(A ∧B)

¬(¬A ∨ ¬B)

¬¬A

¬¬B

¬A ¬B
The tree has two branches. One has ¬A and ¬¬A on it,

the other has ¬B and ¬¬B on it. So the tree is a closed
tree. 2

Problem 106 Give a semantic proof of (A∨B)→ (B ∨
A).

Solution:
¬((A ∨B)→ (B ∨A))

A ∨B

¬(B ∨A)

¬B

¬A

A B
The tree has two branches. One has A and ¬A on it,

the other has B and ¬ on it. So the tree is a closed tree. 2

Problem 107 Give a semantic proof of (A∧B)→ (B ∧
A).

Solution:
¬((A ∧B)→ (B ∧A))

A ∧B

¬(B ∧A)

A

B

¬A ¬B
This tree is closed like the previous tree. 2

Problem 108 Give a semantic proof of ¬A→ (A→ B).

Solution:
¬(¬A→ (A→ B))

¬A

¬(A→ B)

A

¬B
There is only one branch. On this single branch we

haveA and ¬A, so the branch s closed, and so is the entire
tree.

2

Problem 109 Example: Give a semantic proof of (p0 ∧
(p0 → (p1 ∨ ¬p0)))→ p1.

Solution:
¬((p0 ∧ (p0 → (p1 ∨ ¬p0)))→p1)

p0 ∧ (p0 → (p1 ∨ ¬p0))

¬p1

p0

p0 → (p1 ∨ ¬p0)

¬p0 p1 ∨ ¬p0

p1 ¬p0
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Each branch of this tree closes. So this tree is the re-
quired semantic proof. 2

1.11.7 Problems
Problem 110 Analyze the below semantic tree: Which
rules are used, why branches close? What is this a se-
mantic proof of?

¬((p0 ∧ (p0 → (p1 ∨ ¬p0)))→ p1)

(p0 ∧ (p0 → (p1 ∨ ¬p0)))

¬p1

p0

p0 → (p1 ∨ ¬p0)

¬p0 p1 ∨ ¬p0

p1 ¬p0

Problem 111 Analyze the below semantic tree: Which
rules are used, why branches close? What is this a se-
mantic proof of?

¬(((A→ B)→ A)→ A)

(A→ B)→ A

¬A

¬(A→ B)

A

¬B

A

Problem 112 Give a semantic proof of (A ∧C)→ (A ∧
(B ∨ C)).

Problem 113 Give a semantic proof of (A ∧ (B ∨ C) ∧
¬C)→ (A ∧B).

Problem 114 Give a semantic proof of ((A ∧B) ∨ (A ∧
C))→ (A ∧ (B ∨ C)).

Problem 115 Give a semantic proof of (A∨ (B∧C))→
((A ∨B) ∧ (A ∨ C)).

Problem 116 Give a semantic proof of ((A ∨B) ∧ (A ∨
C))→ (A ∨ (B ∧ C)).

Problem 117 Give a semantic proof of (A ∧C)→ (A ∧
(B ∨ C)).
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Chapter 2

Predicate logic

2.1 Introduction
When we move from propositional logic to predicate
logic, it is a whole new ball game. We try to do the
same as in propositional logic—describe situations in the
world, in a database, in mathematics, etc—in an exact
way so that we can coherently define and study concepts
such as proof and truth, perhaps in a way that even a com-
puter can understand. But in predicate logic we have a
far richer language than in propositional logic. Predicate
logic deals with properties of elements and relations be-
tween elements of a domain1. We can talk about universal
properties and existence of solutions of equations. We can
go much deeper into the phenomena that we are interested
in. While in propositional logic the sentence

“Some birds do not fly but some mammals do.”

is formalized as a mere conjunction

p0 ∧ p1,

in predicate logic it can be written as

∃x(B(x) ∧ ¬F (x)) ∧ ∃y(M(y) ∧ F (y)),

which is clearly much more informative. But now
we need new rules. Introduction and elimination rules
for conjunction, disjunction, negation, implication and
equivalence say nothing about the symbol ∃. It also
turns out that the concept of valuation is not informa-
tive enough to account for the much richer semantics—
meaning theory—of predicate logic. We need the concept

1Also called universe.

of a structure—or a model—and that is how we start our
investigation of predicate logic.

2.2 Some structures

We shall first discuss some particular examples of struc-
tures i.e. models.

2.2.1 Unary structures

A unary structure M consists of a non-empty domain
M , also called the universe, and a number of subsets of
it, called (unary) predicates. The predicates are denoted
A0, A1, .... Examples of unary predicates on any set M
are

Empty predicate ∅
Full predicate M
Singleton predicate {a}

One predicate divides the domain into up to two parts,
two predicates divide the domain into up to four parts, etc

57
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A0 A1

For example, M could be a set of people andA0 the set
of women in M . Now M divides into people who are in
A0, i.e. are women, and those who are not in A0, i.e. are
men. Or, if again M is a set of people, A0 could be the
set of country music lovers in M and A1 the set of jazz
fans in M . Then M would divide into those who are in
A0 but not in A1, those who are in both in A0 and A1,
those who are in A1 but not in A0, and finally those who
are neither in A0 nor in A1. This kind of classification of
elements according to what is known about them is typical
in predicate logic. Note that some of the four sets can be
empty, but altogether they have as many elements as M
has, as every element of M is in one of the sets. If we add
a third predicate A2, those in M who like classical music,
we get a division of M into 8 parts:

A0 A1

A2

1. Likes classical music, but neither country nor jazz
music.

2. Likes country music, but neither classical nor jazz
music.

3. Likes jazz, but neither classical nor country music.

4. Likes classical and country music, but not jazz.

5. Likes classical music and jazz, but not country mu-
sic.

6. Likes country music and jazz, but not classical mu-
sic.

7. Does not like classical, country or jazz music.

Again, some of those sets may be empty, depending on
M , but all in all they have all the elements of M so the
sum of the numbers of people in each set equals the total
number of people in M .

2.2.2 Tile models

A tile model consists of colored tiles arranged in a row as
the five tiles below (we indicate colors by letters: “R” is
red, “B” is blue and “Y” is yellow):

R B B R Y

Example 2.1 Examples of tile models

R R R R R

B B B B

R B R

Y R R B B R Y

B B Y R B Y B R R B R Y

The relevant properties of the tiles are color and posi-
tion (which is the property of being left or right of another
tile).
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2.2.3 A mathematical definition of tile mod-
els

A tile model T consists of a finite set T of objects we call
tiles. For each tile x exactly one of the predicates BT (x)
i.e. “x is blue”, RT (x) i.e. “x is red”, Y T (x) i.e. “x is
Yellow” holds. There is a linear order <T defined on T .
If x <T y, we say x is “left of” y and “y is right of x”. A
linear order on a finite set is a specification of the order
of the elements: which is the first, which comes next, etc.

Tile models can appear in various disguises. For ex-
ample, it is not important what the colors are as long as
we distinguish them from each other. We can think words
made of three letters, say B, R and Y , or even just any
three distinct symbols, and interpret them as tile models.

2.2.4 Graphs
A graph consists of vertices (or nodes) and edges (or
lines) between the vertices as in the following picture:

6

4

5

1

2

3

Vertices connected by an edge are called neighbors.
Many problems of practical interest can be represented

by graphs. Here are some examples: data organization,
telecommunication, communication networks, road net-
works, networks of communication, various structures
in natural language, bioinformatics, genomics, molecular
chemistry, etc.

in mathematics graphs are used for example in combi-
natorics, geometry, topology, and group theory.

A mathematical definition of graphs is as follows:

Definition 2.2 A graph G consists of a domain G, called
the set (or universe) of vertices, and a binary predicate
xEy (more exactly xEGy) called the edge relation.

If xEy, then x is called a neighbor of y and vice versa.
In a graph no vertex is a neighbor of itself (Antireflexiv-
ity). Also, if xEy then yEx (Symmetry). Sometimes we

associate colors to vertices and then the graph is called a
colored graph.

2.2.5 The integers

The natural numbers are the non-negative integers
0, 1, 2, . . .. They have a natural order x < y in which
0 is the smallest element and for every element x there is
a bigger one, namely x+ 1.

· · ·

2.2.6 Other structures (some with func-
tions)

Examples of other common structures in mathematics and
compute science are

• Directed graphs.

• Equivalence relations.

• Groups.

• Fields.

• Boolean algebras.

• Lattices.

• Linear orders.

• Partial orders.

• Trees.

2.2.7 Solved problems

Problem 118 Argue that the following statement is true
in general:

If every millionaire is happy or not busy,
then every busy millionaire is happy.
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Solution: Take a busy millionaire, call it x. We know
that x is happy or not busy. But we assumed x is busy.
So x must be happy. This informal inference is of the
kind that is very typical to predicate logic, as we shall see
when we define natural deduction in predicate logic in a
moment. 2

Problem 119 Use unary structures to show that the fol-
lowing statement is not true in general:

If every rainy day in August is windy,
then some windy day in August is rainy.

Solution: Let M be a non-empty set of (hypothetical)
August days, P0 the set of rainy days in M , and P1 the
set of windy days in M . The statement then says “If P0

is contained in P1, then some element of P1 is in P0.” It
is clear that in such generality this cannot be true. For
example, if P0 is empty, then P0 is contained in P1 but no
element of P1 is in P0. 2

Problem 120 Use unary structures to argue that the fol-
lowing statement is not true in general:

If there are millionaires and every millionaire is
happy or not busy, then no busy millionaire is happy.

Solution: Let M be a non-empty set of (hypothetical)
millionaires, P0 the set of happy millionaires in M , and
P1 the set of busy millionaires in M . The statement then
says “If every element ofM is in P0 or in the complement
of P1, then no element of P1 is in P0.” In such generality
this cannot be true. For example, if M = {Tom}, P0 =
M , and P1 = M , then every element of M is in P0 or in
the complement of P1, but some element of P1 is in P0.
2

Problem 121 Draw a unary structure where two predi-
cates divide the domain into three parts. Give an everyday
life example.

Solution: Let M be the set of all Finns, A0 the set of
Finns that are taller than 190 cm, and A1 the set of Finns
that are shorter than 170 cm.

A0 A1

2

Problem 122 Draw a unary structure where three predi-
cates divide the domain into six parts. Give an everyday
life example.

Solution: Let M be the set of all Europeans, A0 the set
of Europeans who live in Finland,A1 the set of Europeans
who speak French, and A2 the set of Europeans who live
in Italy.

A0

A1

A3

2

Problem 123 Is it true that if a tile model has left of every
blue tile a red tile, then it has right of every red tile a blue
tile?
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Solution: In model (2.1) it is indeed true that left of every
blue tile is a red tile, and right of every red tile is a blue
tile.

R B R B (2.1)

However in (2.2), again left of every blue tile is a red
tile, but right of the last red tile there are no blue (or other)
tiles.

R B R B R (2.2)

The case (2.3) is interesting: Left of each of the zero
blue tiles is a red tile, but it is certainly not true that right
of every red tile there is a blue tile

R R R (2.3)

So the answer to the question is no.
2

Problem 124 Is it true that if a tile model has left of every
blue or yellow tile a red tile, and the model has a red tile,
then it has a yellow tile ?

Solution: In model (2.4) it is true that left of every blue
or yellow tile is a red tile, there is a red tile, and indeed
there is also a yellow tile.

R Y B (2.4)

However in (2.5) left of every blue or yellow tile there
is a red tile, and there is a red tile, but there are no yellow
tiles.

R B R B (2.5)

So the answer to the question is no.
2

Problem 125 Suppose a graph has 10 edges. How many
vertices must it at least have? What if the graph has 100
edges?

Solution: Every edge is connected to two vertices. From
n vertices one gets thus at most n(n − 1)/2 edges. For
n < 5 we get< 7 edges. For n = 5 it is possible to get 10
edges, as the below graph shows. For 100 edges we need
15 vertices.

2

Problem 126 Argue that if a graph has at least two ver-
tices and some vertex has every other vertex as a neighbor,
then every vertex has a neighbor.

Solution: Suppose x is a vertex which has every other
vertex as its neighbor. Suppose then y is an arbitrary ver-
tex. If y is not x, then x is a neighbor of y, so y has a
neighbor. If y = x, we argue as follows: Since the graph
has at least two vertices, there is a vertex z 6= x. By our
choice of x, z is a neighbor of x. But x = y. So again y
has a neighbor. 2

Problem 127 Show that the following statement is not
true in general in graphs: If some vertex has every other
vertex as its neighbor, then every vertex is neighbor to a
vertex that has every other vertex as a neighbor.

Solution: In the graph of the picture the middle vertex
has every other vertex as its neighbor, but its neighbors
are the three extreme vertices and they do not have the
property that every other vertex is their neighbor.

2

Problem 128 Show that the following statement is not
true in general in graphs: If every vertex has a neighbor,
then some vertex has every other vertex as a neighbor.
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Solution: In the graph of the picture every vertex has a
neighbor, but no vertex has every other vertex as its neigh-
bor.

2

Problem 129 Suppose a graph has 6 vertices. Show that
there are 3 vertices that are all neighbors of each other or
all non-neighbors of each other.

Solution: Take one vertex, call it v. The remaining ver-
tices are divided into a set A of neighbors of v and a set
B of non-neighbors of v. Since A and B together have
5 elements, one of them must have at least 3 elements.
Suppose it is A. If the elements of A are not neighbors of
each other, we are done.

So let us assume two elements of A are neighbors. Let
us call them u and w. Now u,v and w are all neighbors.

We have to consider also the case that it is B which has
at least 3 elements.

We proceed in the same way. If all the elements of
B are neighbors, then we are done. Otherwise there are u
andw inB that are non-neighbors. Now u, v andw form a
triple of elements that are all non-neighbors of each other.
2

2.2.8 Problems
Problem 130 Draw a unary structure where three predi-
cates divide the domain into seven parts. Give an every-
day life example.

Problem 131 Give an example of a tile model that has
several tiles in each of the three colors, and between any
two tiles of the same color a tile of a different color? Why
cannot we require that between any two tiles of the same
color there is a tile of the same color?

Problem 132 Is it true that if a tile model has left of every
blue or yellow tile a red tile, then the leftmost tile is red?

Problem 133 Is it true that if a tile model has left of every
blue or yellow tile exactly three red tiles, then all the red
tiles are left of all the blue or yellow tiles?

Problem 134 Show that the following claim is false:
Suppose a graph has 5 vertices. Then there are 3 vertices
that are all neighbors of each other or all non-neighbors
of each other.

2.3 More structures

2.3.1 The general concept of structure
All the structures that we have considered have the follow-
ing in common: There is a universe (or a domain) which
is an arbitrary non-empty set. There are some unary pred-
icates, such as “red”, “man”. There are binary relations
(also called binary predicates), such as “right of”, “left
of”, “greater than”. There are some distinguished ele-
ments, such as “zero”. Names of these predicates, rela-
tions and elements constitute the vocabulary of the struc-
ture.

2.3.2 Relations
A binary relation on a set M is any collection R of ele-
ments of the Cartesian product

M2 =M ×M = {(a, b) : a, b ∈M}.

If (a, b) is in R, we write aRb, for simplicity. Examples
of relations on any set M are

Empty relation ∅
Full relation M2

Identity relation {(a, b) ∈M2 : a = b}
Non-identity relation {(a, b) ∈M2 : a 6= b}
Singleton relation {(a, b)}
1st projection relation {(a, b) ∈M2 : a = c}
2nd projection relation {(a, b) ∈M2 : b = c}

2.3.3 Kinds of relations
Binary relations are very common. Already among peo-
ple there are many familiar binary relations, such as “x
knows y”, “x and y are cousins”, etc. Special important
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properties of binary relations have emerged and have been
given a name:

A binary relation is

• Symmetric if aRb implies bRa

• Reflexive if always aRa

• Transitive if aRb and bRc imply aRc

• Antisymmetric if aRb implies not bRa

• Antireflexive if never aRa

Which of these properties do the relations “x knows y”
and “x and y are cousins” have? What about the relation
x < y in the structure of natural numbers?

2.3.4 Vocabulary
Ordinarily the vocabulary of a language is the set of all
the words that the sentences of the language are made of.
In predicate logic we use the word “vocabulary” a little
differently, although the spirit is the same:

A vocabulary is a finite collection of

• Unary predicate symbols P0, P1, ...

• Binary predicate symbols R0, R1, ...

• Constant symbols c0, c1, ...

We could treat also n-ary predicate symbols for n > 2 as
well as function symbols. In practice we use also other
symbols for predicate and constant symbols.

2.3.5 Structure
Definition 2.3 A structure (or a model)M for a vocabu-
lary L is a non-empty set M , called the universe, or do-
main, ofM, and:

• A unary predicate PM on M for every unary predi-
cate symbol P in L.

• A binary relation RM of M ×M for every binary
predicate symbol R in L.

• An element cM of M for every constant symbol c in
L.

The set PM is called the interpretation of the symbol
P inM. Similarly, The relation RM is called the inter-
pretation of the symbol R inM. Finally, the element cM

is the interpretation of the symbol c inM.
A common notation for structures is the following:

Vocabulary Structure
P M = (M,PM)
P,R M = (M,PM, RM)
P,R, c M = (M,PM, RM, cM)

etc

2.3.6 Solved problems
Problem 135 Which vocabulary does the below unary
structureM have:

Solution: The vocabulary consists of one unary predi-
cate symbol. By the way, it is not really possible to be
absolutely sure what the vocabulary is, by merely looking
at the picture. This could also be a picture of a structure
with two unary predicates which are complements of each
other. Or there could be many unary predicates, most of
which are empty and therefore not seen in the picture. So
the question given in this problem is a little vague. 2

Problem 136 Which vocabulary does the below tile
modelM have:

R B B R Y

Solution: The vocabulary consists of one binary predi-
cate symbol < and three unary predicate symbols Y , R
and B. This is indeed the typical vocabulary in a tile
model. Of course, if there are fewer colors, the vocab-
ulary can be taken to be smaller. 2
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Problem 137 Which vocabulary does the following
graphM have:

Solution: As for all graphs, the vocabulary consists of
one binary predicate symbol E. Many structures have
a graph as part of the structure. In such cases the other
structure determines what else there is in the vocabulary
apart from the mere predicate symbol E. 2

Problem 138 Which vocabulary does the structure of the
natural numbers with their natural order have:

· · ·

Solution: Although there are many different kinds of
relations and functions on the natural structures, in this
example we have taken only their natural order n < m.
So the vocabulary consists of one binary predicate symbol
< only. 2

Problem 139 Is the following sentence true or false?

If every rainy day in August is windy, and
August 15th is not windy, then August
15th is not rainy.

Solution: We recognize this as a true statement irrespec-
tive of which year we are talking about. It is even im-
material what “August”, “rainy” and “windy” mean. The
point is that every structure in which the predicates (rainy,
windy) of the sentence are interpreted in any way, satisfies
the sentence.
2

Problem 140 Is the following sentence true or false?

If every rainy day in August is windy, and August
15th is windy, then August 15th is rainy.

Solution: We recognize this as a statement that has
“wrong logic”. We can point out the logical error by de-
scribing a structure where the conclusion is false. An ex-
ample of such a structure would be a hypothetical August
where it rains only on August 1st but it is windy both on
August 1st and August 15th.

2

2.3.7 Problems
Problem 141 Which vocabulary does the following
unary structureM have:

Problem 142 Which vocabulary does the following tile
modelM have:

R B B B B

Problem 143 Which vocabulary does the following col-
ored graph M have? The colors are indicated with let-
ters: “B” means blue and “Y” means yellow.

B

Y

B

YY
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Problem 144 Which vocabulary does the structure of the
real numbers with their natural order and zero have:

· · ·
0

· · ·

Problem 145 True or false? Consider the sentence

If every rainy day in August was windy, and every
day in August was rainy, then every day
in August was windy.

Can you recognize this as a true statement irrespective of
which year we are talking about and even irrespective of
what “August”, “rainy” and “windy” mean?

Problem 146 True or false? Consider the sentence

If every windy day in August was rainy, and
August 15th was not windy, then August 15th
was not rainy.

Can you recognize this as a statement that has “wrong
logic”? Can you point out the logical error by describing
a structure where the assumption is true but the conclu-
sion is false?

2.4 Atomic formulas

2.4.1 Introduction
Atomic formulas denote basic relations, such as x = y
and x < y, which can be true or false, depending on
the values of variables occurring in the formula. There
is a resemblance to the atomic formulas of propositional
logic. Only, this time the atomic formulas carry much
more information because we have the variables. Some-
what vaguely one can say that formulas that do not contain
connectives “and”, “or”, “not”, “if...then”, “if and only if”
and also do not contain what we will later call quantifiers,
“for all” and “exists”, are atomic formulas. Atomic for-
mulas may have internal structure that we cannot analyze
with the means provided by predicate logic, as in the sen-
tences “Tomorrow there will be a sea battle” and “It is
possible that it will rain”.

Here are some examples of atomic formulas of predi-
cate logic:

• x is yellow

• x is taller than y

• 4 < z

• x = 10

• xEy

• x < z

• P0(x)

2.4.2 Variables
Variables are used in general statements, such as:

• If x and y are natural numbers then either x < y,
y < x or x = y.

• Any two distinct vertices are neighbors.

• Every tile is red or blue.

Variables are also used in existential statements, such as:

• There is a natural number x such that x > 1010 and
x is a prime (has no divisors).

• Some vertices are not neighbors.

• Some tiles are left of a yellow tile.

Variables are denoted by x, y, z, u, v etc; also with in-
dexes x0,x1, . . .

2.4.3 Assignments
Assignments are functions that assign values to variables.

When we consider the truth of a formula with variables,
we must have a structure in mind, otherwise the concept
is meaningless. For example it does not make sense to
ask whether the formula xEy is true or false, because we
ought to know what the values of x and y are and, in ad-
dition, what the meaning of E is. Even if we know that
E is the edge relation in a graph, we have to know which
graph we are talking about, since there are lot and lots of
different graphs.

So let us assume we have a structureM with universe
M , such as
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• a set of tiles

• the set of vertices of a graph

• integer numbers

• rational numbers.

We think that the variables range over the set M .
Fixing the value of a variable is called an assignment.

Mathematically speaking, an assignment is a function that
maps variables to M .

Here is a table of three assignments of values in the
integers for the variables x, y and z.

• s0(x) = 1, s0(y) = 5, s0(z) = 1

• s1(x) = 1, s1(y) = 1, s1(z) = 3

• s2(x) = 1, s2(y) = 2, s2(z) = 4

We can present such a table of values in the below com-
pact form:

x y z
s0 1 5 1
s1 1 1 3
s2 1 2 4

2.4.4 Atomic formulas revisited
The assignment s0 of the above table satisfies the atomic
formula x = z, because s0(x) = s0(z). The assignment
s1 of the above table satisfies the atomic formula x = y,
because s1(x) = s1(y).

Definition 2.4 1. An assignment s satisfies the atomic
formula x = y if s gives the same value to x and y,
i.e. s(x) = s(y).

2. An assignment s satisfies the atomic formula Pn(x)
in a modelM, if s(x) ∈ PMn .

3. An assignment s satisfies the atomic formulaR(x, y)
in a modelM, if (s(x), s(y)) ∈ RM.

As a consequence of the definition, an assignment s
satisfies the atomic formula xEy in a graphG, if s(x) and
s(y) are neighbors in the graph. Likewise, an assignment
s satisfies the atomic formula R(x), “x is red”, in a tile
model, if s(x) is red in the model.

Note: Instead of x and y we can have any other vari-
ables in the above definitions.

2.4.5 Formulas—a first look
Statements built up from variables using logical opera-
tions (connectives and quantifiers, see below) are called
formulas. We have already met the simplest formulas,
namely equations

x = y, x = x, y = z.

We call them atomic formulas. We have also met the sec-
ond kind of atomic formulas

x < y,R(x), xEy, Pn(x).

More complex formulas—next lecture!

2.4.6 Solved problems
Problem 147 Which assignments satisfy the atomic for-
mula P0(x) in the below unary structure?

x y z
s0 b a d
s1 c b c
s2 g a g

PM0 PM1

a

b

c

d

e

f

g

Solution: Assignments s0 and s1 satisfy the atomic for-
mula P0(x) since the elements s0(x) = b and s1(x) = c
are in the set PM0 . Assignment s2 does not satisfy the
atomic formula P0(x) since s2(x) = g is not in the set
PM0 . 2

Problem 148 Which assignments satisfy the atomic for-
mula P2(z) in the below unary structure?
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x y z
s0 1 2 5
s1 1 6 0
s2 1 4 6

PM2 PM5

PM3
6

4

1

5

2
3

0

Solution: None of the assignments satisfy the atomic
formula P2(z) since no value of z is in the set PM2 . 2

Problem 149 Which assignments satisfy the formula
P1(x) in the below unary structure?

x y z
s0 b a d
s1 c b c
s2 g a g

PM0

PM1
a

b

c

d

e

f

g

Solution: The assignments s0 and s1 satisfy P1(x), be-
cause s0(x) = b ∈ PM1 and s1(x) = c ∈ PM1 . However,
s2 does not satisfy, as s2(x) = g /∈ PM1 . 2

Problem 150 Which assignments satisfy the formula
xEy in the below graph?

x y z
s0 4 5 1
s1 1 1 3
s2 1 2 4

3

45

1

2

Solution: The assignment s0 satisfies xEy, because
s0(x) = 4, s0(y) = 5, and indeed 4 and 5 are neighbors
in the graph. The assignment s1 does not satisfy xEy, be-
cause s1(x) = 1, s1(y) = 1, and in no graph is a vertex
a neighbor of itself. The assignment s2 does not satisfy
xEy, because s2(x) = 1, s2(y) = 2, and in this graph the
vertices 1 and 2 are not neighbors. 2

Problem 151 Which assignments satisfy the formula
zEy in the below graph?

x y z
s0 1 1 1
s1 1 5 3
s2 1 2 4

3

45

1

2

Solution: The assignment s0 does not satisfy zEy, be-
cause s0(z) = s1(y) = 1 and in no graph is a vertex a
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neighbor of itself. The assignment s1 satisfies zEy, be-
cause s1(z) = 3, s1(y) = 5, and in this graph the vertices
3 and 5 are neighbors. The assignment s2 does not satisfy
zEy, because s2(z) = 4, s2(y) = 2, and in this graph the
vertices 4 and 2 are not neighbors. 2

Problem 152 Give in each case a unary structure and
one assignment that satisfies the formula and one that
does not:

1. P0(x)

2. P1(y)

3. P1(z)

4. P2(x)

Solution:

x y z Satisfies
s1 1 1 1 P0(x)
s2 6 6 6 P1(y)
s3 6 6 6 P1(z)
s4 3 3 3 P2(x)

x y z Does not satisfy
s1 6 6 6 P0(x)
s2 3 3 3 P1(y)
s3 2 2 2 P1(z)
s4 1 1 1 P2(x)

PM0 PM2

PM1
6

4

1

5

2
3

0

2

2.4.7 Problems

Problem 153 Which assignments satisfy the atomic for-
mula P1(y) in the below unary structure?

x y z
s0 b a d
s1 c b c
s2 g g g

PM0 PM1

a

b

c

d

e

f

g

Problem 154 Which assignments satisfy the atomic for-
mula P0(z) in the below unary structure?

x y z
s0 4 2 7
s1 3 2 3
s2 8 8 8

PM0 PM1

PM2

2

4

3

7

1

9

8
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Problem 155 Which assignments satisfy the atomic for-
mula P5(y) in the below unary structure?

x y z
s0 1 2 5
s1 1 6 0
s2 1 4 6

PM2 PM5

PM3
6

4

1

5

2
3

0

Problem 156 Which assignments satisfy the atomic for-
mula P2(x) in the below unary structure?

x y z
s0 1 2 5
s1 2 6 0
s2 3 4 6

PM2 PM5

PM3
6

4

1

5

2 3

0

Problem 157 Which assignments satisfy the formula
xEy in the below graph?

x y z
s0 4 1 1
s1 3 5 3
s2 2 2 4

3

45

1

2

Problem 158 Which assignments satisfy the formula
xEz in the below graph?

x y z
s0 1 2 1
s1 1 2 3
s2 1 2 4

3

45

1

2

Problem 159 Which assignments satisfy the formula
zEz in the below graph?

x y z
s0 1 1 1
s1 1 5 3
s2 1 2 4

3

45

1

2

Problem 160 Which assignments satisfy the formula
xEz in the below graph?
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x y z
s0 a b c
s1 a d d
s2 f c e

d

ef

b

a

c

Problem 161 Which assignments satisfy the formula
xEy in the below graph?

x y z
s0 1 5 1
s1 1 3 3
s2 3 5 4

1 3

4

5

Problem 162 Give in each case a tile model and one as-
signment that satisfies the formula, and another that does
not:

1. R(x)

2. B(y)

3. y < x

4. x < y

5. Y (z)

Problem 163 Give in each case a tile model and an as-
signment that satisfies the first formula but not the second.

1. R(x), B(y)

2. B(y), x < y

3. y < x,R(y)

4. x < y,B(y)

5. z < x, z < y

Problem 164 Give in each case a unary structure and
one assignment that satisfies the first formula but not the
second:

1. P0(x), P1(x)

2. P1(y), P0(x)

3. P1(y), P0(y)

4. P2(x), P0(z)

Problem 165 Give a graph and an assignment that satis-
fies all the formulas in the left box but none of the formulas
in the right box.

xEy
z = w
yEz
xEu

yEu
x = y
zEu
wEu

2.5 Formulas
The formulas of predicate logic are expressions built up
from atomic formulas by means of the familiar connec-
tives of propositional logic but also by means of quan-
tifiers, such as “for all” and “there exists”, something
propositional logic did not have. We can say more but at
the same time the mathematics of predicate logic is more
complicated than the mathematics of propositional logic.
There are more things to keep an eye on.

2.5.1 Predicate logic formulas
Here is the exact definition of formulas of predicate logic:

Definition 2.5 Predicate logic formulas are built up from
atomic formulas by means of logical operations:
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Negation ¬A
Conjunction A ∧B
Disjunction A ∨B
Implication A→ B
Equivalence A↔ B
Existential quantifier ∃xA, for any variable x
Universal quantifier ∀xA, for any variable x.

Parentheses (,) are used for clarity.

For example, from the atomic formulas xEy and x = z
we can form the following formulas, among many others,
of course:

• xEy ∧ x = z

• xEy ∧ ¬x = z

• ∃x(xEy ∧ ¬x = z)

• ∀y∃x(xEy ∧ ¬x = z)

• ∃x(xEy ∧ x = z) ∧ ∃x(xEy ∧ ¬x = z)

• ∀y(∃x(xEy ∧ x = z) ∧ ∃x(xEy ∧ ¬x = z))

All the formulas of predicate logic, like the ones above,
have an intuitive meaning as soon as a structure is fixed so
that we know what the domain is and what the symbols,
such as “E” in xEy, mean. Moreover we have to decide
what the assignment for giving values to the variables is.
When these are known the meaning of the formulas is in-
tuitively:

Formula meaning
¬A not A
A ∧B A and B
A ∨B A or B
A→ B if A, then B
A↔ B A if and only if B
∃xA A holds for some value of x
∀xA A holds for all values of x.

The concept of an assignment is designed to make
“value of x” in the above table completely exact and
mathematical.

2.5.2 Disjunction, conjunction
Disjunction and conjunction are understood in predicate
logic just as in propositional logic:

Definition 2.6 An assignment s satisfies A ∨ B inM if
and only if s satisfies A inM or s satisfies B inM.

In other words, to conclude that s satisfies A∨B inM
it suffices to establish that s satisfies A or that s satisfies
B inM. Conversely, if we have established that s satis-
fies A ∨ B, we know that s satisfies A or B in M, but
unfortunately we do not know which.

Definition 2.7 An assignment s satisfies A ∧ B inM if
and only if s satisfies A inM and s satisfies B inM.

In other words, to conclude that s satisfies A ∧ B in
M it is necessary to establish both that s satisfies A inM
and s satisfiesB inM. Conversely, if we have established
that s satisfies A∧B inM, then we know that s satisfied
A and also that s satisfies B inM.

2.5.3 Negation
Negation—the denial—is treated as it is in propositional
logic, nothing new:

Definition 2.8 Assignment s satisfies ¬A in M if and
only if s does not satisfy A inM.

This is an easy case: To conclude that s satisfies ¬A in
M we just have to show that it is impossible that s would
satisfy A in M. Conversely, if we already know that s
satisfies ¬A in M, then we know that surely s does not
satisfy A inM.

2.5.4 Implication and equivalence
We follow here the treatment of implication in proposi-
tional logic: An implication is true exactly when the hy-
pothesis is false or the conclusion is true. What we said
earlier, in the section on propositional logic, about the un-
intuitive consequences of this, is of course still valid.

Definition 2.9 An assignment s satisfies A→ B inM if
and only if s does not satisfy A inM or s satisfies B in
M.
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So to conclude that s satisfiesA→ B inM we assume
s satisfies A inM and try to establish that s satisfies B in
M. Conversely, if we already know that s satisfies A →
B in M, then we have to consider two possibilities: In
the first case s does not satisfy A inM and in the second
case s satisfies B in M. In a typical situation we know
that s satisfies A→ B inM and also that s satisfies A in
M, and then we can conclude that s satisfies B inM.

Definition 2.10 An assignment s satisfies A ↔ B inM
if and only if s satisfies both A and B inM or neither.

Perhaps paradoxically, this is simpler than implication.
To establish that s satisfiesA↔ B inM one just assumes
that s satisfies A inM and then tries to argue that s must
satisfy also B inM, and after this the same in the other
direction: assuming that s satisfies B in M one tries to
argue that s must satisfy A inM. Conversely, if we know
that s satisfies A ↔ B in M, then we know that if s
satisfies one of A and B inM, it satisfies also the other.

2.5.5 Satisfaction
We have defined when an assignment s satisfies a formula
A without quantifiers in a structureM. When this is the
case, we write

M |=s A.

With this notation we can rewrite the above definitions
as follows:

Definition 2.11 Satisfaction of A by s inM, in symbols
M |=s A, is defined as follows in the case thatA does not
contain quantifiers:

1. M |=s x = y if and only if s(x) = s(y).

2. M |=s Pn(x) if and only if s(x) is in the set PM
n .

3. M |=s R(x, y) if and only if (s(x), s(y)) is in the relation
RM, i.e. s(x)RMs(y).

4. M |=s A ∨B if and only if (M |=s A or M |=s B).

5. M |=s A ∧B if and only if (M |=s A and M |=s B).

6. M |=s ¬A if and only if M 6|=s A.

7. M |=s A → B if and only if (M 6|=s A or M |=s B).

8. M |=s A ↔ B if and only if [(M |=s A and M |=s B)
or (M 6|=s A and M 6|=s B)].

Note that Definition 2.11 is an inductive definition in
the sense thatM |=s A is defined in terms ofM |=s B
for subformulas B of A. So this is analogous to, al-
beit more complicated than, the definition of e.g. the Fi-
bonacci sequence a0 = 0, a1 = 1, an+2 = an + an+1,
where an+2 is defined in terms of the smaller numbers an
and an+1.

2.5.6 Solved problems
Problem 166 Which assignments satisfy the formula
P0(x) ∨ P1(y) in the below unary structure?

x y z
s0 b a d
s1 c b c
s2 g g g

PM0 PM1

a

b

c

d

e

f

g

Solution: Even a casual look reveals that s0 satisfies the
formula, as s0 gives x the value b which is in PM0 . Also
s1 satisfies the formula as it gives x the value c and also
c is in PM0 . Finally, s2 does not satisfy the formulas as
it gives both x and y the value g, which is neither in PM0
nor in PM1 .

More exactly, let us look at the assignments. The value
of s0(x) is b, and b ∈ PM0 , so definitelyM |=s0 P0(x)∨
P1(y). The value of s1(x) is c, and c ∈ PM0 , so again
M |=s0 P0(x)∨P1(y). Finally, s2(x) = g and g 6∈ PM0 ,
so we cannot conclude M |=s0 P0(x) ∨ P1(y) yet. We
have to check also s2(y) = g. But here likewise g 6∈ PM1 .
So in the end,M 6|=s0 P0(x) ∨ P1(y). The answer is: s0
and s1 satisfy, but s2 does not. 2
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Problem 167 Which assignments satisfy the formula
P1(y)→ (P0(x)→ P1(z)) in the below unary structure?

x y z
s0 c c c
s1 a a c
s2 e e e

PM0 PM1

a

b

c

d

e

f

g

Solution: A quick look reveals that s0 and s2 satisfy the
implication as both fail to satisfy the hypothesis of the im-
plication, namely PM1 . But s1 does satisfy the hypothesis
PM1 of the implication. However, it does not satisfy the
conclusion, hence it fails to satisfy the implication itself.

More exactly, let us look at the assignments. The value
of s0(y) is c, and c /∈ PM1 . SoM 6|=s0 P1(y) and hence
s0 satisfies the formula. The value of s1(y) is a, and a ∈
PM1 , so we go on. The value of s1(x) is a, and a ∈ PM0 ,
so we go on. The value of s1(z) is c, and c /∈ PM1 . So
M 6|=s1 P0(x)→ P1(z) althoughM |=s1 P1(y). So the
conclusion is that s1 does not satisfy the formula. Finally,
s2(y) = e and e /∈ PM1 . SoM 6|=s2 P1(y) and hence s2
satisfies the formula. 2

Problem 168 Which assignments satisfy the formula
P1(y) ∨ (P0(z) ∧ P1(x)) in the below unary structure?

x y z
s0 c c c
s1 a e c
s2 f e f

PM0

PM1
a

b

c

d

e

f

g

Solution: Let us look at the assignments. The value of
s0(y) is c, and c ∈ PM1 . So s0 satisfies the formula. The
value of s1(y) is e, and e /∈ PM1 , so we go on. The value
of s1(z) is c, and c ∈ PM0 , so we go on. The value of
s1(x) is a, and a ∈ PM1 . So s1 satisfies the formula.
Finally, s2(y) = e and e /∈ PM1 , so we go on. Now
s2(z) = f and f /∈ PM0 . So s2 does not satisfy the
formula. 2

Problem 169 Which assignments satisfy the formula
xEy ∧ yEz in the below graph?

x y z
s0 1 5 1
s1 1 1 3
s2 1 2 4

3

45

1

2

Solution: Let us look at the assignments. The value of
s0(x) is 1, and s0(y) = 5. We have 1EM5, so s0 satisfies
xEy. The value of s0(z) is 1, so s0 satisfies also yEz, and
hence the given formula. Now s1(x) = 1 and s1(y) = 1,
but (1, 1) /∈ EM. So s1 does not satisfy the formula.
Finally, s2(x) = 1 and s2(y) = 2, but (1, 2) /∈ EM. So
s2 does not satisfy the formula. 2
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Problem 170 Which assignments satisfy the formula
xEy → xEz in the below graph?

x y z
s0 1 5 2
s1 1 1 3
s2 1 2 4

3

45

1

2

Solution: The assignment s0 satisfies xEy but not xEz.
So s0 does not satisfy xEy → xEz. The assignment s1
fails to satisfy xEy, and hence it satisfies the implication.
The same happens with s2.2

Problem 171 Which assignments satisfy the formula
R(x) ∨B(y) in the below tile model? In order to be able
to refer to the individual tiles we give them names.

x y z
s0 1 5 2
s1 2 1 3
s2 2 2 4

R B B R Y

1 2 3 4 5

Solution: Intuitively, the question is “Is x red or y
blue?”. So let us see what the assignments say about x and
y. The assignment s0 says x has value 1, i.e. s0(x) = 1.
Well, 1 is red, so s0 does satisfy the given formula. The
assignment s1 says x has value 2, which is not red, and y
has value 1, which is not blue. So s1 does not satisfy the
formula. Finally, s2 says x has value 2, which is not red,
but y has also value 2, and 2 is blue. So s2 satisfies the
formula. 2

Problem 172 Give in each case a unary structure and an
assignment that satisfies the given formula in the struc-
ture:

1. P0(x) ∧ ¬P1(x)

2. ¬(P0(x) ∨ ¬P1(x))

3. P0(x)→ (P1(x) ∨ P2(x))

4. P0(x) ∨ ¬P1(x) ∨ P2(x)

Solution: We use the same model in each case:

PM0 PM1

PM2

ab

d

f

In Case 1 it suffices to let s(x) = b. In Case 2 we let
s(x) = f . In Case 3, let s(x) = f . Finally, in Case 4, let
s(x) = b.

2

2.5.7 Problems

Problem 173 Which assignments satisfy the formula
¬P0(x) ∧ P1(y) in the below unary structure?

x y z
s0 c c c
s1 a b c
s2 e f a
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PM0 PM1

a

b

c

d

e

f

g

Problem 174 Which assignments satisfy the formula
P1(z) → (¬P0(x) → P1(x)) in the below unary struc-
ture?

x y z
s0 c c c
s1 a a f
s2 e e a

PM0 PM1

a

b

c

d

e

f

g

Problem 175 Which assignments satisfy the formula
P1(z)→ (P0(y)→ P1(x)) in the below unary structure?

x y z
s0 c c c
s1 g a c
s2 e e a

PM0

PM1
a

b

c

d

e

f

g

Problem 176 Which assignments satisfy the formula
xEy → yEz in the below graph?

x y z
s0 1 5 1
s1 1 1 3
s2 3 4 2

3

45

1

2

Problem 177 Which assignments satisfy the formula
xEy ∨ xEz in the below graph?

x y z
s0 1 5 1
s1 1 2 3
s2 5 2 4

3

45

1

2
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Problem 178 Which assignments satisfy the formula
R(x) → x < y in the below tile model? In order to
be able to refer to the individual tiles we have given them
names 1, 2, 3, 4, 5.

x y z
s0 1 5 2
s1 2 1 3
s2 4 2 4

R B B R Y

1 2 3 4 5

Problem 179 Give in each case a tile model and an as-
signment that satisfies the given formula in the model:

1. R(x) ∧ ¬B(x)

2. ¬(R(x) ∧ ¬B(x))

3. B(x)→ (R(y) ∧ y < x)

4. ¬(B(x)→ (R(y) ∧ y < x))

5. ¬((B(x)∧Y (y)∧x < y)∨ (B(x)∧Y (y)∧y < x))

2.6 Quantifiers

2.6.1 Introduction
Quantifiers are the final step in our description of the
building blocks that first order (i.e. predicate logic) for-
mulas are built up from. With quantifiers we can finally
describe a wealth of phenomena around us, inside com-
puters, and in mathematics. A famous example of the use
of quantifiers is the ε− δ definition of continuity2.

2.6.2 Predicate logic (i.e. first order) formu-
las

Let us recall that predicate logic formulas are of the form

• atomic i.e. x = y, Pn(x), R(x, y)

2A function f : R→ R is continuous at x0 if for every ε > 0 there
is δ > 0 such that for all x, if |x− x0| < δ, then |f(x)− f(x0)| < ε.

• ¬A

• A ∧B

• A ∨B

• A→ B

• A↔ B

• ∀xA

• ∃xA,

where A and B are first order formulas. Parentheses (,)
are used for clarity, just as in propositional logic. Thus,
for example, if we want to put a universal quantifier in
front of A→ B we write ∀x(A→ B).

2.6.3 Examples

• P0(x)→ P1(x)

• ¬(x < y ∨ y < x)

• ∃x(xEy ∧ ∃z(xEz ∧ ¬zEy))

• ∀x(B(x)→ ∃z(Y (z) ∧ z < x))

2.6.4 Universal quantifier explained

The intuitive meaning of ∀xA is that every value of x sat-
isfies A, as in

• Every tile is red.

• Every x satisfies x2 ≥ 0.

• All vertices x and y are neighbors.

• All men are mortal.

• Everybody loves her.
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2.6.5 Existential quantifier explained

The intuitive meaning of ∃xA is that some value of x sat-
isfies A as in

• Some tiles are red.

• Some reals x satisfy x2 = 2.

• Some vertices x and y are neighbors.

• There is a yellow tile.

• There is a vertex with two neighbors.

2.6.6 Assignments and quantifiers

In order to define when an assignment satisfies a quanti-
fied formula, we need the concept of a modified assign-
ment. From any assignment s, and variable x and any
element a of the universe of our structure we can form a
modified assignment s(a/x) as follows:

x y z
s 1 5 1

s(2/x) 2 5 1 A modified assignment.
s(8/z) 1 5 8 Another modified assignment.

The assignment s(a/x) is exactly like the assignment s
except that the value of x is changed to a.

2.6.7 Assignment satisfying a quantified
formula

We can now extend the previous definition of satisfaction
from formulas without quantifiers to formulas that also
contain quantifiers:

Definition 2.12 • Assignment s satisfies ∀xA inM if
the modified assignment s(a/x) satisfies A inM for
every a in M .

• Assignment s satisfies ∃xA inM if the modified as-
signment s(a/x) satisfies A inM for some a in M .

2.6.8 Tarski Truth Definition
We have now defined in full generality, when an assign-
ment s satisfies a formula A in a structureM. When this
is the case, we writeM |=s A.

With this notation we can rewrite the above definition
as follows:

Definition 2.13 Satisfaction of A by s inM, in symbols
M |=s A, is defined as in Table 2.1.

Note that Table 2.1 is an inductive definition in the sense
thatM |=s A is defined in terms ofM |=s′ B for sub-
formulas B of A and modification s′ of s.

This is called the Tarski Truth Definition.

2.6.9 Solved problems
Problem 180 Which assignments satisfy the formula
∃y(P0(x) ∧ P1(y)) in the below unary structure?

x y z
s0 c c c
s1 a b c
s2 e e a

PM0 PM1

a

b

c

d

e

f

g

Solution: Let us first show that s0 satisfies the given for-
mula in M. The modified assignment s0(f/y) satisfies
P1(y) in this model as f ∈ PM1 . The assignment s0(f/y)
satisfies also P0(x) in this model, as s0(f/y)(x) = c ∈
PM0 . So s0(f/y) satisfies P0(x) ∧ P1(y) in M. Hence
s0 satisfies ∃y(P0(x) ∧ P1(y)) inM.
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M |=s x = y if and only if s(x) = s(y)

M |=s Pn(x) if and only if s(x) is in the set PMn
M |=s R(x, y) if and only if (s(x), s(y)) is in the relation RM, i.e. s(x)RMs(y).

M |=s A ∨B if and only if M |=s A orM |=s B.

M |=s A ∧B if and only if M |=s A andM |=s B.

M |=s ¬A if and only if M 6|=s A.

M |=s A→ B if and only if M 6|=s A orM |=s B.

M |=s A↔ B if and only if (M |=s A andM |=s B) or (M 6|=s A andM 6|=s B)

M |=s ∀xA if and only if M |=s(a/x) A for all a ∈M

M |=s ∃xA if and only if M |=s(a/x) A for some a ∈M

Figure 2.1: The Tarski Truth Definition

Next we show that s1 also satisfies the given formula in
M. We already observed that s1(f/y) satisfies P1(y) in
M. The assignment s1(f/y) satisfies also P0(x) in this
model, as s1(f/y)(x) = a ∈ PM0 . Hence s1 satisfies
∃y(P0(x) ∧ P1(y)) inM.

Let us finally show that s2 does not satisfy the given
formula inM. Whatever element h we pick, the modified
assignment s2(h/y) fails to satisfy P0(x) in this model,
as s2(h/y)(x) = e /∈ PM0 . So s2(h/y) fails to satisfy
P0(x) ∧ P1(y) inM, whatever h is. Hence s2 does not
satisfy ∃y(P0(x) ∧ P1(y)) inM.

So the answer is, that the first two assignments satisfy
the formula inM and the last does not.

We can write the whole solution also using the notation
M |=s A:

Let us first show that

M |=s0 ∃y(P0(x) ∧ P1(y)).

For this, note that

M |=s0(f/y) P1(y)

as f ∈ PM1 . Note also that

M |=s0(f/y) P0(x),

as s0(f/y)(x) = c ∈ PM0 . So

M |=s0(f/y) P0(x) ∧ P1(y).

Hence
M |=s0 ∃y(P0(x) ∧ P1(y)).

Next we show that also

M |=s1 ∃y(P0(x) ∧ P1(y)).

We already observed that

M |=s1(f/y) P1(y).

Note that also

M |=s1(f/y) P0(x),

as s1(f/y)(x) = a ∈ PM0 . Hence

M |=s1 ∃y(P0(x) ∧ P1(y)).

Let us finally show that

M |=s2 ∃y(P0(x) ∧ P1(y)).

Whatever element h we pick,

M 6|=s2(h/y) P0(x),
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as s2(h/y)(x) = e /∈ PM0 . So

M 6|=s2(h/y) P0(x) ∧ P1(y),

whatever h is. Hence

M 6|=s2 ∃y(P0(x) ∧ P1(y)).

So the answer is, that the first two assignments satisfy
the formula inM and the last does not. 2

Problem 181 Which assignments satisfy the formula
P1(y) → ∀x(P0(x) → P1(x)) in the below unary struc-
ture?

x y z
s0 c c c
s1 a a c
s2 e e a

PM0 PM1

a

b

c

d

e

f

g

Solution: The formula we are considering is an impli-
cation. Implication if true if the hypothesis is false. The
value of y in s0 and s2 is outside the set PM1 . So both s0
and s2 fail to satisfy P1(y) in M. Hence they both sat-
isfy the given formula. We are left with s1. In this case
s1(y) = a ∈ PM1 , so the hypothesis of the implication
is true. We have to next consider the conclusion. The
conclusion says intuitively, that PM0 is contained in PM1 ,
which is clearly false. Let us see why it is clearly false.
Well, because e.g. c is in PM0 but not in PM1 . So s1(c/x)
fails to satisfy P0(x) → P1(x). Hence s1 fails to satisfy
∀x(P0(x)→ P1(x)). Hence s1 does not satisfy the given
formula inM.

So the answer is, that the first and the last assignment
satisfies the formula inM and the middle one does not.

2

Problem 182 Which assignments satisfy the formula
P1(y) → ∀x(P0(z) → P1(x)) in the below unary struc-
ture?

x y z
s0 c c f
s1 a a c
s2 e e a

PM0

PM1
a

b

c

d

e

f

g

Solution: We can immediately observe that s2 satisfies
the implication because it does not satisfy the hypothesis:
s2(y) = e /∈ PM1 . Now the conclusion of the implica-
tion does not say that PM0 ⊆ PM1 , but something quite
different, namely that if the z is in P0, then every element
is in P1. In the assignment s0 we have s0(z) = f /∈ P0.
So whatever h is chosen, s0(h/x) fails to satisfy P0(z),
whence it does satisfy P0(z)→ P1(x). So s0 satisfies the
conclusion of the given implication, and hence it satisfies
the given formula. Let us finally look at s1. Let us look at
s1(g/x). Since s1(g/x)(z) = c ∈ PM0 , s1(g/x) satisfies
the hypothesis of the implication P0(z) → P1(x). But it
does not satisfy the conclusion of the implication, hence it
does not satisfy the implication itself. Hence s1 does not
satisfy ∀x(P0(z) → P1(x)). Since s1(y) = a ∈ PM0 , s1
does not satisfy the given formula inM. 2

Problem 183 Which assignment satisfies the formula
∃y(xEy ∧ yEz) in the below graph?
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x y z
s0 1 5 1
s1 1 1 3
s2 1 2 4

3

45

1

2

Solution: This one is quite easy. In each case the value
of x is 1. The formula claims that some neighbor of 1
is a neighbor of the value of z. We can choose 5, the
only neighbor of 1, in each case. So all three assignments
satisfy the formula. Let us do this a bit more exactly, using
theM |=s A notation. First s0. We have

M |=s0(5/y) xEy,

because there is an edge between s0(x) = 1 and 5. More-
over,

M |=s0(5/y) yEz,

because s0(z) is also 1. So

M |=s0(5/y) xEy ∧ yEz,

whence
M |=s0 ∃y(xEy ∧ yEz).

Then s1. Now we use the prose approach: The assignment
s1(5/y) satisfies xEy, because there is an edge between
s1(x) = 1 and 5. Moreover, s1(5/y) satisfies also yEz,
because there is an edge between s1(z) = 3 and 5. So,
summa summa summarum, s1(5/y) satisfies xEy∧yEz,
and therefore s1 satisfies ∃y(xEy ∧ yEz). Finally the
assignment s2. The argument is exactly the same, as there
is an edge between s2(z) = 4 and 5. 2

Problem 184 Which assignment satisfies the formula
∀x(x = y ∨ xEy) in the below graph?

x y z
s0 1 5 1
s1 1 1 3
s2 1 2 4

3

45

1

2

Solution: The formula says, intuitively, that the vertex
that is the interpretation of y, is a neighbor of every other
vertex. In this graph only vertex 5 is a neighbor of every
other vertex. This means that only s0 satisfies the for-
mula. More exactly, s0(a/x) satisfies x = y ∨ xEy for
every vertex a, and therefore s0 satisfies the formula. On
the other hand, s1(2/x) does not satisfy xEy, and also
s2(3/x) does not satisfy xEy. In conclusion, s1 and s2
do not satisfy the given formula. 2

Problem 185 Which assignment satisfies the formula
∃y(R(x) ∧ x < y) in the below tile model?

x y z
s0 1 5 2
s1 2 1 3
s2 4 2 4

R B B R Y
1 2 3 4 5

Solution: The formula says, intuitively, that the tile that
is the interpretation of x, is red and it has a tile right of
it. In this tile model tiles number 1 and 4 both are red
and both have a tile right of it. This means that s0 and
s2 satisfy the formula. More exactly, s0(2/y) satisfies
R(x)∧ xEy, and therefore s0 satisfies the formula. Like-
wise, s2(5/y) satisfies R(x) ∧ xEy, so s2 satisfies the
given formula. On the other hand, s1(a/y) does not sat-
isfy R(x) for any a, so s1 cannot satisfy the given for-
mula. In conclusion, s0 and s2 satisfy the given formula,
s1 does not. 2
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Problem 186 Which assignment satisfies the formula
∀y(B(y)→ y < x) in the below tile model?

x y z
s0 1 5 2
s1 5 1 3
s2 4 2 4

R B B R Y

1 2 3 4 5

Solution: The formula says, intuitively, that all the blue
vertices are left of the vertex that is the interpretation of
x. In this tile model all the blue vertices are left of only
the vertices number 4 and 5. This means that s1 and s2
satisfy the formula, but s0 not. More exactly, s0(2/y)
satisfies B(x) but not y < x, and therefore s0 does not
satisfy the given formula. On the other hand, if s1(a/y)
satisfies B(y), then a = 2 or a = 3 so then s1(a/y) also
satisfies a < x. Hence s1 satisfies the given formula. The
same applies to s2. In conclusion, s1 and s2 satisfy the
given formula, s0 does not. 2

Problem 187 Give in each case a unary structure and an
assignment that satisfies the sentence:

1. ∃xP0(x) ∧ ∀x¬P1(x)

2. ¬(∃xP0(x) ∨ ∀x¬P1(x))

3. ∀x(P0(x)→ (P1(x) ∨ P2(x)))

Solution:

1. ∃xP0(x)∧∀x¬P1(x): The sentence says, intuitively,
that P0 is non-empty, but P1 is empty. We let,
for example M = {0, 1, 2, 3, 4, 5}, PM0 = 3, 4, 5,
PM1 = ∅, s(x) = 0. Now s satisfies ∃xP0(x) be-
cause s(3/x) satisfies P0(x) i.e. 3 ∈ PM0 . Also, s
satisfies ∀x¬P1(x) because, for all a ∈ M , s(a/x)
satisfies ¬P1(x) i.e. a /∈ PM1 . Hence s satisfies
∃xP0(x) ∧ ∀x¬P1(x).

PM0

PM1

2. ¬(∃xP0(x) ∨ ∀x¬P1(x)): Intuitively, this sentence
says that it is not the case that P0 is non-empty or
that P1 is empty. Our model should therefore have
both P0 empty and P1 non-empty. Let, for example,
M = {0, 1, 2, 3, 4, 5}, PM0 = ∅, PM1 = {3, 4, 5},
s(x) = 0.Now s does not satisfy ∀x¬P1(x) because
s(3/x) satisfies P1(x) i.e. 3 ∈ PM1 . Also, s does
not satisfy ∃xP0(x) because, for all a ∈ M , s(a/x)
fails to satisfy P0(x) i.e. a /∈ PM0 . Hence s does
not satisfy ∃xP0(x) ∨ ∀x¬P1(x). Hence s satisfies
¬(∃xP0(x) ∨ ∀x¬P1(x)).

PM1

PM0

3. ∀x(P0(x) → (P1(x) ∨ P2(x))) Intuitively, this sen-
tence says, that all elements of P0 are either in P1

or in P2. Let, for example, M = {0, 1, 2, 3, 4, 5},
PM0 = {3, 4}, PM1 = {1, 3}, PM2 = {4, 5}, and
s(x) = 0. Let us take an arbitrary a in M and show
that s(a/x) satisfies P0(x)→ (P1(x)∨ P2(x)). As-
sume therefore that s(a/x) satisfies P0(x) i.e. that a
is in PM0 . Then a = 3 or a = 4. In the first case a
is in PM1 . In the second case a is in PM2 . In either
case s(a/x) satisfies P1(x)∨P2(x). We have shown
that s(a/x) satisfies P0(x) → (P1(x) ∨ P2(x)) for
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all a in M . Hence s satisfies ∀x(P0(x)→ (P1(x) ∨
P2(x))).

PM1

PM2

PM0

2

2.6.10 Problems
Problem 188 Which assignments satisfy the formula
∀y(P0(x)→ P1(y)) in the below unary structure?

x y z
s0 c c c
s1 a b c
s2 e e a

PM0 PM1

a

b

c

d

e

f

g

Problem 189 Which assignments satisfy the formula
P1(z)∨∀x(P0(x)∨P1(x)) in the below unary structure?

x y z
s0 c c a
s1 a a e
s2 e e b

PM0 PM1

a

b

c

d

e

f

g

Problem 190 Which assignments satisfy the formula
P1(y) ∧ ∀x(P0(x) → P1(x)) in the below unary struc-
ture?

x y z
s0 c c c
s1 a a c
s2 e e a

PM0

PM1
a

b

c

d

e

f

g

Problem 191 Which assignment satisfies the formula
∃y(xEy ∧ yEz) in the below graph?

x y z
s0 2 6 5
s1 1 1 3
s2 1 6 2
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3

45

1

2

6

Problem 192 Which assignment satisfies the formula
∃x∃y(¬x = y ∧ xEy ∧ yEz) in the below graph?

x y z
s0 1 5 1
s1 1 1 2
s2 1 2 4

3

45

1

2

6

Problem 193 Give a unary structureM and an assign-
ment that satisfies the sentence

∀x(P0(x) ∨ ¬P1(x) ∨ P2(x))

but not the sentence

∃x(P0(x) ∧ ¬P1(x) ∧ P2(x))

inM.

Problem 194 Give in each case a tile model that satisfies
the sentence

1. ∃xR(x) ∧ ∀x¬B(x)

2. ¬(∃xR(x) ∧ ∀x¬B(x))

3. ∀x(B(x)→ ∃y(R(y) ∧ y < x))

Problem 195 Give in each case a tile model that satisfies
the sentence

1. ¬∀x(B(x)→ ∃y(R(y) ∧ y < x))

2. ¬(∃x∃y(B(x) ∧ Y (y) ∧ x < y) ∨ ∃x∃y(B(x) ∧
Y (y) ∧ y < x))

2.7 Validity

2.7.1 Introduction
Now, having learnt the basic concepts of predicate logic,
we can enter the heartland of logic. We can use our con-
cepts to analyze why certain inferences seem correct and
others don’t.

Why do we strongly believe that “Some days are rainy”
follows from “Some days are rainy and windy”, and even
with no regard to what “day”, “rainy” and “windy” mean?
And why do we strongly believe that “Some days are
rainy” does not follow from “Some days are rainy or
windy”? What we are talking about here is the question
of logical consequence and validity.

A first order formula of vocabulary L is valid if it is
satisfied by every assignment in every structure for L. A
valid formula expresses a general logical truth, something
which is always true whatever is the meaning of the pred-
icate and constant symbols of the formula.

2.7.2 Examples
Here are some examples of valid formulas of predicate
logic. In each case the proof of the validity is easy. One
takes an arbitrary model and an arbitrary assignment and
shows that the assignment satisfies the formula in the
model.

Tautologies, that is, formulas that have the appearance
of a tautology although they are not propositional formu-
las (this is made exact in Problem 200) are valid

• (A ∨B)↔ (B ∨A)

• A ∨ ¬A

• ¬(A ∨B)↔ (¬A ∧ ¬B)

• ¬(A ∧B)↔ (¬A ∨ ¬B)

• (A→ B)↔ (¬A ∨B)

• ∀xP0(x) ∨ ¬∀xP0(x)
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Here are some valid formulas related to equations:

• x = x

• x = y → y = x

• (x = y ∧ y = z)→ x = z

Valid quantifier statements

• ∀xPn(x)→ Pn(y)

• Pn(y)→ ∃xPn(x)

• ∀xPn(x)→ ∀yPn(y)

2.7.3 Logical consequence

Suppose A and B are first order formulas of a vocabulary
L. We say that B is a logical consequence of A if in any
model M, every assignment that satisfies A satisfies B.
Equivalently, A → B is valid. Note: It can be proved
that there is no mechanical method for deciding logical
consequence. One has to be creative.

2.7.4 Equivalence

Suppose A and B are first order formulas of a vocabu-
lary L. We say that A and B are (logically) equivalent if
they are logical consequences of each other. Equivalently,
A↔ B is valid.

Here is a table of simple equivalences:

Formula Equivalent formula
¬∃xA ∀x¬A
¬∀xA ∃x¬A
∀x(A ∧B) ∀xA ∧ ∀xB
∃x(A ∨B) ∃xA ∨ ∃xB
∃x∃yA ∃y∃xA
∀x∀yA ∀y∀xA

2.7.5 Solved problems

Problem 196 Show that ∃xA ∨ ∃xB is a logical conse-
quence of ∃x(A ∨B).

Solution: SupposeM is a structure and s is an assign-
ment such that s satisfies ∃x(A ∨B) inM. There is an a
inM such that s(a/x) satisfiesA∨B inM. Thus s(a/x)
satisfies A or B inM. If s(a/x) satisfies A inM, then s
satisfies ∃xA and hence ∃xA ∨ ∃xB inM. On the other
hand, if s(a/x) satisfiesB inM, then s satisfies ∃xB and
hence again ∃xA ∨ ∃xB inM. 2

Problem 197 Show that ∀x(A ∧ B) is a logical conse-
quence of ∀xA ∧ ∀xB.

Solution: SupposeM is a structure and s is an assign-
ment such that s satisfies ∀xA∧∀xB inM. To prove that
s satisfies ∀x(A ∧B) inM, let a be an arbitrary element
of M . Since s satisfies ∀xA∧ ∀xB, s(a/x) satisfies both
A andB inM. We have shown that s satisfies ∀x(A∧B)
inM. 2

Problem 198 Show that ∃x(P0(x)∧P1(x)) is not a log-
ical consequence of ∃xP0(x) ∧ ∃xP1(x).

Solution: Now we have to come up with a model and an
assignment. In principle, this could be a haunting chal-
lenge. Fortunately, in this case the model and the assign-
ment are easy to find. It makes sense, in general, to first
try some very simple models. Either they work, or else
they may indicate a direction where a better candidate
could be found.

Suppose M is a structure such that M = {0, 1},
PM0 = {0} and PM1 = {1}. Let s be any assignment.
Then s satisfies ∃xP0(x) ∧ ∃xP1(x) in M. However, s
does not satisfy ∃x(P0(x) ∧ P1(x)) inM. 2

Problem 199 Show that ∀xP0(x)∨∀xP1(x) is not a log-
ical consequence of ∀x(P0(x) ∨ P1(x)).

Solution: Suppose M is a structure such that M =
{0, 1}, PM0 = {0} and PM1 = {1}. Let s be any assign-
ment. Then s satisfies ∀x(P0(x) ∨ P1(x)) inM. How-
ever, s does not satisfy ∀xP0(x) ∨ ∀xP1(x) inM. 2

Problem 200 Show that if propositional symbols of a
tautology are replaced by first order formulas, a valid for-
mula results.
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Solution: This is a somewhat long proof by induction
on the structure of the propositional formulas. We start by
formulating the problem properly.

If A is a propositional formula, let A′ be the result of
replacing each proposition symbol pi systematically by a
first order formula Bi.

• (p0 ∨ p1)′ = B0 ∨B1.

• (p2 ∧ ¬p1)′ = B2 ∧ ¬B1.

• (p0 → (p1 → p2)) = B0 → (B1 → B2).

SupposeM is a structure and s an assignment. Let v be
a valuation such that v(pi) is 1 or 0 according to whether
Bi is satisfied by s inM or not.

Now we can formulate the given task in an exact way:

Claim: v(A) = 1 if and only if A′ is satisfied by s inM.

Note that when the Claim has been proved, it follows
that if A is a tautology, then A′ is valid.

We use induction on the structure of (or equivalently,
on the number of symbols of) A.

Case 1: A is just pi. The claim is true by the choice of
v.

Case 2: A is not a proposition symbol.
We make an Induction Hypothesis: The claim holds

for all subformulas of (or equivalently, for all formulas
shorter than) A.

Case 2.1: A is B ∨ C. Then A′ is B′ ∨ C ′. Now
v(A′) = 1 iff v(B′) = 1 or v(C ′) = 1. By Induction
Hypothesis this is equivalent to s satisfyingB′ orC ′. This
is equivalent to s satisfying A′.

Case 2.2: A is B ∧ C. Then A′ is B′ ∧ C ′. Now
v(A′) = 1 iff v(B′) = 1 and v(C ′) = 1. By Induction
Hypothesis this is equivalent to s satisfying B′ and C ′.
This is equivalent to s satisfying A′.

Case 2.3: A is ¬B. Then A′ is ¬B′. Now v(A′) = 1
iff v(B′) = 0. By Induction Hypothesis this is equivalent
to s not satisfying B′. This is equivalent to s satisfying
A′.

Case 2.4: A is B → C. Then A′ is B′ → C ′. Now
v(A′) = 1 iff v(B′) = 0 or v(C ′) = 1. By Induction
Hypothesis this is equivalent to s not satisfying B′ or sat-
isfying C ′. This is equivalent to s satisfying A′.

Case 2.5: A is B ↔ C. Then A′ is B′ ↔ C ′. Now
v(A′) = 1 iff v(B′) = v(C ′). By Induction Hypothesis

this is equivalent to s satisfying B′ iff it satisfies C ′. This
is equivalent to s satisfying A′. QED

2

2.7.6 Problems
Problem 201 Show that

1. ∃x∃yA is equivalent to ∃y∃xA.

2. ∀x∀yA is equivalent to ∀y∀xA.

Problem 202 Show that

1. ¬∃xA is equivalent to ∀x¬A.

2. ¬∀xA is equivalent to ∃x¬A.

Problem 203 Show that ∀y∃xA is a logical consequence
of ∃x∀yA.

Problem 204 Show that ∃x∀yR(x, y) is not equivalent
to ∀y∃xR(x, y).

Problem 205 Show that ∃x∀yR(x, y) is not equivalent
to ∀x∃yR(x, y).

2.8 Free and bound variables

2.8.1 Free and bound
We take a closer look at the variables. If we look care-
fully, we can see that variables play two different roles in
predicate logic. The meaning of ∃x(xEy) is that y has a
neighbor. This is a property of y and may be true or false
depending on what y is. So the role of y here is that it is
the vertex we have “in mind” and we are in a sense “free”
to choose the value of y, bearing in mind though, that the
formulas may turn out to be either true or falls depending
on how we choose y.

The role of x in ∃x(xEy) is different. Its role is to bind
the quantifier ∃x and the formula xEy together. In fact it
does not matter which symbol we use for this binding, and
it certainly does not matter what value we have hitherto
given to x, as the quantifier ∃x will search for a new value
anyway.
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2.8.2 Occurrences

Every occurrence of a variable x in a formula of the form
∃xB or of the form ∀xB is called a bound occurrence.
Occurrences which are not bound are called free. Below
boxed occurrences are bound, bold face occurrences are
free:

∃x(xEy ∧ ∀z(zEy → z = x))

∃ x ( x Ey ∧ ∀ z ( z Ey→ z = x ))

∃x(xEy ∧ ∃y(¬yEx))
∃ x ( x Ey ∧ ∃ y (¬ y E x ))

2.8.3 Assignments and free variables

Whether an assignment s satisfies a formula in a model
or not, depends only on the values of s on variables that
occur free in the formula (See Problem 211 for an exact
statement).

The reason is that the quantifiers mess up anyway the
values that the assignment gives to the bound variables.
When we form the modified assignment s(a/x), it does
not matter what s(x) was, whatever it was, it is now gone.

For example, whether s satisfies ∃x(xEy∧∃y(¬yEx))
or not, depends only on s(y), not on s(x).

2.8.4 Sentences

Some formulas have no free variables. They are called
sentences. Sentence have a truth value independently of
any assignment. So sentences express some property of
the model itself, not a property of some predetermined
elements.

• ∀y∃x(xEy∧∃z(¬zEx∧¬z = x)) is a sentence that
says of a graph that every vertex has a neighbor with
a non-neighbor.

2.8.5 Truth

We finally come to the fundamental concept of logic,
namely the concept of truth. Physics, chemistry, geology,
biology all talk about truth, but what is special about logic
is that we can actually define what truth means.

A sentence A is true in a structureM, if some (equiva-
lently, all—see Problem 211) assignment satisfies it. This
is denoted

M |= A.

Otherwise the sentence A is false inM. If a sentence A
is true in a structure M, the structureM is called a model
of the sentence A.

Note that truth is denied by means of the auxiliary con-
cept of satisfaction. So the primary concept is that of an
assignment s satisfying a formula A in a structureM, in
symbolsM |=s A, and the secondary concept is that of a
sentence being true in a structureM, denoteM |= A. It
is because of the quantifiers that we cannot get away with
using the concept of truth only. We need the concept of
satisfaction.

2.8.6 Solved problems
Problem 206 Tell of each occurrence of a variable in the
below formula whether it is bound or free.

∃x(P0(x) ∧ P1(y)).

Solution: Boxed occurrences are bound, bold face oc-
currences are free:

∃ x (P0( x ) ∧ P1(y)).

2

Problem 207 Tell of each occurrence of a variable in the
below formula whether it is bound or free.

∀x(R(x, z)→ S(x, z))

Solution: Boxed occurrences are bound, bold face oc-
currences are free:

∀ x (R( x , z)→ S( x , z))

2

Problem 208 Which of the following formulas are sen-
tences.

1. ∀y∃x(x < y)
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2. P0(c) ∨ P0(d)

3. ∀y∃x(x < y ∨ x = c)

4. ∀y∃x(x < y) ∨ x = c

Solution: The first three. The last has two bound occur-
rences of x, but also a free occurrence of x.
2

2.8.7 Problems
Problem 209 Tell of each occurrence of a variable in the
below formula whether it is bound or free.

1. ∀x(P0(x)→ P1(y))

2. ∀x(xEy ∨ yEx)

3. ∀x(∀y(xEy) ∨ ∀z(yEz))

Problem 210 Which of the following formulas are sen-
tences.

1. P0(x)

2. ∀xP0(x)

3. ∀xP0(y)

4. ∀y(∃x(x < y) ∨ ∃x(y < x))

5. ∀y(∃x(x < y) ∨ y < x)

Problem 211 Suppose A is a formula andM is a struc-
ture. Show that if s and s′ are assignments that agree on
every variable that occurs free in A, then s satisfies A in
M if and only if s′ does.

2.9 Definability

2.9.1 Set defined by a formula
Like truth, the concept of definability belongs to the cen-
ter of logic. It is precisely because we want to define
things that we have formulas in the first place. So let us
see what definability means.

Suppose A has only x free. The set P defined by the
formula A on a structureM is the set of elements a such

Figure 2.2: Set defined by a formula

that some (equivalently all) s with s(x) = a satisfies A
(See Figure 2.2).

The set defined by the formula P0(x) on the unary
structure on Figure 2.3 is the shaded area on the below
unary structure:

PM0 PM1

2.9.2 Binary relation defined by a formula
Suppose A is a formula with just x and y free. The binary
relation R defined by the formula A on a structureM is
the set of pairs (a, b) such that some s with a = s(x) and
b = s(y) satisfies A (See Figure 2.4).

See Figure 2.5 for the binary relation defined by the
formula formula x > c ∧ y < c on the structure M =
(R, <, 0), cM = 0.

2.9.3 Properties of definable sets
The family of definable subsets of a given structure is
closed under union, intersection and complement. I.e. if
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PM0 PM1

Figure 2.3: Definability on a unary structure

Figure 2.4: Relation defined by a formula

Figure 2.5: Relation defined by a formula

P and P ′ are definable onM, then so are P ∪P ′, P ∩P ′
and M −P . (This family is a so called Boolean algebra.)

The family of definable binary relations on a given
structure is also closed under union, intersection and com-
plement. I.e. if R and R′ are definable relations on M,
then so are R ∪ R′, R ∩ R′ and M − R. (This family is
also a Boolean algebra.)

2.9.4 Projections

The first projection of a binary relation R on a set M is
the set of a in M for which aRb holds for some b in M
(See Figure 2.6).

The second projection of a binary relation R on a set
M is the set of b inM for which aRb holds for some a
inM (See Figure 2.6).

The first and second projections of a definable binary
relation are definable sets.

Proof: Suppose R is defined by A on M. The first
projection is defined by the formula ∃yA. The second by
the formula ∃xA.

Why? Suppose a is in the first projection. Then there
is b such that aRb. Since A defines R, there is an as-
signment s such that s(x) = a, s(y) = b and s satis-
fies A inM. In particular, s(b/y)(= s) satisfies ∃yA in
M and s(b/y)(x) = a. Thus a is in the set defined by
∃yA. Conversely, suppose a is in the set defined by ∃yA.
Then a = s′(x) for some s′ which satisfies ∃yA in M.
Thus there is b such that s′(b/y) satisfies A inM. Thus
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Figure 2.6: The first and second projection of a relation.

(s′(b/y)(x), s′(b/y)(y))(= (a, b)) is in R, and we have
shown that a is in the first projection of R.

2.9.5 Solved problems
Problem 212 Find the set defined by the formula P1(x)
on the unary structure of Figure 2.3:

Solution: The formula P1(x) defines the set of elements
of the model that are in the set PM1 . In other words, the
formula P1(x) defines the set PM1 .

PM0 PM1

2

Problem 213 Find the set defined by the formula P0(x)∨
P1(x) on the unary structure of Figure 2.3:

Solution: The formula P0(x) ∨ P1(x) defines the set of
elements of the model that are in the set PM0 or in the set

PM1 . In other words, the formula P0(x) ∨ P1(x) defines
the set PM0 ∪ PM1 .

PM0 PM1

2

Problem 214 Find the set defined by the formula P0(x)∧
P1(x) on the unary structure of Figure 2.3:

Solution: The formula P0(x) ∧ P1(x) defines the set of
elements of the model that are in the set PM0 and in the set
PM1 . In other words, the formula P0(x) ∧ P1(x) defines
the set PM0 ∩ PM1 .
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PM0 PM1

2

Problem 215 Find the set defined by the formula
P0(x)→ P1(x) on the unary structure of Figure 2.3:

Solution: The formula P0(x)→ P1(x) defines the set of
elements of the model that either are not in the set PM0
or else are in the set PM1 . In other words, the formula
P0(x)→ P1(x) defines the set (M \ PM0 ) ∪ PM1 .

PM0 PM1

2

Problem 216 Describe the ordered structure of the reals
with 0.

Solution: M = (R, <, 0) is the following structure: Its
vocabulary is {R0, c}, where R0 is a binary relation sym-
bol and c is a constant symbol. RM0 = {(a, b) : a < b},

cM = 0. Note that since our vocabulary has but one con-
stant symbol we can explicitly talk only about one real
number namely 0. The other reals can be accessed by
means of quantifiers, but the only thing we can really say
about them is whether they are negative or positive. So
this structure gives a very poor picture of the real num-
bers. However, it has its uses thanks to its simplicity.

0

2

Problem 217 Describe the ordered structure of the reals
with 0 and 1.

Solution: M = (R, <, 0, 1) is the following structure:
Its vocabulary is {R0, c, d}, where R0 is a binary relation
symbol and c, d are constant symbols. RM0 = {(a, b) :
a < b}, cM = 0 and dM = 1. This structure is an
iota richer than the mere (R, <, 0), after all, now we can
distinguish 1 as a very special real number.

0 1

2

Problem 218 Find the sets defined by the below formulas
on the structure M = (R, <, 0, 1), cM = 0 and dM = 1:

1. x < c

2. c < x ∧ x < d

3. d < x

4. x < c ∨ d < x

Solution: The defined set is in each picture hollow.

1. x < 0:

0 1
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2. 0 < x ∧ x < 1:

0 1

3. 1 < x:

0 1

4. x < 0 ∨ 1 < x:

0 1

2

Problem 219 Find the binary relation defined by the for-
mula c < x on the structure M = (R, <, 0), cM = 0.

Solution: Note that we want a binary relation. This may
look odd, because the formula c < x has only one variable
x. But we can think of it simply not making any require-
ments on y. So it is as if the formula was c < x ∧ y = y.

2

Problem 220 Find the binary relation defined by the for-
mula y < c on the structure M = (R, <, 0), cM = 0 and
dM = 1:

Solution:

2

Problem 221 Find the binary relation defined by the for-
mula c < x ∧ y = d on the structure M = (R, <, 0, 1),
cM = 0 and dM = 1:

Solution:

2

Problem 222 Find the binary relation defined by the for-
mula x < c ∨ y = d on the structure M = (R, <, 0, 1),
cM = 0 and dM = 1:

Solution:

2
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Figure 2.7: Definability on (R, <, 0, 1).

2.9.6 Problems

Problem 223 Indicate the set defined by the formula
P0(x) ∧ ¬P1(x) on the unary structure of Figure 2.3

Problem 224 Indicate the set defined by the formula
P0(x)↔ P1(x) on the unary structure of Figure 2.3

Problem 225 Draw the binary relation defined by the
formula x > d∨y < c on the structureM = (R, <, 0, 1),
cM = 0 and dM = 1 (See Figure 2.7).

Problem 226 Draw the binary relation defined by the
formula x < d → x = y on the structure M = (R, <
, 0, 1), cM = 0 and dM = 1. (See Figure 2.7).

2.10 Terms and substitution

2.10.1 Terms

Constants {c, d, . . .} and variables {x, y, z, . . .} are called
terms. Characteristic of terms is that they have a value if
we fix a model and an assignment. In logic sentences have
a truth value, which is 0 or 1, just two possibilities, but
terms can have any element of the model as their value.

The value, denoted tM〈s〉, of a term t in a model M
under the assignment s is defined as follows: If t is a con-
stant c, then tM〈s〉 is cM. If t is a variable x, then tM〈s〉
is s(x).

If we had function symbols such as +, − and · there
would be more terms: x + y, x · y, (x + y) · (x − y),
(x · x) · x, etc. Indeed, we could form polynomials.

2.10.2 Changing a bound variable
Within certain limits, a bound variable can be changed to
another without changing the meaning of the formula. For
example, if you change x to z in ∀xR0(x, y), the meaning
does not change, because the following are equivalent:

M |=s ∀xR0(x, y)
M |=s ∀zR0(z, y)

The meaning of both is

{a ∈M : (a, s(y)) ∈ RM} =M

and neither x nor z plays any role in this.
This is like in algebra

5∑
i=1

ai =

5∑
j=1

aj .

Both are equal to

a1 + a2 + a3 + a4 + a5.

But one has to be careful when changing a bound vari-
able! If you change x to y in ∀xR0(x, y), the meaning
does change: The following are not equivalent in general:

M |=s ∀xR0(x, y)
M |=s ∀yR0(y, y)

The meaning of the former is

{a ∈M : (a, s(y)) ∈ RM0 } =M

while the meaning of the latter is

{a ∈M : (a, a) ∈ RM0 } =M.

This is like
5∑

i=1

ai,k 6=
5∑

k=1

ak,k.
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The former is

a1,k + a2,k + a3,k + a4,k + a5,k

but the latter is

a1,1 + a2,2 + a3,3 + a4,4 + a5,5.

The general rule is: When a bound variable is changed
to another, no free occurrence of any variable should
become bound, and the new bound variable should not
conflict with old bound variables, as would happen if in
∀x∀yR(x, y) the bound variable y was changed to x, re-
sulting with ∀x∀xR(x, x).

There is an easy way to obey the rule: If a bound vari-
able is changed to a completely new variable, no free oc-
currence of any variable can become bound, and no con-
flict with existing bound variables can arise.

2.10.3 The concept of free for

We shall now dig a little deeper into the question, when
can we substitute a variable to another variable in a for-
mula. When we deal with simple short formulas the mat-
ter is easy and can be decided by common sense. But
we aim at an exact definition which could be even pro-
grammed to a computer. After all, computer manipulation
of formulas is nowadays important in industrial applica-
tions of logic.

We define the following auxiliary concept:

Definition 2.14 A variable x is free for another variable
y in a formula A, if no free occurrence of y in A becomes
a bound occurrence of x if x is substituted for y in A.

For example, x is free for y in ∀zR0(z, y). Substitution
yields ∀zR0(z, x). On the other hand, x is not free for y
in ∀xR0(x, y). Substitution yields ∀xR0(x, x).

The concept of a variable being free for another vari-
able in a formula can be given also a more exact inductive
definition, but we omit it here.

We agree that a constant is always free for any variable
in any formula. The reason for this is that if a constant
is substituted for a variable, it cannot give rise to new oc-
currences of bound variables, because a constant is not a
variable at all.

2.10.4 Substitution
Substitution is a common feature in mathematics. If we
have a polynomial P (x) = x2 + 3x + 1, we can substi-
tute values for x and investigate the arising values of the
polynomial, e.g. P (0) = 1, P (1) = 5, P (−1) = −1.

Similarly, if we have a formula A with a variable y that
has a free occurrence in A, then intuitively A says some-
thing about y in each model. For some values of y the for-
mula A is true, depending of course on whether there are
other variables that occur free in A, and for some other
it is false. If we substitute a constant symbol c in the
free occurrences of y in A, then the resulting new for-
mula says something about the value of the constant c. If
we substitute a completely new variable w in the free oc-
currences of y inA, then the resulting formula says some-
thing about—not any more y, but—the value of w.

More exactly, A(t/y) is the formula obtained from A
by substituting the term t for y in every free occurrence of
y in A. We never use this notation unless we know that t
is free for y in A.

A A(x/y)

P0(y) P0(x)
∃z(zEy) ∃z(zEx)
∃z(R0(z, y)→ ∃z(R0(z, x)→
∀xR1(x, z)) ∀xR1(x, z))
∃z(R0(z, y)→ (not allowed)
∀xR1(x, y))

The key property of substitution is:

Lemma 2.15 (Substitution lemma) If x is free for y in
A, then the following are equivalent:

1. M |=s(a/y) A

2. M |=s(a/x) A(x/y)

This lemma is easy to prove by induction on the length
(structure) of A, but we omit it here.

2.10.5 Valid formulas about quantifiers
There are two fundamental valid formulas related to quan-
tifiers. The first is
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∀yA→ A(t/y),

whenever t is free for y in A.
So why is this valid? Suppose M is a model and s

is an assignment. Let us suppose s satisfies ∀yA in M.
Let a = tM〈s〉. Then s(a/y) satisfies A in M. By the
Substitution Lemma, s satisfies A(t/y) inM.

The second fundamental valid formula related to quan-
tifiers is

A(t/y)→ ∃yA,

whenever t is free for y in A.
So why is this valid? SupposeM is a model and s is an

assignment. Let us suppose s satisfies A(t/y) inM. Let
a = tM〈s〉. By the Substitution Lemma, s(a/y) satisfies
A inM. Thus s satisfies ∃yA inM.

Neither fundamental valid formula is valid if t is not
free for y in A.

Recap: We need substitution in formulating logical
laws concerning quantifiers. In order that substitution
goes right we need the concept of “free for”.

2.10.6 Solved problems
Problem 227 Which of the given terms are free for y in
the formula ∃x(P0(x) ∧ P1(y))?

1. x

2. c

3. y

4. z

Solution:
term free for y?
x no
c yes
y yes
z yes

2

Problem 228 Which of the given terms are free for z in
the formula ∀x(R(x, z)→ S(x, z))?

1. y

2. c

3. x

4. z

Solution:
term free for y?
y yes
c yes
x no
z yes

2

Problem 229 To which of the given variables can the
bound variable x be changed in the formula ∃x(P0(x) ∧
P1(y))

1. z

2. y

3. x

Solution:
term can? result
z yes ∃z(P0(z) ∧ P1(y))
y no ∃y(P0(y) ∧ P1(y))
x yes ∃x(P0(x) ∧ P1(y))

2

Problem 230 To which of the given variables can
the bound variable x be changed in the formula
∀x(R(x, z)→ S(x, z)):

1. z

2. y

3. x

Solution:
term can? result
z no ∀z(R(z, z)→ S(z, z))
y yes ∀y(R(y, z)→ S(y, z))
x yes ∀x(R(x, z)→ S(x, z))

2
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Problem 231 Show that the implications

∀yA→ A(t/y),

and
A(t/y)→ ∃yA,

are not valid if the condition “where t is free for y in A”
is dropped.

Solution: Let M be the below graph, and let s be an
arbitrary assignment. ThenM |=s ∀y∃x(xEy), but it is
not true thatM |=s ∃x(xEx). Indeed, x is not free for y
in ∃x(xEy). The other claim is similar.

2

2.10.7 Problems
Problem 232 Which of the given terms are free for y in
the formula ∃xR0(y, x) ∧ P1(y)?

1. x

2. c

3. y

4. z

Problem 233 To which of the given variables can the
bound variable x be changed in the formula ∃xR0(x, z)∧
∃yR1(z, y):

1. z

2. y

3. x

Problem 234 Prove the following special case of the
Substitution Lemma (without using the Substitution
Lemma itself, of course): Suppose A is the formula
∀z(R0(y, z) → P0(z)), and the term t is the variable
x. Then the following are equivalent, whateverM and s
are:

1. M |=s A(t/y)

2. M |=s(a/y) A, where a = tM〈s〉.

Problem 235 Prove the Substitution Lemma.

2.11 Natural deduction

In propositional logic natural deduction was a way to draw
conclusions when the truth table method is too cumber-
some. At the same time natural deduction imitates our
actual inferences in natural language. When we move to
predicate logic, the truth table method is not any more
available. Instead of truth tables we have to consider ar-
bitrary models. Since models may be infinite and very
complicated there is no mechanical way to go through all
models. In fact, validity in predicate logic is a so called
undecidable problem in the sense that there is no mechan-
ical method to check whether a given sentence is valid or
not. For this reason natural deduction is even more impor-
tant in predicate logic than it was in propositional logic.

2.11.1 What is a natural deduction in pred-
icate logic?

Natural deduction in predicate logic is similar to natural
deduction in propositional logic. In particular, the rules
for connectives are exactly the same. In addition, we have
new rules for quantifiers.

2.11.2 Rules for the universal quantifier

The elimination and introduction rules for the universal
quantifier are:

∀-Elimination Rule: The term t has to be free for x in A:

∀xA
A(t/x)

∀ E

∀-Introduction Rule: The variable x should not occur free
in any (uneliminated) assumption in the deduction of A.

A
∀xA ∀ I
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Let us discuss the motivation of these rules. The moti-
vation for the ∀-Elimination Rule is the following contem-
plation: The intuitive meaning of ∀xA is that every object
in the universe (of the model) satisfies A when used as a
value for x. Therefore, whatever the value of t is, should
satisfy A. More exactly, if M |=s ∀xA, then for any a
in M ,M |=s(a/x) A, in particular if a = tM〈s〉. By the
Substitution LemmaM |=s A(t/x).

The motivation for the ∀-Introduction Rule is the fol-
lowing: We know A and in a typical situation x occurs
free in A. So A says something about x. However, we
have made no assumptions about x, because x is not free
in any of our assumptions. So x is completely arbitrary,
can be anything. Therefore we are justified in concluding
∀xA.

More exactly, we have a deduction of A. Intuitively
(but this needs a proof) any assignment s that satisfies the
assumptions of the deduction of A also satisfies A, be-
cause this is what deduction means. We should argue that
any assignment that satisfies the assumptions of the de-
duction of A also satisfies ∀xA. For this end, supposeM
is a model and s satisfies all the assumptions of the de-
duction of A. Then for all a inM, also s(a/x) satisfies
those assumptions since x is not free in them (this needs
a simple proof but we omit it). Hence s satisfies ∀xA.

2.11.3 Example of deduction
Let us look at the following natural language inference:

If every millionaire is happy or not busy,
then every busy millionaire is happy.

The reason why we think that this is a valid argument is
the following: Take x and assume it is a busy millionaire.
By assumption x is happy or not busy. But we assumed x
is busy. So x must be happy.

In the language of predicate logic this is:

If ∀x(P0(x)→ (P1(x) ∨ ¬P2(x))),
then ∀x((P0(x) ∧ P2(x))→ P1(x)).

We can argue informally in predicate logic as follows:
Take x and assume P0(x) ∧ P2(x). We try to derive
P1(x). By assumption, P0(x) → (P1(x) ∨ ¬P2(x)).
From this and P0(x) we get P1(x) ∨ ¬P2(x). The as-
sumption is P2(x), so P1(x). Since x was arbitrary, we

get ∀x(P0(x) → (P1(x) ∨ ¬P2(x))). With this in mind
we can actually build a real natural deduction (see Fig-
ure 2.8).

2.11.4 Solved problems
Problem 236 Derivation of ∀zR0(z, y) from
∀xR0(x, y).

Solution: Note that in the below inference z is free for x
in R0(x, y), and z does not occur free in ∀zR0(z, y).

∀xR0(x, y)

R0(z, y)
∀ E

∀zR0(z, y)
∀ I

2

Problem 237 Derivation of ∀y∀x(R0(x, y) ∨ R1(y, z))
from ∀x∀y(R0(x, y) ∨R1(y, z)).

Solution: Below in the first two inferences, applications
of the ∀-Elimination Rule we can observe that x is always
free for x and y is always free for y. In the next two in-
ferences, applications of the ∀-Introduction Rule we can
observe that x and y do not occur free in the assumption
∀x∀y(R0(x, y) ∨R1(y, z)).

∀x∀y(R0(x, y) ∨R1(y, z))

∀y(R0(x, y) ∨R1(y, z))
∀ E

R0(x, y) ∨R1(y, z)
∀ E

∀x(R0(x, y) ∨R1(y, z))
∀ I

∀y∀x(R0(x, y) ∨R1(y, z))
∀ I

2

Problem 238 Derivation of ∀xP1(x) from ∀xP0(x) and
∀x(P0(x)→ P1(x)).

Solution: In the below deduction it is necessary to bear
in mind that x is always free for x, and that x does not
occur free in the assumptions ∀xP0(x) and ∀x(P0(x) →
P1(x)).

∀xP0(x)

P0(x)
∀ E

∀x(P0(x)→ P1(x))

P0(x)→ P1(x)
∀ E

P1(x)
→ E

∀xP1(x)
∀ I
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[P0(x) ∧ P2(x)]

P0(x)
∧ E

∀x(P0(x) → (P1(x) ∨ ¬P2(x))))

P0(x) → (P1(x) ∨ ¬P2(x)))
∀ E

P1(x) ∨ ¬P2(x)
→ E

[P1(x)]

[P0(x) ∧ P2(x)]

P2(x)
∧ E

[¬P2(x)]

P2(x) ∧ ¬P2(x)
∧ I

¬¬P1(x)
¬ I

P1(x)
¬ E

P1(x)
∨ E

(P0(x) ∧ P2(x)) → P1(x))
→ I

∀x((P0(x) ∧ P2(x)) → P1(x)))
∀ I

Figure 2.8: Example.

2

2.11.5 Problems
Problem 239 Give a natural deduction of “If everybody
is amused and tired, then everybody is amused and every-
body is tired.”

Problem 240 Derive ∀xR0(x, x) from ∀x∀yR0(x, y).

Problem 241 Derive ¬∀xP0(x) from ∀x¬P0(x).

Problem 242 Is this a correct deduction:
∀xR0(x, y)

R0(z, y)
∀ E

∀yR0(z, y)
∀ I

Problem 243 Is this a correct deduction:

∀xP0(x)

P0(x)
∀ E

∀xP1(x)

P1(y)
∀ E

P0(x) ∧ P1(y)
∧ I

∀x(P0(x) ∧ P1(y))
∀ I

∀y∀x(P0(x) ∧ P1(y))
∀ I

2.12 More natural deduction
We learned above the rules for universal quantification.
Now come rules for the existential quantifier, and that
finishes the set of rules of natural deduction in predicate
logic.

2.12.1 Rules for the existential quantifier
The elimination and introduction rules for the existential
quantifier are:

∃-Elimination Rule: The variable x should not occur free
neither in B nor in any (uneliminated) assumption in the
deduction of B, except perhaps in A.

∃xA

[A]....
B

B
∃ E

∃-Introduction Rule: The term t has to be free for x in A:

A(t/x)

∃xA ∃ I

Let us discuss the motivation of these rules. The mo-
tivation for the ∃-Elimination Rule is the following con-
templation: The intuitive meaning of ∃xA is that some
object a in the universe (of the model) satisfies A when
used as a value for x. On the other hand we can derive B
which does not mention x at all, from the assumption A.
So, B is true whatever the value of x is as long as A is
true. Well, A is true for the value a of x. Therefore B is
true.

Let us take a very informal example: Assume that
somebody likes jazz, and in addition let us take it as given
that everybody who likes jazz likes music. Let us denote
by x that person who likes jazz. When we combine this
with the assumption that everybody who likes jazz likes
music, we can conclude that x likes music. So, indeed,
there is somebody who likes music.
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Somebody
likes
jazz

x
likes
jazz

Everybody
who likes
jazz
likes music
...

...
Somebody
likes
music

Somebody likes music

More exactly, suppose s satisfies ∃xA and the assump-
tions used in the derivation of B from A. We argue that
s must satisfy B. There is an a such that s(a/x) satisfies
A. Hence s(a/x) satisfies all the assumptions used in the
derivation of B from A. Hence s(a/x) satisfies B. Re-
member that x is not free in B. So since s(a/x) satisfies
B, also s does.

The motivation for the ∃-Introduction Rule is the fol-
lowing: We know A(t/x). So we know at least one value
of x that satisfiesA, namely the value of the term t. There-
fore we are justified in concluding ∃xA.

More exactly, IfM |=s A(t/x), then by the Substitu-
tion Lemma,M |=s(a/x) A for a = tM〈s〉. In particular,
M |=s ∃xA.

Without the restriction in the rule ∃ E we get the follow-
ing wrong deduction:

∃xP0(x) [P0(x)]

P0(x)
∃ E

∀xP0(x)
∀ I

With this wrong deduction we would get completely
false results, like: “If some tiles are red, then all tiles are
red.”

Without the restriction in the rule ∃ I we get the follow-
ing wrong deduction:

∀x¬P0(x, x)

∃z∀x¬P0(z, x)
∃ I

With this wrong deduction we would get completely
false results, like: “If no node is a neighbor of itself, then
some node has no neighbors.”

2.12.2 Solved problems
Problem 244 We derive ∃xR0(x, y) from ∃zR0(z, y).

Solution:

∃xR0(x, y)

[R0(x, y)]

∃zR0(z, y)
∃ I

∃zR0(z, y)
∃ E

2

Problem 245 Derivation of ∃y∃x(R0(x, y) ∨ R1(y, z))
from ∀x∀y(R0(x, y) ∨R1(y, z)).

Solution: Below we can observe that x is always free for
x and y is always free for y:

∀x∀y(R0(x, y) ∨R1(y, z))

∀y(R0(x, y) ∨R1(y, z))
∀ E

R0(x, y) ∨R1(y, z)
∀ E

∃x(R0(x, y) ∨R1(y, z))
∃ I

∃y∃x(R0(x, y) ∨R1(y, z))
∃ I

2

Problem 246 Prove, that if someone is a friend of every-
body, then everybody has a friend.

Solution: The reason why the claim is true is the follow-
ing: Take x and assume it is a friend of everybody. Let us
take somebody y. By assumption x is a friend of y. So y
has a friend, namely x.

Now we have to write this into a natural deduction.
In other words, we have to derive ∀y∃xR0(x, y) from
∃x∀yR0(x, y).

∃x∀yR0(x, y)

[∀yR0(x, y)]

R0(x, y)
∀ E

∃xR0(x, y)
∃ I

∀y∃xR0(x, y)
∀ I

∀y∃xR0(x)
∃ E

2



2.13. NATURAL DEDUCTION—RECAP 99

2.12.3 Problems
Problem 247 Prove by natural deduction the statement:
If someone is a happy millionaire, then someone is happy.

Problem 248 Prove by natural deduction

∀x∃yR0(x, y) ∧ ∀x∃yR1(x, y)

from the assumption

∀x∃y(R0(x, y) ∧R1(x, y)).

Problem 249 Prove by natural deduction:

∃x∀yR0(x, y) ∨ ∀x∃y¬R0(x, y).

Problem 250 Prove by natural deduction:

∀x∃yR0(x, y) ∨ ∃x¬∃yR0(x, y).

Problem 251 Prove by natural deduction:

∀x∃y(R0(x, y)∧R1(y, x))→ ∀u∃v(R0(u, v)∨R1(v, u)).

Problem 252 Prove by natural deduction: There is a per-
son such that if that person is drunk then everybody is
drunk. Hint: To be proved is the sentence

∃x(P0(x)→ ∀xP0(x)).

2.13 Natural deduction—Recap
We can collect now all the introduction and elimination
rules of propositional logic to a table, see Figure 2.9.

2.13.1 Solved problems
Problem 253 Derive ∀x¬A from ¬∃xA.

Solution: Idea: Suppose it is not true that there are some
x satisfying A. So A says something contradictory about
x, like x is small and at the same time large, red and not
red, or something like that.

So how to prove that every x satisfies ¬A. We take an
arbitrary x and prove ¬A. We use negation introduction
rule. So we assume A and derive a contradiction.

The rest is easy. From A follows ∃xA by the ∃-
introduction rule. And now this is a contradiction with
the assumption ¬∃xA.

¬∃xA
[A]

∃xA ∃ I1)

∃xA ∧ ¬∃xA ∧ I

¬A ¬ I

∀x¬A ∀ I2)

1) x is free for x.
2) The variable x does not occur free in ¬∃xA, the only

(uneliminated) assumption in the deduction of ¬A. 2

Problem 254 Use the previous solved problem to derive
∃xA from ¬∀x¬A.

Solution: Idea: Suppose it is not true that every x fails
to satisfy A. So it is not true that A says something so
contradictory about x that every x fails to satisfy it. So A
gives some hope for x.

So how to prove that some x satisfies A? We have to
pull an x from the sleeve. There is no way in sight to use
a direct deduction, since we do not know whatA is, so we
resort to an indirect proof. We assume ¬∃xA and derive
a contradiction.

We use the previous solved problem. There we showed
how to derive ∀x¬A from ¬∃xA. This contradicts the
assumption ¬∀x¬A. We are done!

¬∀x¬A

[¬∃xA]....
∀x¬A

∀x¬A ∧ ¬∀x¬A ∧ I

¬¬∃xA ¬ I

∃xA ¬ E

2

2.13.2 Problems
Problem 255 (a) Is this a correct deduction:

∀xR0(x, y)

R0(z, y)
∀ E

∀yR0(z, y)
∀ I
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Connective Introduction Elimination

Conjunction
A B
A ∧B ∧ I

A ∧B
A

∧ E
A ∧B
B

∧ E

Disjunction
A

A ∨B ∨ I
B

A ∨B ∨ I
A ∨B

[A]....
C

[B]....
C

C
∨ E

Implication

[A]....
B

A→ B
→ I

A→ B A
B

→ E

Equivalence

[A]....
B

[B]....
A

A↔ B
↔ I

A↔ B A
B

↔ E
A↔ B B

A
↔ E

Negation

[A]....
B ∧ ¬B
¬A ¬ I

¬¬A
A

¬ E

Universal quantifier
A
∀xA ∀ I

∀xA
A(t/x)

∀ E

x should not be free in any
assumption of the deduction of A t has to be free for x in A

Existential quantifier
A(t/x)

∃xA ∃ I
∃xA

[A]....
B

B
∃ E

x should not be free in B or any
t has to be free for x in A assumption of the deduction of B

Figure 2.9: The rules of natural deduction.



2.14. SOUNDNESS 101

(b) Is this a correct deduction:

∀xP0(x)

P0(x)
∀ E

∀xP1(x)

P1(x)
∀ E

P0(x) ∧ P1(y)
∧ I

∀x(P0(x) ∧ P1(y))
∀ I

∀y∀x(P0(x) ∧ P1(y))
∀ I

Problem 256 Derive ¬∀xP0(x) from ∀x¬P0(x).

Problem 257 Give a natural deduction of the sentence
∀xP1(x) from the sentences ∀xP0(x) and ∀x(¬P1(x)→
¬P0(x)).

Problem 258 Prove by natural deduction

¬(∀xP0(x) ∧ ∃x¬P0(x)).

Problem 259 Prove by natural deduction:

∀y∃x¬R0(x, y)→ ∃x∃y¬R0(x, y).

Problem 260 Prove by natural deduction:

∀x∀y(R0(x, y) ∧R1(x, y))→ ∀xR0(x, x).

Problem 261 Prove by natural deduction:

∀x∀y(R0(x, y) ∧ ¬R1(x, y))→ ∃x∀y¬R1(x, y).

Problem 262 Prove by natural deduction:

∃z(∃x¬(R0(x, x) ∨R1(x, x))→ ∃y¬R0(z, y)).

Problem 263 Prove by natural deduction:

∀x¬P0(x)→ ¬∃xP0(x).

Problem 264 Prove by natural deduction:

∃x¬P0(x)→ ¬∀xP0(x).

Problem 265 Prove by natural deduction:

∀x∀yR0(x, y)→ ∃x∀yR0(x, y).

Problem 266 Prove by natural deduction:

∀x∀yR0(x, y)→ ∃x∃yR0(x, y).

Problem 267 Prove by natural deduction:

∀x∀yR0(x, y)→ ∀y∀xR0(x, y).

Problem 268 Prove by natural deduction:

∃x∃yR1(x, y)→ ∃x∃y(R0(x, y)→ R1(x, y)).

Problem 269 Prove by natural deduction:

∃x∃y¬R0(x, y)→ ∃x∃y(R0(x, y)→ R1(x, y)).

Problem 270 Prove by natural deduction:

∀x∀yR1(x, y)→ ∀x∀y(R0(x, y)→ R1(x, y)).

Problem 271 Prove by natural deduction:

¬(∃x¬P0(x) ∧ ∀xP0(x)).

Problem 272 Prove by natural deduction:

¬(¬∃xP0(x) ∧ ¬∀x¬P0(x)).

Problem 273 Prove by natural deduction:

¬∃x¬P0(x) ∨ ¬∀xP0(x).

Problem 274 Prove by natural deduction:

∃xP0(x) ∨ ∀x¬P0(x).

Problem 275 Prove by natural deduction:

¬∀x∀yR0(x, y) ∨ ∀xR0(x, x).

Problem 276 Prove by natural deduction:

¬∃xR0(x, x) ∨ ∃x∃yR0(x, y).

2.14 Soundness
The rules of natural deduction are not arbitrary, they are
chosen to reflect the rules that we use when we make in-
ferences in science and everyday life. The rules for the
quantifiers are the way they are because that is how we
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use quantifiers—that is how we understand them. One
may be convinced of this by merely looking at the rules.
However, this can also be proved and the result is called
the Soundness Theorem.

But how can we possibly prove that the rules reflect
our everyday use of language? Well, we can prove it to
a certain degree of accuracy. This accuracy is provided
by the concept of satisfaction of a formula in a model.
We can prove that what we can deduce from a formula A
by means of natural deduction is satisfied in every model
by every assignment that satisfies A in the model. So if
our concept M |=s A of satisfaction reflects faithfully
our concept of truth, then the Soundness Theorem will
show that natural deduction preserves truth and is there-
fore “sound”.

The main application of the Soundness Theorem comes
in a roundabout way. We can use it to show that certain
deductions are impossible. Let us take a simple example:
It is intuitively obvious that we cannot deduce ∀xP0(x)
from ∃xP0(x). But how to prove it conclusively. When
we have the Soundness Theorem in our hands, we can
simply construct a model in which ∃xP0(x) is true but
∀xP0(x) is false. This does it.

2.14.1 Soundness
Soundness of natural deduction in predicate logic means
that deductions respect truth in the following sense: If
A can be derived from the assumptions B1, . . . , Bn, and
the assignment s satisfies B1, . . . , Bn in a structure M,
then s also satisfies A in M. The derivability of A
from B1, . . . , Bn means the existence of a natural de-
duction that has B1, . . . , Bn as the assumptions and A
as the conclusion. So we have to look at all such deduc-
tions. Deductions are built up from individual steps which
are rules, rules for connectives and quantifiers. The idea
now is that we show that truth—or rather satisfaction by
an assignment in a model—is preserved at each individ-
ual step of the deduction. Then truth—or satisfaction–
“flows” from the assumptions steps by step to the conclu-
sion. This is just like inductive proofs in arithmetic. If we
know that f(0) is even and then go on to show for all n
that if f(n) is even then f(n + 1) is even, then we know
that f(100) is even, because we can—in our mind—start
from the evenness of f(0) and proceed step by step all the
way to f(100) and then conclude that also f(100) is even.

So we prove the claim: If A has a natural deduction
from B1, . . . , Bn, and s satisfies B1, . . . , Bn in a struc-
tureM, then s also satisfies A inM.

The proof is “by induction” on the structure of a natu-
ral deduction. The deductions consist of steps which are
applications of the rules of natural deduction. We proceed
from simpler deductions to more complex ones. We show
that the conclusions of such applications of the rules are
all satisfied by s inM. We go through all the rules and in
each case assume that the assumptions of the rule are al-
ready satisfied by s inM, and show that the conclusion is
likewise satisfies by s inM. Many of the steps are com-
pletely trivial, and may have been discussed already when
we motivated the rules, but this show not deter us. The
point of this proof is the combined effect of all the small
steps. Individual steps may be trivial, but the overall con-
clusion is not.

The shortest possible deduction has some formulas
B1, . . . , Bn as assumptions and one of them, say Bi, as
the conclusion. The claim that any assignment s that sat-
isfies B1, . . . , Bn also satisfies Bi is automatically true.

We consider now a deduction with the assumptions
B1, ..., Bn and make the Induction Hypothesis: All
smaller deductions satisfy the claim that any assignment s
that satisfies the assumptions of the deduction also satis-
fies the conclusion. What does “smaller” deduction mean.
We rely on the intuitive concept that a smaller deduction
has fewer applications of the rules.

2.14.2 Conjunction

∧-Introduction Rule:

A B
A ∧B ∧ I

Suppose s is an assignment that satisfies in M the
assumptions B1, . . . , Bn. We assume M |=s A and
M |=s B. We showM |=s A ∧B. But this is trivial!

∧-Elimination Rules:

A ∧B
A

∧ E
A ∧B
B

∧ E

Suppose s is an assignment that satisfies inM the as-
sumptions B1, . . . , Bn. We assume M |=s A ∧ B. We
showM |=s A andM |=s B. But this is again trivial!
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2.14.3 Disjunction

∨-Introduction Rules:
A

A ∨B ∨ I
B

A ∨B ∨ I

Suppose s is an assignment that satisfies in M the as-
sumptions B1, . . . , Bn. We assumeM |=s A. We show
M |=s A ∨ B. But this is trivial! Also, if we assume
M |=s B. Then triviallyM |=s A ∨B.
∨-Elimination Rules:

A ∨B

[A]....
C

[B]....
C

C
∨E

Suppose s is an assignment that satisfies in M the
assumptions B1, . . . , Bn. We assume M |=s A ∨ B.
By Induction Hypothesis the derivation of C from A, as
well as the derivation of C from B, are sound i.e. if
s′ is any assignment that satisfies inM the assumptions
B1, . . . , Bn, and moreover M |=s′ A, then M |=s′ C,
and if M |=s′ B, then M |=s′ C, whatever s′ is. We
showM |=s C. ButM |=s A ∨ B impliesM |=s A or
M |=s B. In either case we haveM |=s C.

2.14.4 Implication

The→-Elimination Rule is:

A→ B A
B

→ E

Suppose s is an assignment that satisfies inM the as-
sumptions B1, . . . , Bn. Assume M |=s A → B and
M |=s A. We showM |=s B. This is trivial!
The→-Introduction Rule is:

[A]....
B

A→ B
→ I

Suppose s is an assignment that satisfies in M the
assumptions B1, . . . , Bn. By Induction Hypothesis the
derivation of B from A is sound, i.e. if s′ is any assign-
ment that satisfies inM the assumptionsB1, . . . , Bn, and

moreover M |=s′ A, then M |=s′ B, whatever s′. We
prove M |=s A → B. Case 1: Not M |=s A. Clear!
Case 2:M |=s A. By assumption, in this caseM |=s B,
soM |=s A→ B.

2.14.5 Equivalence
We leave both the formulation of the claim, and the details
of the proof as an exercise.

2.14.6 Negation

The ¬-Introduction Rule is:

[A]....
B ∧ ¬B
¬A ¬ I

Suppose s is an assignment that satisfies inM the as-
sumptions B1, . . . , Bn. By Induction Hypothesis the in-
ference of B ∧ ¬B from A is sound i.e. if s′ is any as-
signment that satisfies inM the assumptionsB1, . . . , Bn,
and moreover M |=s′ A, then M |=s′ B ∧ ¬B. But
M |=s′ B ∧ ¬B can never hold. So M |=s A is false.
HenceM |=s ¬A. Note that this does not meanM 6|=s A
for all s what-so-ever, only thatM 6|=s A for those s that
satisfy B1, . . . , Bn inM.

The ¬-Elimination Rule is:

¬¬A
A

¬ E

Suppose s is an assignment that satisfies inM the as-
sumptions B1, . . . , Bn. We assume M |=s ¬¬A. We
showM |=s A. Clear!

2.14.7 Quantifiers

∀-Elimination Rule: The term t has to be free for x in A:

∀xA
A(t/x)

∀ E

Suppose s is an assignment that satisfies inM the as-
sumptions B1, . . . , Bn. SupposeM |=s ∀xA. Then for
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any a in M , M |=s(a/x) A, in particular if a = tM〈s〉.
By the Substitution LemmaM |=s A(t/x).
∀-Introduction Rule: The variable x should not occur free
in any (uneliminated) assumption in the deduction of A.

A
∀xA ∀ I

Suppose s is an assignment that satisfies inM the as-
sumptions B1, . . . , Bn. Suppose also that s satisfies in
M all uneliminated temporary assumptions in the deduc-
tion of A. Now for all a in M , the modified assignment
s(a/x) satisfies those assumptions since x is not free in
them (this needs a simple proof but we omit it, see Prob-
lem 211). By the Induction Hypothesis, s(a/x) satisfies
A. Since a was arbitrary, s satisfies ∀xA.

∃-Elimination Rule: The variable x should not occur free
neither in B nor in any (uneliminated) assumption in the
deduction of B, except perhaps in A.

∃xA

[A]....
B

B
∃ E

Suppose s is an assignment that satisfies inM the as-
sumptions B1, . . . , Bn. Suppose s satisfies ∃xA and the
uneliminated temporary assumptions used in the deriva-
tion of B from A. We argue that s must satisfy B. There
is an a such that s(a/x) satisfies A. Hence s(a/x) satis-
fies all the assumptions used in the derivation of B from
A (we use again Problem 211). By the Induction Hypoth-
esis s(a/x) satisfies B. Remember that x is not free in B.
So since s(a/x) satisfies B, also s does.
∃-Introduction Rule: The term t has to be free for x in A:

A(t/x)

∃xA ∃ I

Suppose s is an assignment that satisfies inM the as-
sumptions B1, . . . , Bn. If M |=s A(t/x), then by the
Substitution Lemma, M |=s(a/x) A for a = tM〈s〉. In
particular,M |=s ∃xA.

2.14.8 Soundness Theorem
Theorem 2.16 If a formula of predicate logic has a natu-
ral deduction, then it is valid. If a formula A of predicate

logic has a natural deduction from assumptions which
are satisfied by an assignment s in a structure M, then
M |=s A.

2.14.9 Applications
We can show that a formula B is not derivable by natural
deduction from a formula A by finding an assignment s
and a structureM such thatM |=s A and notM |=s B.
For Example, to show that ∃y∀xR0(x, y) is not derivable
from ∀x∃yR0(x, y), we letM = {0, 1, 2, . . .} andRM0 =
{(m,n) : m ≤ n}. ThenM |= ∃x∀yR0(x, y) butM 6|=
∃y∀xR0(x, y).

2.14.10 Solved problems
Problem 277 Show that from the assumption that “every
node has a neighbor which is a neighbor of every other
node” we cannot derive that “every node is the neighbor
of every other node”.

Solution: The assumption is ∀x∃y(xEy ∧∀z(¬y = z →
yEz)). The conclusion is ∀y∀z(¬y = z → yEz)).
We have to show that there is no natural deduction of
∀y∀z(¬y = z → yEz)) from ∀x∃y(xEy ∧ ∀z(¬y =
z → yEz)). Let G be the below graph. It is easy to show
that the given assumption is true in G but the given con-
clusion is false in G.

2

Problem 278 Suppose every red tile is left of every blue
tile. Suppose additionally that every blue tile is left of
every yellow tile. Show that we cannot derive from these
that every red tile is left of every yellow tile.

Solution: The assumptions are ∀x(R(x)→ ∀y(B(y)→
x < y)) and ∀x(B(x) → ∀y(Y (y) → x < y)). The
conclusion is ∀x(R(x)→ ∀y(Y (y)→ x < y)).
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The problem is to show that there is no natural de-
duction of ∀x(R(x) → ∀y(Y (y) → x < y)) from
∀x(R(x) → ∀y(B(y) → x < y)) and ∀x(B(x) →
∀y(Y (y)→ x < y)).

LetM be a tile model which has no blue tiles, but has
a yellow tile left of a red tile. Then the assumptions are
true but the conclusion is false. 2

Problem 279 The following are called the axioms of
equivalence relation:

1. ∀x∀y(x ≡ y → y ≡ x) (Symmetry axiom)

2. ∀x(x ≡ x) (Reflexivity axiom)

3. ∀x∀y∀z((x ≡ y ∧ y ≡ z) → x ≡ z) (Transitivity
axiom)

Deduce ∀x∀y∀z((x ≡ y ∧ z ≡ y) → x ≡ z) from the
axioms of equivalence relation.

Solution: See Figure 2.10.
2

2.14.11 Problems
Problem 280 Show that the following inference is not
correct: Suppose every day that is not rainy is not windy,
and some day is windy. Then every day is rainy.

Problem 281 Show that the following sentence is not
derivable by natural deduction:

∃x¬P0(x)→ ¬∃xP0(x)

Problem 282 Show that the following sentence is not
derivable by natural deduction:

¬∀xP0(x)→ ∀x¬P0(x)

Problem 283 Show that the following sentence is not
derivable by natural deduction:

∀x(P0(x) ∨ P1(x))→ ∀xP0(x) ∨ ∀xP1(x)

Problem 284 Show that the following sentence is not
derivable by natural deduction:

(∃xP0(x) ∧ ∃xP1(x))→ ∃x(P0(x) ∧ P1(x))

Problem 285 Show that the following sentence is not
derivable by natural deduction:

∃x(P0(x) ∨ P1(x))→ ∃xP0(x)

Problem 286 Show that the following sentence is not
derivable by natural deduction:

∀z(∀xR0(x, x)→ ∀yR0(z, y))

Problem 287 Show that the following sentence is not
derivable by natural deduction:

∃x∀yR0(x, y)→ ∀x∃yR0(x, y)

Problem 288 Show that the following sentence is not
derivable by natural deduction:

∀x∃yR0(x, y)→ ∃x∀yR0(x, y)

Problem 289 Show that the following sentence is not
derivable by natural deduction:

∀xR0(x, x)→ ∀x∀yR0(x, y)

Problem 290 Show that the following sentence is not
derivable by natural deduction:

∃x∃yR0(x, y)→ ∃xR0(x, x)

Problem 291 Show that the following sentence is not
derivable by natural deduction:

∀x(P0(x)→ ∀yP0(y))

Problem 292 Show that the following sentence is not
derivable by natural deduction:

∀x(∃yR0(x, y)→ ∀x∃yR0(x, y))

Problem 293 Show that the following inference is not
possible in natural deduction:

{∀x(P0(x)→ P1(x)),∀xP1(x)} ` ∀xP0(x)

Problem 294 Show that the following inference is not
possible in natural deduction:

{∀x(¬P1(x)→ ¬P0(x)),∀xP1(x)} ` ∀xP0(x)
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∀x∀y∀z((x ≡ y ∧ y ≡ z)→ x ≡ z)

∀y∀z((x ≡ y ∧ y ≡ z)→ x ≡ z)
∀ E

∀z((x ≡ y ∧ y ≡ z)→ x ≡ z)
∀ E

(x ≡ y ∧ y ≡ z)→ x ≡ z
∀ E

∀x∀y(x ≡ y → y ≡ x)

∀y(z ≡ y → y ≡ z)
∀ E

z ≡ y → y ≡ z ∀ E
[x ≡ y ∧ z ≡ y]

z ≡ y ∧ E

y ≡ z → E
[x ≡ y ∧ z ≡ y]

x ≡ y ∧ E

x ≡ y ∧ y ≡ z ∀ E

x ≡ z → E

(x ≡ y ∧ z ≡ y)→ x ≡ z
→ I

∀z((x ≡ y ∧ z ≡ y)→ x ≡ z)
∀ I

∀y∀z((x ≡ y ∧ z ≡ y)→ x ≡ z)
∀ I

∀x∀y∀z((x ≡ y ∧ z ≡ y)→ x ≡ z)
∀ I

Figure 2.10: A derivation

∀x∀yR0(x, y)

∃x∀yR0(x, y) ∃y∀xR0(x, y)

∃x∃yR0(x, y)

∀x∃yR0(x, y)∃y∀xR0(x, y)

∀xR0(x, x) ∃xR0(x, x)

Figure 2.11: Two-quantifier implications.



2.15. AXIOMS AND THEORIES 107

Problem 295 Show that the following inference is not
possible in natural deduction:

{∀x(P0(x)→ P1(x)),∃xP0(x)} ` ∀xP1(x)

Problem 296 This is a project rather than a problem.
Prove by natural deductions all implications from left to
right in Figure 2.11, and show that none of these implica-
tions can be reversed and no other implications hold.

2.15 Axioms and theories
Logic, whether it is propositional logic or the stronger
predicate logic, tries to capture what it means to be true
in every conceivable situation, or in other words, in every
conceivable valuation or model. In most cases, however,
we are not interested in truth in every model but only in
truth in every model of a certain kind. Sentences that de-
scribe what kind of models we are in a particular case
interested in are called axioms. A collection of axioms is
called a theory. Examples of theories are:

• Graph theory

• Group theory

• Theory of order

Axioms and theories specify what we are interested in,
and declare some basic assumptions that we can use in
deductions. Mathematics has many kinds of axioms e.g.
in algebra (groups, rings, fields, vector spaces, etc) and
topology (topological spaces, metric spaces, Hausdorff
spaces, etc). Also number theory has its own axioms.
Geometry has axioms, laid down by Euclid over 2000
years ago. Newton introduced Axioms of Motion. Ax-
ioms occur everywhere in science, but they have special
role in mathematics, because mathematics does not have
experiments—or does it?

2.15.1 Identity axioms
Identity is so basic that it is almost difficult to see as a par-
ticular theory. However, to make inferences about identity
we do need some special assumptions—axioms. The fol-
lowing formulas involving identity are valid:

I1 ∀xx = x

I2 ∀x∀y(x = y → y = x)

I3 ∀x∀y∀z((x = y ∧ y = z)→ x = z)

I4 ∀x∀y((x = y ∧ Pn(x))→ Pn(y))

I5 ∀x∀x′∀y∀y′((x = y ∧ x′ = y′ ∧ Rn(x, x
′)) →

Rn(y, y
′))

These are the identity axioms. They form the theory of
identity.

Here are some other formulas about identity that can be
derived from the identity axioms:

• ∀x∃y(x = y) (Everyone is someone)

• ∀x1 . . . ∀xn∀y1 . . . ∀yn(x1 = y1 ∧ . . . ∧ xn = yn ∧
A) → A(y1/x1, . . . , yn/xn), when yi is free for xi
for i=1,. . . ,n. (Identical elements can be substituted
for each other)

• ∃x∀y(x = y) → ∀x∀y(x = y) (If there is just one
element then any two elements are equal)

• ∃x∃y∀z(z = x ∨ z = y) → ∀x∀y∀z(x = y ∨ y =
z∨x = z) (If there are just two elements then of any
three elements two are equal)

Note that the Identity Axioms have been written with
certain bound variables. One can change the bound vari-
able with a small trivial deduction, for example:

∀xx = x
y = y ∀ E

∀yy = y
∀ I

2.15.2 Finiteness of the universe

The sentence ∃x1 . . . ∃xn∀y(y = x1 ∨ . . . ∨ y = xn)
is true in a structure if and only if the structure has at
most n elements. Note that from this one can deduct
∀x1 . . . ∀xn+1(x1 = x2 ∨ x1 = x3 ∨ . . . ∨ xn = xn+1).
Intuitive reason: if there are only at most n elements then
any n+ 1 elements must have some repetition.
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2.15.3 Axioms of order
The following are the axioms of order, sometimes also
called the axioms of linear order, or of total order.

O1 ∀x¬x < x (antireflexivity)

O2 ∀x∀y∀z((x < y ∧ y < z)→ x < z) (transitivity)

O3 ∀x∀y(x < y ∨ y < x ∨ x = y) (connectivity)

These axioms are satisfied by the orders of natural num-
bers with their natural “less than” order, by the real num-
bers with their natural order, and the rational numbers
with their usual order.

The following sentences are provable from the axioms
of order

• ∀x∀y(x < y → ¬y < x)

• ∀x∀y∀z(x < y → (z < y ∨ x < z))

• ∃x1 . . . ∃xn∀y(y = x1∨. . .∨y = xn)→ ∃x∀y(x <
y ∨ x = y) (If the order is finite, it has a smallest
element).

• ∀x∀x′((∀y(x < y ∨ x = y) ∧ ∀y(x′ < y ∨ x′ =
y)) → x = x′) (the smallest element is unique, if it
exists).

2.15.4 Axioms of tile models
We have discussed many examples of tile models. To
make derivations about tile models we need axioms which
describe what kind of structures the tile models are. Every
tile model has order as part of the structure, but in addi-
tion we have the colors. So the axioms of tile models have
to include the axioms of order and in addition some extra
axioms about the colors. Here they are

T1 < is an order (Tiles are in a certain order side by side
from left to right)

T2 ∀x¬(B(x) ∧R(x)) (No tile is both red and blue)

T3 ∀x¬(B(x) ∧ Y (x)) (No tile is both blue and yellow)

T4 ∀x¬(R(x) ∧ Y (x)) (No tile is both red and yellow)

T5 ∀x(R(x) ∨ B(x) ∨ Y (x)) (Every tile is red, blue or
yellow)

Of course, all tile models satisfy the tile axioms. The
following sentences are provable from tile axioms

• ∀x∀y((R(x) ∧ B(y)) → (x < y ∨ y < x)) (If x is
red and y is blue, then one is left of the other.)

• ∀x(∀y(R(y)→ y < x)→ (B(x)∨Y (x))) (If every
red tile is left of x then x must be blue or yellow)

• ∀x∀y((R(x) ∧ B(y)) → x < y) → ∀x∀y((B(x) ∧
R(y)) → y < x) (If every red tile is left of every
blue tile, then every blue tile is right of every red
tile)

We think of tile models as finite, but we cannot express
this in predicate logic.

2.15.5 Axioms of graph theory
Graphs are binary predicates which are anti reflexive and
symmetric. Thus the axioms of graph theory are:

G1 ∀x¬xEx (antireflexivity)

G2 ∀x∀y(xEy → yEx) (symmetry)

Of course, all graphs satisfy the graph axioms. Exam-
ples of sentences that can be derived fro the axioms of
graph theory are:

• ∃x∀y(¬y = x → yEx) ↔ ∃x∀y(¬x = y → xEy)
(This equivalence says “Some node is the neighbor
every other node” in two different ways.)

• ∀x∀y(¬y = x → yEx) ↔ ∀x∀y(¬x = y → xEy)
(This equivalence says “Any two disctinct nodes are
neighbors” in two different ways.)

• ∀x∀y(xEy → ¬x = y) (This is the axiom of antire-
flexivity in an equivalent form.)

2.15.6 Solved problems
Problem 297 Prove ∀x∃y(x = y) (Everyone is some-
one)

Solution: We want to show that whatever x is given, there
is some y that is identical with x. Of course, we choose x
itself as y.
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∀x(x = x)
x = x ∀ E

∃y(x = y)
∃ I

∀x∃y(x = y)
∀ I

2

Problem 298 Prove ∀x0(P0(x0) → ∀x1(¬P0(x1) →
¬x0 = x1)) (Whoever sings is not identical to anyone
who doesn’t.)

Solution: We want to show that whenever a singing a is
given and a non-singing b, then a 6= b. We use the fact
that identity preserves all properties. So a = b leads to a
contradiction.

See Figure 2.12 for the derivation.
2

Problem 299 Prove ∃x0∀x1(x0 = x1)→ ∀x2∀x3(x2 =
x3) (If there is just one element then any two elements are
equal).

Solution: Let us think about this: We assume that there
is some a such that every element is equal to a. Then we
take two elements x2 and x3. So we know that a = x2
and that a = x3. By the symmetry axiom we get x2 = a
and a = x3. By the transitivity axiom we get x2 = x3, as
desired. See Figure 2.13 for the derivation.
2

Problem 300 Problem: Prove from the axioms of order:
x < y → ¬y < x

Solution: Suppose x < y. Why is it not true that y <
x? Well, if y < x, then by transitivity, x < x. But
by antireflexivity x < x is false. So y < x leads to a
contradiction and we may conclude that y < x is false.
See Figure 2.13 for the derivation.
2

2.15.7 Problems
Problem 301 Prove

∀x(P (x)→ ∃y(x = y ∧ P (y))).

(Everyone who sings is identical to someone who sings.)

Problem 302 Prove

∀x(∃zR(x, z)→ ∀y(x = y → ∃zR(y, z))).

Problem 303 Prove

(x1 = y1∧ . . .∧xn = yn∧A)→ A(y1/x1, . . . , yn/xn),

when yi is free for xi for i = 1, . . . , n. (Identical elements
can be substituted for each other)

Problem 304 Prove

∃x∃y∀z(z = x∨z = y)→ ∀x∀y∀z(x = y∨y = z∨x = z)

(If there are just two elements then of any three elements
two are equal)

Problem 305 Prove that the sentence

∃x1 . . . ∃xn∀y(y = x1 ∨ . . . ∨ y = xn)

is true in a structure if and only if the structure has at most
n elements.

Problem 306 Prove that from

∃x1 . . . ∃xn∀y(y = x1 ∨ . . . ∨ y = xn)

one can deduct

∀x1 . . . ∀xn+1(x1 = x2 ∨ x1 = x3 ∨ . . . ∨ xn = xn+1).

Intuitive reason: if there are only at most n elements then
any n+1 elements must have some repetition.

Problem 307 Show that the axioms of order are satisfied
by the orders of

• natural numbers (N, <)

• real numbers (R, <)

• rational numbers (Q, <)
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[¬P0(x1)]

[x0 = x1] [P0(x0)]

x0 = x1 ∧ P0(x0)
∧ I

∀x∀y((x0 = y ∧ P0(x0))→ P0(y))

∀y((x0 = y ∧ P0(x0))→ P0(y))
∀ E

(x0 = x1 ∧ P0(x0))→ P0(x1)
∀ E

P0(x1)
→ E

P0(x1) ∧ ¬P0(x1)
∧ I

¬x0 = x1
¬ I

¬P0(x1)→ ¬x0 = x1
→ I

∀x1(¬P0(x1)→ ¬x0 = x1)
∀ I

P0(x0)→ ∀x1(¬P0(x1)→ ¬x0 = x1)
→ I

∀x0(P0(x0)→ ∀x1(¬P0(x1)→ ¬x0 = x1))
∀ I

Figure 2.12: Whoever sings is not identical to anyone who doesn’t.

[∃x0∀x1(x0 = x1)]

[∀x1(x0 = x1)]

x0 = x2
∀ E

∀x∀y(x = y → y = x)

∀y(x0 = y → y = x0)
∀ E

x0 = x2 → x2 = x0
∀ E

x2 = x0
→ E

[∀x1(x0 = x1)]

x0 = x3
∀ E

x2 = x0 ∧ x0 = x3
∧ I

∀x∀y∀z((x = y ∧ y = z)→ x = z)

∀y∀z((x2 = y ∧ y = z)→ x2 = z)
∀ E

∀z((x2 = x0 ∧ x0 = z)→ x2 = z)
∀ E

(x2 = x0 ∧ x0 = x3)→ x2 = x3
∀ E

x2 = x3
→ E

x2 = x3
∃ E

∀x3(x2 = x3)
∀ I

∀x2∀x3(x2 = x3)
∀ I

∃x0∀x1(x0 = x1)→ ∀x2∀x3(x2 = x3)
→ I

Figure 2.13: If there is just one element then any two elements are equal.

[x < y] [y < x]
x < y ∧ y < x

∧ I

∀x∀y∀z((x < y ∧ y < z)→ x < z)

∀y∀z((x < y ∧ y < z)→ x < z)
∀ E

∀z((x < y ∧ y < z)→ x < z)
∀ E

(x < y ∧ y < x)→ x < x
∀ E

x < x
→ E

∀x¬x < x
¬x < x ∀ E

x < x ∧ ¬x < x
∧ I

¬y < x
¬ I

x < y → ¬y < x
→ I

Figure 2.14: Less than is not greater than.
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• ({0, 1, . . . , n}, <)

Problem 308 Prove from the axioms of order

∀x∀y∀z(x < y → (z < y ∨ x < z))

Problem 309 Prove from the axioms of order

∃x1 . . . ∃xn∀y(y = x1 ∨ . . . ∨ y = xn)

→ ∃x∀y(x < y ∨ x = y)

(If the order is finite, it has a least element).

Problem 310 Prove from the axioms of order

∀x∀x′((∀y(y < x ∨ y = x)

∧∀y(y < x′ ∨ y = x′))→ x = x′)

(The largest element is unique, if it exits).

Problem 311 Prove from tile axioms

∀x∀y((R(x) ∧B(y))→ (x < y ∨ y < x))

(If x is red and y is blue, then one is left of the other.)

Problem 312 Prove from tile axioms

∀x∀y((R(y)→ y < x)→ (B(x) ∨ Y (x)))

(If every red tile is left of x then x must be blue of yellow)

Problem 313 Prove from tile axioms

∀x∀y((R(x) ∧B(y))→ x < y)→

∀x∀y((B(x) ∧R(y))→ y < x)

(If every red tile is left of every blue tile, then every blue
tile is right of every red tile.)

Problem 314 Prove from graph axioms

∃x∀y(¬y = x→ yEx)↔ ∃x∀y(¬x = y → xEy)

(This equivalence says “Some node is the neighbor every
other node” in two different ways.)

Problem 315 Prove from graph axioms

∀x∀y(¬y = x→ yEx)↔ ∀x∀y(¬x = y → xEy)

(This equivalence says “Any two distinct nodes are neigh-
bors” in two different ways.)

Problem 316 Prove from graph axioms

∀x∀y(xEy → ¬x = y)

(This is the axiom of antireflexivity in an equivalent form.)

2.16 Semantic trees
As in propositional logic, semantic trees are a powerful al-
ternative proof method—alternative to natural deduction.
Semantic proofs are among the most effective and easiest
to use, also in predicate logic. In a sense, the semantic
tree method proves a sentence by trying to sketch what a
model would be like in which the sentence is not true. You
may recall that in propositional logic a semantic proof of
A shows that the negation ¬A of A is not satisfiable. This
implies that A must be valid.

The basic thinking in forming a semantic tree of a for-
mula is the following: On the top of the tree we write
a formula and we imagine that we are in the possession
of a model and an assignment that satisfies the formula
in the model. Then depending on the logical form of the
formula—whether it is a conjunction, a disjunction, etc—
we write other formulas below the top always following
the basic thinking that we write only true formulas, true
meaning a formula satisfied by our imagined assignment
in the model at hand. When we apply this thinking to
quantifiers we may have to change the assignment. In re-
ality there is no assignment and no model, they are just
guidelines, a manner of thinking. But if the tree reveals
that a formula and its negation are true in the imagined
model we know that no such model can exist and the nega-
tion of the formula we started with has to be satisfied by
every assignment in every model. This is the conclusion
we must draw from our honest attempt to defend the idea
that the formula is satisfied by some assignment in some
model. This sort of thinking is the spirit of the semantic
tree method.

Let us recap the rules of forming semantic trees.

• Disjunction:

A ∨B

A B

¬(A ∨B)

¬A

¬B

• Conjunction:

A ∧B

A

B

¬(A ∧B)

¬A ¬B
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• Negation:

¬¬A

A

• Implication:

A→ B

¬A B

¬(A→ B)

A

¬B

• Equivalence:

A↔ B

¬A

¬B

A

B

¬(A↔ B)

¬A

B

A

¬B

2.16.1 Semantic trees for predicate logic

A semantic tree can contain both sentences and formulas.
If A is a formula, then A(t/x) is the formula obtained
from A by replacing x in its free occurrences by t, and
it is assumed that t is free for x in A. Here are some
examples:

A A(t/x)
xEy tEy

x = y → ∃x(xEy) t = y → ∃x(xEy)
∀y(x = y → ∃x(xEy)) ∀y(t = y → ∃x(xEy))

2.16.2 Quantifier rules

The rules for the universal quantifier are as follows:

• Universal:

∀xA

A(t/x)

¬∀xA

¬A(d/x)
In the first case t is any term on the branch leading
to the node where this rule is applied, but t has to be
free for x in A. This first rule can be applied several
times (see Section 2.16.3). In the second case d is a
new constant.

• Existential:

∃xA

A(d/x)

¬∃xA

¬A(t/x)

In the first case d is a new constant. In the second
case t is any term on the branch leading to the node
where this rule is applied, but t has to be free for x
in A. This second rule can be applied several times
(see Section 2.16.3).

2.16.3 A special feature of the quantifier
rules

The rule

∀xA

A(t/x)

can be used whenever new terms emerge into a branch.
The same applies to

¬∃xA

¬A(t/x)
If the branch has no constants, the term x can be used,

or one can use the constant symbol c0.

2.16.4 Closed branch

A branch of a semantic tree is closed if it contains both B
and ¬B for some B.

A semantic proof of A is a finite semantic tree for ¬A
in which all branches are closed.

For an example, let us look at a semantic proof of

∃x(A ∧B)→ (∃xA ∧ ∃xB)
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¬(∃x(A ∧B)→ (∃xA ∧ ∃xB))

∃x(A ∧B)

¬(∃xA ∧ ∃xB)

A(c/x) ∧B(c/x)

A(c/x)

B(c/x)

¬∃xA

¬A(c/x)

¬∃xB

¬B(c/x)

Sometimes the semantic tree does not close:
Let us build a semantic tree for

∀x∃yR(x, y).

∀x∃yR(x, y)

∃yR(c0, y)

R(c0, c1)

∃yR(c1, y)

R(c1, c2)

...
An attempt to form a semantic tree may fail. This is

because not all sentences have a semantic proof; not all
sentences are valid. It can be proved that a formula is
valid if and only if it has a semantic proof, so this method
is complete.

2.16.5 Solved problems
Problem 317 Build a semantic tree for:

∀x(P0(x) ∨ P1(x)) ∧ ¬∃yP0(y) ∧ ∀x¬P1(x)

Solution: We are asked to build the semantic tree for
this formula, not a semantic proof. So we start with the
formula and follow the rules:

∀x(P0(x) ∨ P1(x)) ∧ ¬∃yP0(y) ∧ ∀x¬P1(x)

∀x(P0(x) ∨ P1(x))

¬∃yP0(y)

∀x¬P1(x)

P0(c0) ∨ P1(c0)

¬P0(c0)

¬P1(c0)

P0(c0) P1(c0)

We can observe that both branches of this tree are
closed. This fact has special importance as we shall see
later. It can be used to conclude that the formula we start
with cannot be satisfied by any assignment in any model.
2

Problem 318 Build a semantic tree for:

∀xA ∧ ∀xB ∧ ¬∀x(A ∧B)

Solution:
∀xA ∧ ∀xB ∧ ¬∀x(A ∧B)

∀xA

∀xB

¬∀x(A ∧B)

¬(A(c0/x) ∧B(c0/x))

¬A(c0/x)

A(c0/x)

¬B(c0/x)

B(c0/x)
2

2.16.6 Problems
Problem 319 Give a semantic proof of

∃x∀yR(x, y)→ ∀y∃xR(x, y)
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Problem 320 Give a semantic tree of

∃x(P0(x) ∧ P1(x)) ∧ ¬∃yP0(y) ∧ ¬∃xP1(x)

Problem 321 Give a semantic tree of

∃x(A ∧ ¬B) ∧ ∀x(A→ B)

2.17 More about semantic trees

2.17.1 Soundness of semantic proofs
We will argue below that whenever A has a semantic
proof A is valid. If A has a semantic proof, then ¬A has a
semantic tree P in which all branches close. To prove that
A is valid we assume that¬A is satisfied by an assignment
s in a modelM and derive a contradiction. The assign-
ment s and the modelM help us to construct a branch in
P which is not closed. This is a contradiction.

Theorem 2.17 IfA has a semantic proof, thenA is valid.

Suppose P is a semantic tree for ¬A0, but A0 is not
valid. Indeed, let M be a structure in which A0 is not
satisfied by some assignment s. Then ¬A0 is satisfied by
s in in M. Now we construct a branch of the semantic
tree such that every sentence on the branch is satisfied by
s in M. The branch is constructed inductively step by
step, and as the Induction Hypothesis we assume at each
step that s satisfies all formulas on the branch before this
step. In the beginning this holds because ¬A0 is satisfied
by s inM.

Disjunction:
A ∨B

A B

¬(A ∨B)

¬A

¬B
Suppose we have progressed to a node K, the branch

that leads toK hasA∨B, and the tree splits intoA andB
because of the disjunction rule applied to this A ∨ B. By
Induction Hypothesis A ∨B is satisfied by s inM. Then
either A or B is satisfied by s inM. If A is satisfied by s,
we go left, and if B is satisfied by s, we go right. In either
case we maintain truth inM.

Suppose we have progressed to a node K, the branch
that leads to K has ¬(A∨B), and the tree continues with
¬A and ¬B because of the negated disjunction rule. By
Induction Hypothesis ¬(A ∨ B) is satisfied by s in M.
Then both ¬A and ¬B are satisfied by s in M. Thus if
we follow the only branch ahead ourselves, we maintain
truth inM.

Conjunction:
A ∧B

A

B

¬(A ∧B)

¬A ¬B

Suppose we have progressed to ¬(A ∧ B) and this is
still satisfied by s inM. Then either¬A or¬B is satisfied
by s inM. If ¬A is satisfied by s, we go left, and if ¬B
is satisfied by s, we go right. In either case we maintain
truth inM.

Suppose we have progressed to A ∧ B and this is still
satisfied by s inM. Then both A and B are satisfied by s
inM. Thus if we follow the only branch ahead ourselves,
we maintain truth inM.

Negation:
¬¬A

A

Suppose we have progressed to ¬¬A and this is still
satisfied by s inM. Then A is satisfied by s inM. Thus
if we follow the only branch ahead ourselves, we maintain
truth inM.

Implication:
A→ B

¬A B

¬(A→ B)

A

¬B
Equivalence:

A↔ B

¬A

¬B

A

B

¬(A↔ B)

¬A

B

A

¬B
Universal:

∀xA

A(t/x)

¬∀xA

¬A(d/x)
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In the first case t is any term on the branch leading to
∀xA, which is free for x in A. In the second case d is a
new constant.

Suppose we have progressed to ∀xA and this is still sat-
isfied by s inM. Then A(t/x) is satisfied by s whatever
the term t, interpreted in M , we have. If t is not yet inter-
preted inM or by s (if it is a variable), we can interpret
it in an arbitrary way and A(t/x) is still true inM. Thus
we maintain truth inM on the branch that we follow.

Suppose we have progressed to ¬∀xA and this is still
satisfied by s in M. Then there is an element a in M
such that the assignment s(a/x) satisfies ¬A. Let d be a
new constant. Let us interpret d inM by letting dM = a.
Now with this newM, i.e. M with the new constant, we
maintain the condition that ¬A(d/x) is satisfied by s in
M.

Existential:
∃xA

A(d/x)

¬∃xA

¬A(t/x)

End of the proof: The above process either ends at an
atomic formula of else the branch goes on for ever, i.e. is
infinite. In either case it is impossible that some sentence
and its negation are satisfied by s in M, so the branch
cannot be closed.

If we make a semantic tree for ¬A trying all possible
rules that apply and still the tree has a branch that is not
closed, then we can actually build a structureM and an
assignment s such that ¬A is satisfied by s in M. So
in this case A cannot be valid because it is false in M.
This is called the Completeness Theorem for the semantic
proof method.

2.17.2 Solved problems

Problem 322 Use the method of semantic trees to con-
struct a model for

∃x∃yR0(x, y) ∧ ¬∀xR0(x, x).

Solution: Note that there are also other methods to con-
struct models for given sentences, like the blatantly ad hoc
method of trying out familiar structures and hoping for the
best. However, we use the semantic tree method:

∃x∃yR0(x, y) ∧ ¬∀xR0(x, x)

∃x∃yR0(x, y)

¬∀xR0(x, x)

¬R0(c0, c0)

∃yR0(c1, y)

R0(c1, c2)

The semantic tree suggests the model M such that
the universe of M is {0, 1, 2}, RM0 = {(1, 2)}, cM0 =
0, cM1 = 1, cM2 = 2. It is easy to verify thatM is indeed
a model of the given sentence. 2

Problem 323 Use the method of semantic trees to con-
struct a model for

∀x∃yR0(x, y) ∧ ¬∀xR0(x, x).

Solution: Note that there are also other methods to con-
struct models for given sentences, like the blatantly ad hoc
method of trying out familiar structures and hoping for the
best. However, we use the semantic tree method:

∀x∃yR0(x, y) ∧ ¬∀xR0(x, x)

∀x∃yR0(x, y)

¬∀xR0(x, x)

¬R0(c0, c0)

∃yR0(c0, y)

R0(c0, c1)

∃yR0(c1, y)

R0(c1, c2)

∃yR0(c2, y)

R0(c2, c3)

etc.

The semantic tree suggests the modelM such that the
universe ofM is {0, 1, 2, . . .}, RM0 = {(n, n+ 1) : n =
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0, 1, 2, . . .}, cM0 = 0, cM1 = 1, cM2 = 2, . . .. It is easy to
verify thatM is indeed a model of the given sentence. 2

2.17.3 Problems
Problem 324 Build a semantic tree for

∃x(P0(x) ∧ P1(x)) ∧ ∀y(P0(y)→ ¬P1(y))

Problem 325 Build a semantic tree for

∀x(A ∨B) ∧ ∃x(¬A ∧ ¬B)

Problem 326 Build a semantic tree for

∃x(P0(x) ∧ ¬P1(x)) ∧ ∀y(P0(y)→ P1(y))

Problem 327 Give a semantic proof of

∃x∀y¬R(x, y)→ ∃x¬∃yR(x, y)

Problem 328 Use the method of semantic trees to con-
struct a model for

∀x∃yR0(x, y) ∧ ¬∀x∃yR0(y, x).

Note that there are also other methods to construct models
for given sentences, like the blatantly ad hoc method of
trying out familiar structures and hoping for the best.

Problem 329 Use the method of semantic trees to con-
struct a model for

∀x∃y∀z(R0(x, y) ∧R0(y, z) ∧ ¬∀x∀yR0(x, y)).

Note that there are also other methods to construct models
for given sentences, like the blatantly ad hoc method of
trying out familiar structures and hoping for the best.

2.18 Validity revisited
In everyday language a person utters a validity if he or she
says something which is true but only because of its form,
like “every day is rainy or else some days are not rainy”.

A formula of predicate logic is valid, or a validity, if it
is satisfied by every assignment in every structure.

Here are some examples

• ∃xA↔ ¬∀x¬A

• ∀xA↔ ¬∃x¬A

• ∃x(A ∨B)↔ (∃xA ∨ ∃xB)

• ∀x(A ∧B)↔ (∀xA ∧ ∀xB)

• ∀xx = x (identity axioms have the special role that
they are always assumed when “=” is part of the for-
mula.)

2.18.1 Satisfiable
A formula is satisfiable if it is satisfied by some assign-
ment in some structure. A statement in everyday con-
versation would be considered satisfiable—“plausible”—
if things could be like the statement says, and maybe even
are. If I say “There is intelligent life outside the Earth in
our galaxy”, this would probably be considered plausible,
possibly a true statement, although we really do not know,
and there is a chance that I am wrong. This is what sat-
isfiable means. But now we are talking about predicate
logic so satisfiability has a technical meaning, namely be-
ing satisfied by some assignment in some model.

Here are some examples

• ∀x∃yR0(x, y) ∧ ¬∃y∀xR0(x, y)

• ∀x(P0(x) ∨ P1(x)) ∧ (¬∀xP0(x) ∨ ¬∀xP1(x))

• ¬(∃xP0(x)→ ∀xP0(x))

2.18.2 Contingent
A formula is contingent if it is both consistent and
refutable. A person utters a contingency, like “It is rain-
ing”, “Someone is vacuuming upstairs”, or “Bach is the
greatest composer of all”, if what he or she says can be
true but can also be false. So contingencies are satisfi-
able but not conversely, as validities are satisfiable but not
refutable.

Here are some examples from predicate logic.

• ∀xP0(x)

• ∃x∀yR0(x, y)

• ∃x(R0(x, y) ∧ P0(x))
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• x = y (depending on the assignment this can be true
or false)

2.18.3 Refutable
A formula is refutable if there are an assignment s and a
structureM that refute it, i.e. the assignment s does not
satisfy the formula inM. It is as if someone says “Every
day in August is rainy” and you refute it by pointing out
that in the year 1996 there was a day in August when it
did not rain.

Here are some examples from predicate logic:

• ∃xP0(x)→ ∀xP0(x)

• ∀x∃yR0(x, y)→ ∃y∀xR0(x, y)

• x = y

2.18.4 Contradiction
In everyday language a person utters a contradiction if he
or she says something which is false merely because of its
form, like “I am a vegetarian and I am not a vegetarian”.
Contradicting oneself in a social situation is problematic,
and usually leads to being ignored or else asked to clarify
what one means. If one utters only validities in a conver-
sation, one does not make much progress. It is the same
with contradictions. Therefore people usually utter con-
tingencies, statements that could be right or wrong. In
everyday life as also in science contingencies are judged
in the light of empirical data. If I say “It rained yesterday
in New York”, I could be—a priori—right or wrong, so it
is a contingency, but of course we can check the meteoro-
logical data and make an a posteriori judgement that my
statement was right, or wrong.

A formula of predicate logic is a contradiction if it is
not satisfied by any assignment in any structure.

Here are some examples from predicate logic:

• ∀xA ∧ ∃x¬A

• ∃xA ∧ ∀x¬A

• ∀x(A→ B) ∧ ∃x(A ∧ ¬B)

• x = y ∧ x = z ∧ ¬y = z (Identity has a special
role. We always assume the identity axioms if = is
present. Therefore this formula is a contradiction.)

2.18.5 Categories of formulas of predicate
logic

Every formula of predicate logic is either a validity, a con-
tradiction or a contingency.

Every satisfiable formula is either valid or contingent.
Every refutable formula is either a contradiction or a

contingency.
Recognizing what the type of a given formula is,

whether it is a validity, a contradiction or a contingency,
is the bread and butter of a logician. However, this may
be a difficult taks.

2.18.6 Hard question

Given a formula, can we decide mechanically whether it
is a validity, a contradiction or a contingency?

It can be proved that this is not possible, if mechan-
ically is interpreted as is now common. The usual cur-
rent definition of being decidable mechanically, due to
the British mathematician Alan Turing (1912—1954), is
roughly the same as being decidable in finite time by a
computer program which has a finite but endless amount
of time and memory.

2.18.7 The method of deductions

Given a potential deduction for a formula A it is not diffi-
cult to check whether the deduction is correct or not.

This can be done mechanically. Such com-
puter programs are called proof checkers (see e.g.
http://coq.inria.fr/). One can make a list of all possible
deductions and check them one by one. The hard case is
when there is no deduction, because then it takes infinite
time to find it out.

2.18.8 Equivalence of formulas

Two formulas of predicate logic, A and B, are called (log-
ically) equivalent if A ↔ B is a validity. Equivalence of
formulas is used in everyday language and in science all
the time, often without paying much attention to it.
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2.18.9 Equivalent formulas of predicate
logic

Here are some important logical equivalences in predicate
logic:

Formula Equivalent formula Condition
∀xA ¬∃x¬A
∃xA ¬∀x¬A

∀x(A ∧B) ∀xA ∧ ∀xB
∃x(A ∨B) ∃xA ∨ ∃xB
∃x∃yA ∃y∃xA
∀x∀yA ∀y∀xA

∀x(A→ B) ∃xA→ B x not free in B
∀x(A→ B) A→ ∀xB x not free in A
∃x(A ∧B) ∃xA ∧B x not free in B

2.18.10 Method

Suppose we have to decide whether A is satisfiable or a
contradiction. We build a semantic tree for A.

If all branches end up closed, then we have a semantic
proof of ¬A. Then A is a contradiction.

On the other hand, if we apply all the rules to their
fullest extent and still have a branch which is not closed,
then we can use it to build a model for A. Then A is satis-
fiable. Note that the branch may be infinite.

2.18.11 Solved problems

Problem 330 Prove the following logical equivalence in
predicate logic using natural deduction: ∀x(A → B) ↔
(∃xA→ B), assuming that x is not free in B.

Solution:

∃xA

∀x(A→ B)

A→ B
∀ E

[A]

B
→ E

B ∃ E1)

∃xA→ B
→ I

1) x is not free in B.
We could do the same with a semantic tree:

¬(∀x(A→ B)→ (∃xA→ B))

∀x(A→ B)

¬(∃xA→ B)

∃xA

¬B

A(c0/x)

(A→ B)(c0/x)

A(c0/x)→ B

¬A(c0/x) B

Both branches close, so this is a semantic proof of
∀x(A→ B)→ (∃xA→ B).

Now the other direction:

∃xA→ B

[A]

∃xA ∃ I

B
→ E

A→ B
→ I

∀x(A→ B)
∀ I1)

1) x is not free in B. 2

2.18.12 Problems

Problem 331 Use the method of semantic trees to con-
struct a model for

∃x∀yR0(x, y) ∧ ¬∀xR0(x, x).

Problem 332 Prove using the semantic tree method: The
formula

∃x(A ∧B)→ (A ∧ ∃xB)

is valid, assuming that x is not free in A.

Problem 333 Consider the formula

(R(x, y) ∨ ∀xP (x))→ ∀x(R(x, y) ∨ P (x)).
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Is the formula valid, contingent or a contradiction? If it
is valid or a contradiction, demonstrate this with a natu-
ral deduction or a semantic tree (See Section 2.18). If it
is contingent, demonstrate this with models obtained by
means of semantic trees (See Section 2.17).

Problem 334 Decide whether the following sentence is a
validity, a contingency or a contradiction.

∃xP0(x)→ ∀xP0(x)

Problem 335 Decide whether the following sentence is a
validity, a contingency or a contradiction.

¬(¬∀xP0(x) ∧ ¬∃x¬P0(x))

Problem 336 Decide whether the following sentence is a
validity, a contingency or a contradiction.

∀xP0(x) ∨ ∃x¬P0(x)

Problem 337 Decide whether the following sentence is a
validity, a contingency or a contradiction.

∀x∀y(R0(x, y) ∧ ¬R1(x, y))→ ∃x∀y¬R1(x, y)

2.19 n-ary predicates
Up to now we have dealt with unary predicates (relations)
and binary ones. Indeed, binary relations are much more
common than the higher dimensional relation we shall
now introduce.

2.19.1 Ternary predicates
A ternary (3-place) predicate binds three elements just as
a binary predicate binds two elements. Predicates are also
called relations. The relation

“x, y and z are on the same line”

is an example of a ternary relation on the plane.
A ternary relation on a set M is any subset of M3, i.e.

any set of triples (a, b, c), where a,b,c are from M .
In order to be able to deal with ternary relations by

means of predicate logic we henceforth allow vocabular-
ies to have

• Unary predicate symbols P0, P1, . . .

• Binary predicate symbols R0, R1, . . .

• Ternary predicate symbols R3
0, R

3
1, . . .

In a structureM a ternary predicate symbol R3
n is in-

terpreted as a ternary relation (R3
n)
M ⊆M3.

Note that new symbols in the vocabulary mean also new
atomic formulas, such as R3

n(x, y, z).

2.19.2 n-ary relations
An n-ary (n-place) relation (or predicate) binds n ele-
ments just as a ternary relation binds three elements.

“x− y = z − u”

is a 4-ary relation on the reals. (Equidistance relation)

“Student x in course y got z credit points in exam u in
the year z”

is a 5-ary relation. n-ary relations resemble in many ways
what are called databases in computer science. More tech-
nically speaking, an n-ary relation on a set M is any set
of n-tuples (a1, . . . , an) of elements of M .

In order to be able to deal with n-ary relations by means
of predicate logic we henceforth allow vocabularies to
have

• Unary predicate symbols P0, P1, . . .

• Binary predicate symbols R0, R1, . . .

• n-ary predicate symbols Rn
0 , R

n
1 , . . .

In a structure M an n-predicate symbol Rn
i is inter-

preted as an n-ary relation (Rn
i )
M ⊆Mn.

Note that new symbols in the vocabulary mean also new
atomic formulas, such as Rn

i (y1, . . . , yn).

2.19.3 Predicate logic with n-ary predicate
symbols

There is no change to the rules of natural deduction
and semantic trees. Deductions are made just as before.
R3

0(x, y, z) is just like any other formula with three free
variables, e.g. one of the following:

xEy ∧ yEz
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P0(x) ∧ P1(y) ∧ P2(z)

R0(x, y) ∨R0(x, z) ∨R0(y, z)

except that it is atomic, that is, it has no internal logical
structure, like the above there formulas.

Since we have new atomic formulas we have to also
add new identity axioms:

I1 ∀xx = x

I2 ∀x∀y(x = y → y = x)

I3 ∀x∀y∀z((x = y ∧ y = z)→ x = z)

I4 ∀x∀y((x = y ∧ Pn(x))→ Pn(y))

I5 ∀x∀x′∀y∀y′((x = y ∧ x′ = y′ ∧ Rn(x, x
′)) →

Rn(y, y
′))

I6 ∀x1 . . . ∀xn∀y1 . . . ∀yn((x1 = y1 ∧ . . . ∧ xn = yn ∧
Rn

i (x1, . . . , xn))→ Rn
i (y1, . . . , yn))

The new axiom I6 is just an elaboration of I4 and I5 to
the new situation of n-ary predicate symbols.

2.19.4 Solved problems
Problem 338 Consider the ternary relation

“x times y equals z”

on natural numbers. Let us use this relation to interpret
R3

0 in the structure N , the universe of which is the set of
natural numbers, that is (a, b, c) ∈ (R3

0)
N if and only if

a · b = c.
Which of the following sentences are true in N :

1. ∀x∀y∃zR3
0(x, y, z)

2. ∀x∀z∃yR3
0(x, y, z)

3. ∀x∀y∀z∀u((R3
0(x, y, z) ∧R3

0(x, y, u))→ z = u).

Solution: Let us take an arbitrary assignment s.

1. N |=s ∀x∀y∃zR3
0(x, y, z), as can be seen as fol-

lows: First note that (a, b, ab) ∈ (R3
0)
N for all

a, b ∈ N . Hence

N |=s(a/x,b/y,ab/z) R
3
0(x, y, z)

for all a, b ∈ N . Hence

N |=s(a/x,b/y) ∃zR3
0(x, y, z)

for all a, b ∈ N . Hence

N |=s ∀x∀y∃zR3
0(x, y, z).

2. N 6|=s ∀x∀z∃yR3
0(x, y, z), as can be seen as fol-

lows: First note that (2, a, 3) /∈ (R3
0)
N for all a ∈ N .

Hence

N 6|=s(2/x,3/z,a/Y ) R
3
0(x, y, z)

for all a ∈ N . Hence

N 6|=s(2/x,3/z) ∃yR3
0(x, y, z).

Hence
6|=s ∀x∀y∃zR3

0(x, y, z).

3. N |=s ∀x∀y∀z∀u((R3
0(x, y, z) ∧ R3

0(x, y, u)) →
z = u), as can be seen as follows: First note that
if (a, b, c) ∈ (R3

0)
N and (a, b, d) ∈ (R3

0)
N then

c = ab = d, i.e. c = d Hence

N |=s(a/x,b/y,c/z,d/u) (R
3
0(x, y, z) ∧R3

0(x, y, u))

→ z = u

for all a, b, c, d ∈ N . Hence

N |=s ∀x∀y∀z∀u((R3
0(x, y, z) ∧R3

0(x, y, u))

→ z = u).

2

2.19.5 Problems
Problem 339 Use the method of semantic trees to con-
struct a model for

∃x∀y∃z(R(x, y, z) ∧ ¬∀xR(x, x, x)).

Problem 340 Prove using the semantic tree method: The
sentence

∀y∀z(∃x(R′(y)∧R(x, y, z))→ (R′(y)∧∃xR(x, y, z)))

is valid.
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Problem 341 Consider the sentence

∀x(P (c, d)→ R(x, c, d))→ (P (c, d)→ ∀xR(x, c, d)).

Is the sentence valid, contingent or a contradiction? If it
is valid or a contradiction, demonstrate this with a natu-
ral deduction or a semantic tree (See Section 2.18). If it
is contingent, demonstrate this with models obtained by
means of semantic trees (See Section 2.17).

Problem 342 Consider the sentence

(R(c, d, e) ∨ ∀xP (x))→ ∀x(R(x, d, e) ∨ P (x)).

Is the sentence valid, contingent or a contradiction? If it
is valid or a contradiction, demonstrate this with a natu-
ral deduction or a semantic tree (See Section 2.18). If it
is contingent, demonstrate this with models obtained by
means of semantic trees (See Section 2.17).

Problem 343 Consider the sentence

∀x(P (c, d) ∧R(x, c, d)) ∧ ∃x(P (c, d)→ ¬R(x, c, d)).

Is the sentence valid, contingent or a contradiction? If it
is valid or a contradiction, demonstrate this with a natu-
ral deduction or a semantic tree (See Section 2.18). If it
is contingent, demonstrate this with models obtained by
means of semantic trees (See Section 2.17).

Problem 344 Consider the structure M with the three
unary predicates and the one 3-place relation R of the
below table in the set {Anna, Joonas, Minna, Tero, Harri,
Logic, Algebra, 4,5}.

P0 P1 P2

Anna Logic 5
Joonas Algebra 4
Minna Algebra 4
Tero Logic 4
Harri Algebra 5

Which of the following sentences are true inM?

1. ∃x∃y((P0(x)∧P0(y)∧∃z∃u(R(x, z, u)∧R(y, z, u)
∧¬x = y))

2. ∃x∃y((P1(x)∧P1(y)∧∃z∃u(R(z, x, u)∧R(z, y, u)
∧¬x = y))

3. ∃x∃y((P2(x)∧P2(y)∧∃z∃u(R(u, z, x)∧R(u, z, y)
∧¬x = y))

2.20 Functions
The concept of a function is familiar from

• Calculus: x3, sin(x),
√
1 + x2

• Algebra: x · y, x−1,

• Linear algebra: 2x+ 5y, 10x− y + 2z,

• Set theory: {(x, y) ∈ R2 : x3 = y}.

To be able to use logic in the study of functions we
introduce function symbols.

Also functions of several variables are familiar from

• Calculus xy, sin(x+ y), sin(x)cos(y)

• Algebra x · y, x−1y

• Linear algebra 2x+ 5y, 10x− y + 2z

• Set theory {(x, y, z) ∈ R2 : x+ y = z}

The introduction of function symbols extends the ap-
plicability of logic but at the same time makes logic more
complicated, as we shall see below.

2.20.1 Function symbols
To be able to use logic in the study of functions of one or
several variables we introduce n-ary function symbols for
all n > 0.

We allow henceforth vocabularies to contain also func-
tion symbols

• Fn
0 , Fn

1 ,. . .

Here Fn
i is called an n-ary function symbol. We use

F, F ′, G,G′, etc as shorthands for function symbols.
If the vocabulary contains function symbols, we inter-

pret these symbols as functions in the domain of the struc-
ture:

The function symbol Fn
i is interpreted in a structureM

with domain M as an n-ary function on M i.e.

(Fn
i )
M :Mn →M
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Note: these functions are total i.e. defined everywhere.
So if we want to take a symbol F 1

0 for 1/x in the domain
of all real numbers, we have to define the interpretation
of F 1

0 also at x = 0. We can define e.g. 1/0 = 0, but
normally in mathematics the function 1/x on the reals is
considered as a partial function, that is, as a function that
is not defined everywhere.

Now that we have function symbols we can build new
terms:

• F (x), G(x, c)

• F (F (x)), G(F (x), c)

• Etc

Note: we allow nesting of function symbols, as in:

G(F (x), c).

This gives new life to the world of terms. Terms are not
anymore mere constants or variables, they can be very
long nested expressions, a bit like polynomials.

Note: Some terms do not have variables, e.g.
G(F (c), c). They are called constant terms.

With the extended concept of a term we get also new
atomic formulas

t = t′

from our new terms. For example:

• y = F (x).

• F (x) = G(y, y).

• G(x, y) = G(F (x), x).

• F (G(x, y)) = G(F (x), F (y)).

2.20.2 Values of the new terms
Like the old terms xn and c, the new terms t have a value
tM〈s〉 in a structure under any assignment.

• xM〈s〉 = s(x)

• cM〈s〉 = cM

• F (t1, . . . , tn)M〈s〉 = FM(tM1 〈s〉, . . . , tMn 〈s〉)

Figure 2.15: The value of a term.

In the third case, when we define the value of
F (t1, . . . , tn)

M〈s〉, we first determine the values of the
arguments t1, . . . , tn, obtaining tM1 〈s〉, . . . , tMn 〈s〉, and
then we plug these values to the function FM interpreting
the function symbol F inM (see Picture 2.15).

Definition 2.18 Satisfaction for the new identities (equa-
tions) is defined as follows: M |=s t = t′ ⇐⇒
tM〈s〉 = t′

M〈s〉.

For example:

M |=s F (x) = G(F (x))

⇐⇒ FM(s(x)) = GM(FM(s(x))).

2.20.3 The ring of integers
Consider the structure (Z,+, ·) the universe of which con-
sists of positive and negative integers endowed with two
functions, the addition and the multiplication of integers.
This is arguably the most important structure of mathe-
matics! It is called a ring in algebra. One often adds here
constants 0 and 1.

Suppose n > 2. Are there integers x,y and z (all > 0)
such that xn + yn = zn? No! (This is called Fermat’s
Last Theorem.)

2.20.4 The successor function on natural
numbers

The structure (N, s) of natural numbers with the successor
function s(n) = n + 1 is arguably the most fundamental

http://en.wikipedia.org/wiki/Fermat's_Last_Theorem
http://en.wikipedia.org/wiki/Fermat's_Last_Theorem
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structure in mathematics. One often adds 0 as a constant.
Important properties of this structure are:

• s(n) = s(m)→ n = m.

• If n > 0, there is m such that s(m) = n.

This structure satisfies also the so called Induction
Schema: Suppose A is a formula with constant 0 and suc-
cessor function s. Then

(A(0/x0) ∧ ∀x0(A→ A(s(x0)/x0)))→ ∀x0A

is an Induction Axiom. The Induction Schema is the col-
lection of all Induction Axioms.

2.20.5 The effect of terms in deductions
Terms with function symbols impose new restrictions to
substitution and to the quantifier rules. The new restric-
tions arise naturally from the fact that a term may con-
tain many variables and we have to pay attention to all of
them. Without function symbols a term, which has vari-
ables, may only be a lone variable and we already paid
attention to this lone variable - easier!

A term t is free for a variable x in a formula A if no
variable y occurring in t becomes a bound occurrence of
y after t is substituted to free occurrences of x in A. No-
tation A(t/x) is used only when t is free for x in A.

We can always change A to a logically equivalent for-
mula A′, by changing bound variables, such that t is free
for x in A.

Note that F (x, y) is not free for x in ∀y(R(x, y) →
P (y)), but it is free for x in the logically equivalent for-
mula ∀z(R(x, z)→ P (z)).

2.20.6 Quantifier rules in deduction and se-
mantic trees

Natural deduction

When using the elimination of universal quantifier and in-
troduction of existential quantifier rules in natural deduc-
tion one has to obey the restriction that the term t that
is substituted for a variable x must be free for x in the
formula A in question. Since, after introducing function
symbols, we have more terms, we have to be more careful
with this rule.

Semantic trees

When using semantic trees to prove things in predicate
logic with function symbols we have to take all the terms
into account, also the terms containing function symbols:

• Universal:

∀xA

A(t/x)

¬∀xA

¬A(d/x)
In the first case t is any term on the branch leading3

to ∀xA, but t has to be free for x in A. In the second
case d is a new constant.

• Existential:

∃xA

A(d/x)

¬∃xA

¬A(t/x)
In the first case d is a new constant. In the second
case t is any term on the branch leading to ∀xA, but
t has to be free for x in A.

Example

Let us give a semantic proof of ∀xP (x)→ P (F (c))?

¬(∀xP (x)→ P (F (c)))

∀xP (x)

¬P (F (c))

P (F (c))

The only branch of this tree closes, so this is a semantic
proof of the given sentence.

2.20.7 Identity axioms for function symbols
Function symbols call also for new identity axioms. We
want to say that for any function, if the arguments are
identical, then so are the values.

New Identity Axiom:

I7 ∀x1 . . . ∀xn∀y1 . . . ∀yn((x1 = y1∧ . . .∧xn = yn)→
Fn
i (x1, . . . , xn) = Fn

i (y1, . . . , yn))

3It is not wrong to choose a term t not occurring on the branch, but it
will not help either, since this rule is used repeatedly, always whenever
new terms occur.
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2.20.8 Solved problems
Problem 345 Consider the natural numbers with the suc-
cessor function s(n) = n+ 1. Prove

∀x0(¬x0 = 0→ ∃x1(x0 = s(x1))

by using the Induction Schema.

Solution: Let A be the formula ¬x0 = 0 → ∃x1(x0 =
s(x1)). Let us first prove A(0/x0) i.e. ¬0 = 0 →
∃x1(0 = s(x1)). This follows from the Identity Ax-
iom ∀x(x = x) easily. Let us then assume A and derive
A(s(x0)/x0) i.e. ¬s(x0) = 0 → ∃x1(s(x0) = s(x1)).
But this is easy even without assuming A. Thus we have
proved ∀x0(¬x0 = 0 → ∃x1(x0 = s(x1)). See Fig-
ure 2.16 for the natural deduction based on the above ar-
gumentation.
2

Problem 346 Prove the validity of the following stronger
form of the Identity Axiom I7:

∀x1 . . . ∀xn∀y1 . . . ∀yn((x1 = y1 ∧ . . . ∧ xn = yn)

→ t = t′),

where t′ is obtained from t by replacing x1 by y1, x2 by
y2, . . . , xn by yn.

Solution: If t is a constant, then t′ is t and the claim
is trivial. If t is a variable other than x1, . . . , xn, then
again t′ is t and the claim follows. If t is the variable
xi, then t′ is yi, and the claim is essentially of the form
xi = yi → xi = yi, and therefore trivial. We are left with
the case: t is F (t1, . . . , tm).

Note that t′ = F (t′1, . . . , t
′
m) where t′i is obtained from

ti by replacing x1 by y1, x2 by y2, . . . , xn by yn (i =
1, . . . ,m). We assume as an Induction Hypothesis that

∀x1 . . . ∀xn∀y1 . . . ∀yn((x1 = y1 ∧ . . . ∧ xn = yn)

→ ti = t′i)

for all i = 1, . . . ,m. Then we prove the validity of

∀x1 . . . ∀xn∀y1 . . . ∀yn((x1 = y1 ∧ . . . ∧ xn = yn)

→ F (t1, . . . , tm) = F (t′1, . . . , t
′
m)).

Let a modelM and an assignment s be given. Suppose
a1, . . . , an, b1, . . . , bn are such that

M |=s′ (x1 = y1 ∧ . . . ∧ xn = yn)

for

s′ = s(a1 . . . anb1 . . . bn/x1 . . . xny1 . . . yn).

Then ai = bi for i = 1, . . . , n. By induction hypothe-
sis tMj 〈s′〉 = t′

M
j 〈s′〉. HenceM |=s′ F (t1, . . . , tm) =

F (t′1, . . . , t
′
m).

Note: The validity of the strong form of I7 can be also
proved by natural deduction or by the method of semantic
trees. 2

2.20.9 Problems
Problem 347 Use the method of semantic trees to con-
struct a model for

∀xR(x, F (x)) ∨ ¬∀xR(x, x).

Problem 348 Prove using the semantic tree method: The
sentence

∃x(P (c) ∨ P (F (x)))→ (P (c) ∨ ∃yP (y))

is valid.

Problem 349 Consider the sentence

∀x(P (c, d)→ R(x, c, d))

→ (P (c, d)→ ∀xR(F (x), c, d)).
Is the sentence valid, contingent or a contradiction? If it
is valid or a contradiction, demonstrate this with a natu-
ral deduction or a semantic tree (See Section 2.18). If it
is contingent, demonstrate this with models obtained by
means of semantic trees (See Section 2.17).

Problem 350 Consider the sentence

(R(c, d) ∨ ∀xP (F (x)))→ ∀x(R(c, d) ∨ P (x)).

Is the sentence valid, contingent or a contradiction? If it
is valid or a contradiction, demonstrate this with a natu-
ral deduction or a semantic tree (See Section 2.18). If it
is contingent, demonstrate this with models obtained by
means of semantic trees (See Section 2.17).
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∀x x = x
0 = 0

∀ E
[¬0 = 0]

0 = 0 ∧ ¬0 = 0
∧ I

¬¬∃x1(0 = s(x1))
¬ I

∃x1(0 = s(x1))
¬ E

¬0 = 0→ ∃x1(0 = s(x1))
→ I

A(0/x0)

∀x(x = x)

s(x0) = s(x0)
∀ E

∃x1(s(x0) = s(x1))
∃ I

A(s(x0)/x0)

A→ A(s(x0)/x0))
→ I

∀x0(A→ A(s(x0)/x0))
∀ I

A(0/x0) ∧ ∀x0(A→ A(s(x0)/x0))
∧ I

B

∀x0(¬x0 = 0→ ∃x1(x0 = s(x1)))
→ E

In this deduction B is the Induction Axiom (A(0/x0) ∧ ∀x0(A→ A(s(x0)/x0)))→ ∀x0A

Figure 2.16: An example of the use of induction.

Problem 351 Consider the sentence

∀xP (F (x), x) ∨ ∃x¬P (x, F (x)).

Is the sentence valid, contingent or a contradiction? If it
is valid or a contradiction, demonstrate this with a natu-
ral deduction or a semantic tree (See Section 2.18). If it
is contingent, demonstrate this with models obtained by
means of semantic trees (See Section 2.17).

Problem 352 Suppose L is the vocabulary consisting of
a constant symbol c and a 1-ary (unary) function sym-
bol F . SupposeM is an L-structure with universe Z =
{. . . ,−2,−1, 0, 1, 2, . . .} i.e. the set of integers, positive
and negative, cM = 0 and FM(a) = a+1 for all a in Z.
Which elements of Z are values of constant terms (such as
e.g. c and F (c)) which contain no variables?

Problem 353 SupposeL is the vocabulary consisting of a
constant symbols c and d and a 2-ary function symbol F .
SupposeM is an L-structure with all the real numbers as
the universe cM = 0, dM = 1 and FM(a, b) = a+ b for
all a and b. Which elements are values of constant terms
(such as e.g. c and F (c, c)) which contain no variables?

Problem 354 Which of the terms

1. F (y)

2. F (z)

3. F (x)

are free for the variable y in the following formula
∃x∀z(R0(x, y) ∨ ¬∀yR0(y, x))?

Problem 355 The following “natural deduction” of
∀y∃z∀xR(z, y, x) from ∀y∀xR(F (x), y, x) has an error.
What is the error:

∀y∀xR(F (x), y, x)
∀xR(F (x), y, x)

∀ E

∃z∀xR(z, y, x)
∃ I

∀y∃z∀xR(z, y, x)
∀ I

Problem 356 Prove by means of the semantic tree
method

∀x∃y(R(F (x), x)→ R(y, x)).

Problem 357 Give a natural deduction of

∀x∃y(R0(F (x), x) ∨R1(y, x))

from the assumption

∀x∀y(R0(y, x) ∨R1(y, x)).

Problem 358 Prove

∀x1 . . . ∀xn∀y1 . . . ∀yn((x1 = y1 ∧ . . . ∧ xn = yn)→

t = t′),

where t′ is obtained from t by replacing everywhere xi by
yi. Use the Identity Axioms I1-I7 and natural deduction
or, alternatively, a semantic proof.
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2.21 Isomorphism
In logic the slogan is: “Structure is everything—elements
are nothing.” This is as in chess: whether the pieces are
made of marble or plastic makes no difference to the game
itself. It also hardly makes sense to ask what natural num-
bers 0, 1, 2, . . . are “made of”. What matters is that 0 is
the smallest natural number, 1 is the next, then comes 2,
etc.

Isomorphism captures this phenomenon of focusing on
structure rather than elements.

A related fact is that we may draw a picture of a struc-
ture in many (isomorphic) ways. For example, a graph
may have two completely different (but isomorphic) ap-
pearances:

The below figure demonstrates an example of an iso-
morphism between the above two graphs:

Figure 2.17: Isomorphism

In Figure 2.18 there are four isomorphic unary struc-
tures and an indication what the isomorphisms are like.

2.21.1 Exact definition for graphs
We have not defined exactly what is it that we call an iso-
morphism. We now present an exact definition for graphs.

Later we shall treat other structures.

Definition 2.19 Let L be the vocabulary {E} of graphs.
LetM andM′ be two graphs. We say that a mapping f
is an isomorphismM→M′ if

ISO1 f maps elements of the universe ofM to elements
of the universe ofM′.

ISO2 Every element of the universe of M′ is the image
of exactly one element of the universe ofM.

ISO3 If a and b are in the universe ofM, then aEMb if
and only if f(a)EM

′
f(b).

Condition ISO2 says, in other words, that f is a bijec-
tion M → M ′. Figure 2.17 is an example of a bijection
satisfying ISO1—ISO3.

We now show that the same sentences are true in iso-
morphic graphs. Since truth of a sentence is defined in
terms of the concept of an assignment satisfying a for-
mula, we use induction on formulas, rather than induction
on sentences.

We introduce the concept of conjugacy as a helpful aux-
iliary concept, in order that the proof that is coming goes
through smoothly.

Definition 2.20 Suppose f is an isomorphism from a
graph M to a graph M′. Suppose s is an assignment
for M and s′ an assignment for M′. Then s and s′

are conjugates with respect to f if for all variables x
s′(x) = f(s(x)). See Figure 2.19.

Proposition 2.21 If s and s′ are conjugate, then for all
formulas A:

M |=s A if and only ifM′ |=s′ A.

Proof:
Case 1: A is an equation x = y.M |=s A implies s(x) =
s(y), which implies f(s(x)) = f(s(y)) by ISO1, and this
implies s′(x) = s′(y) by conjugacy, which finally implies
M′ |=s′ A. Conversely, M′ |=s′ A implies s′(x) =
s′(y), which implies f(s(x)) = f(s(y)) by conjugacy,
and this implies s(x) = s(y) by condition ISO2, which
finally impliesM |=s A.
Case 2: A is an atomic formula xEy. M |=s A im-
plies s(x)EMs(y), which implies f(s(x))EM

′
f(s(y))
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Figure 2.18: Four isomorphic unary structures.

by ISO3, and this implies s′(x)EM
′
s′(y) by conju-

gacy, which finally implies M′ |=s′ A. Conversely,
M′ |=s′ A implies s′(x)EM

′
s′(y), which implies

f(s(x))EM
′
f(s(y)) by conjugacy, and this implies

s(x)EMs(y) by condition ISO3, which finally implies
M |=s A.

Case 3: A is¬B and the claim has already been proved for
B and for all conjugate s and s′ (Induction Hypothesis).
M |=s A impliesM 6|=s B, which implies M ′ 6|=s′ B,
by Induction Hypothesis, and this finally gives M′ |=s′

A. Conversely,M′ |=s′ A impliesM′ 6|=s′ B, which im-
plies M 6|=s B, by Induction Hypothesis, and this finally
givesM |=s A.

Case 4: A is B ∧ C, B ∨ C, B → C or B ↔ C. We
assume as the Induction Hypothesis that the claim has al-
ready been proved for B and C and for all conjugate s
and s′. (Exercise)

Case 5: A is ∃xB. Suppose the claim has already
been proved for B and for all conjugate s and s′ (In-
duction Hypothesis). Suppose first M |=s A. This
implies M |=s(a/x) B for some a. Note that s(a/x)
and s′(f(a)/x) are conjugate! By Induction Hypothesis,
M′ |=s′(f(a)/x) B. Thus M′ |=s′(b/x) B for some b.

This impliesM′ |=s′ A.
Suppose then M′ |=s′ A. This implies M′ |=s′(b/x)

B for some b. By ISO2 there is a such that f(a) = b.
Note that s(a/x) and s′(b/x) are conjugate! By Induction
Hypothesis,M |=s(a/x) B. ThusM |=s(a/x) B for some
a. This impliesM |=s A.

Case 6: A is ∀xB. Assume as the Induction Hypothesis
that the claim has already been proved for B and for all
conjugate s and s′. (Exercise)

We have proved thatM |=s A if and only ifM′ |=s′ A
whenM andM′ are isomorphic graphs and s and s′ are
conjugate. 2

When we assume that A is a sentence we can drop the
assignment and concludeM |= A if and only ifM′ |= A.
In particular, one cannot separate isomorphic graphs by
means of a sentence of predicate logic.

We cannot say anything about the vertices of a graph,
except whether they are identical or not, and whether they
are neighbors or not. Suppose for example the universe
ofM is {0, 1, 2, 3, 4} and EM = {(0, 1)}. Suppose also
the universe of M′ is {10, 11, 12, 13, 14} and EM

′
=

{(12, 13)}. No sentence A can “say” that the vertices of
M are different from the vertices ofM′, or that the only
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Figure 2.19: Conjugacy
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edge is in a “different” place in M than in M′. To be
more exact, the statement “the only edge is in a different
place inM than inM′” is meaningless.

All the above can be done in an arbitrary vocabulary—
it is not in any way restricted to graphs.

2.21.2 Solved problems

Problem 359 Which of the following graphs are isomor-
phic?

Solution: The top two are isomorphic, the rest are not,
as the below picture demonstrates.

2

Problem 360 Which of the functions is an isomorphism

Solution: Function f is not an isomorphism because it
maps the end points of the leftmost edge to vertices which
are not neighbors. Function g is an isomorphism which
one can see by going through all the edges. Function h
is not an isomorphism because one vertices in the right
hand side graph is the image of two vertices from the left.
Finally, function i is an isomorphism which one can see
by going through all the edges. 2

Problem 361 Prove that isomorphism preserves truth in
unary structures, using the following definition: Let L be
the vocabulary {P1, . . . , Pn}, where each Pi is unary. Let
M andM′ be two L-structures. We say that a mapping
f is an isomorphismM→M′ if

ISO1 f maps elements of the universe ofM to elements
of the universe ofM′.

ISO2 Every element of the universe of M′ is the image
of exactly one element of the universe ofM.

ISO3 If a is in the universe of M, then PMi (a) if and
only if PM

′

i (f(a)).

Solution: We should show that the same sentences are
true in isomorphic unary structures. Since truth of a sen-
tence is defined in terms of the concept of an assignment
satisfying a formula, we use induction on formulas. The
concept of conjugacy turns out to be again useful.

We prove: IfM andM′ are isomorphic and s and s′

are conjugate, then for all formulas A: M |=s A if and
only ifM′ |=s′ A.

Case 1: A is an equation x = y. As before: M |=s A
implies s(x) = s(y), which implies f(s(x)) = f(s(y))
by ISO1, and this implies s′(x) = s′(y) by conjugacy,
which finally impliesM′ |=s′ A. Conversely,M′ |=s′ A
implies s′(x) = s′(y), which implies f(s(x)) = f(s(y))
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by conjugacy, and this implies s(x) = s(y) by condition
ISO2, which finally impliesM |=s A.

Case 2: A is an atomic formula Pi(x). M |=s A im-
plies s(x) ∈ PM

i , which implies f(s(x)) ∈ PM
′

i by
ISO3, and this implies s′(x) ∈ PM′i by conjugacy, which
finally implies M′ |=s′ A. Conversely, M′ |=s′ A im-
plies s′(x) ∈ PM

′

i , which implies f(s(x)) ∈ PM
′

i by
conjugacy, and this implies s(x) ∈ PMi by condition
ISO3, which finally impliesM |=s A.

Case 3: A is ¬B and the claim has already been proved
for B and for all conjugate s and s′ (Induction Hypoth-
esis). As before: M |=s A implies M 6|=s B, which
impliesM′ 6|=s′ B, by Induction Hypothesis, and this fi-
nally gives M′ |=s′ A. Conversely, M |=s′ A implies
M′ 6|=s′ B, which impliesM 6|=s B, by Induction Hy-
pothesis, and this finally givesM |=s A.

Case 4: A is B ∧ C, B ∨ C, B → C or B ↔ C.
We assume as the Induction Hypothesis that the claim has
already been proved for B and C and for all conjugate s
and s′. (Exercise)

Case 5: A is ∃xB. Suppose the claim has already been
proved for B and for all conjugate s and s′ (Induction
Hypothesis). As before: Suppose first M |=s A. This
implies M |=s(a/x) B for some a. Note that s(a/x)
and s′(f(a)/x) are conjugate! By Induction Hypothesis,
M′ |=s′(f(a)/x) B. Thus M′ |=s′(b/x) B for some b.
This impliesM′ |=s′ A.

Suppose then M′ |=s′ A. This implies M′ |=s′(b/x)

B for some b. By ISO2 there is a such that f(a) = b.
Note that s(a/x) and s′(b/x) are conjugate! By Induction
Hypothesis,M |=s(a/x) B. ThusM |=s(a/x) B for some
a. This impliesM |=s A.

Case 6: A is ∀xB. Suppose the claim has already been
proved for B and for all conjugate s and s′ (Induction
Hypothesis). Exercise.

We have proved thatM |=s A if and only ifM′ |=s′ A
when M and M′ are isomorphic unary structures and s
and s′ are conjugate. When we assume that A is a sen-
tence we can drop the assignment and concludeM |= A
if and only ifM′ |= A.

In particular, one cannot separate isomorphic unary
structures by means of a sentence of predicate logic.

If the vocabulary L is {P}, where P is a unary pred-
icate symbol, we cannot say with a sentence which ele-
ments are in P , only how many they are, at least if they

are only finitely many. This can be seen as follow. Sup-
pose the universe ofM is {0, 1, 2, 3, 4}, PM = {0}, and
the universe ofM′ is {0, 1, 2, 3, 4}, PM = {1}. NowM
andM′ are isomorphic. No sentence A “says” that there
is a difference betweenM andM′.

2

2.21.3 Problems

Problem 362 Which of the below graphs are isomorphic
and which are not?

Problem 363 Problem: Which of the below graphs are
isomorphic and which are not?

Problem 364 Prove that if the graphM is isomorphic to
the graph M′ and M′ is isomorphic to the graph M′′,
thenM andM′′ are isomorphic.

Problem 365 Prove that if a graphM is isomorphic to a
structureM′ thenM′ is also a graph.

Problem 366 Prove that every graph with 10 vertices is
isomorphic to a graph with {1, 2, . . . , 10} as the universe.
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Figure 2.20: Isomorphism of unary functions.

2.22 More about isomorphism

Up to now we have discussed the concept of isomorphism
only in the case of graphs and in the case of unary pred-
icates. Let us now look at the situation where we have
a vocabulary consisting of one unary function. Here is a
picture of a structure with a unary function:

As with graphs, one and the same unary function may
have different appearances:

Here is the proof that these two pictures of a unary
function represent indeed isomorphic unary functions:

2.22.1 Exact definition for structures with
functions

After the preliminary discussion on isomorphism of unary
structures, let us try to give an exact definition:

Definition 2.22 Let L be the vocabulary {G}, where G
is a unary function symbol. Let M and M′ be two L-
structures. We say that a mapping f is an isomorphism
M→M′ if

ISO1 f maps elements of the universe ofM to elements
of the universe ofM′.

ISO2 Every element of the universe of M′ is the image
of exactly one element of the universe ofM.

ISO3 If a and b are in the universe of M, then b =
GM(a) if and only if f(b) = GM

′
(f(a)).

Note: ISO3 says f(GM(a)) = GM
′
(f(a)) for all a.

An example of an isomorphism of structures with a
unary function was in Figure 2.20.

2.22.2 Isomorphism preserves truth
We show that the same sentences are true in isomorphic
L-structures, also in the case of unary functions. Since
truth of a sentence is defined in terms of the concept of
an assignment satisfying a formula, we use induction on
formulas.

Recall the concept of conjugacy of assignments from
Definition 2.20 and Figure 2.19: Suppose f is an isomor-
phism fromM toM′. Suppose s is an assignment forM
and s′ an assignment forM′. Then s and s′ are conjugates
with respect to f if for all variables x, s′(x) = f(s(x)).

We prove first a preliminary Lemma:

Lemma 2.23 If s and s′ are conjugate, then for all terms
t:

f(tM〈s〉) = tM
′
〈s′〉.

Proof:
Case 1: t is a constant c. This is not possible because our
vocabulary L does not contain constant symbols.
Case 2: t is a variable x. Now by conjugacy

f(tM〈s〉) = f(xM〈s〉)
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= f(s(x)) = s′(x) = tM
′
〈s′〉.

Case 3: t is G(t′). We assume

f(t′M〈s〉) = t′M
′
〈s′〉

as the Induction Hypothesis. Now by ISO3

f(tM〈s〉) = f(G(t′)M〈s〉)

= f(GM(t′
M〈s〉)) = GM

′
(f(t′

M〈s〉)) = GM
′
(t′
M′〈s′〉)

= G(t′)M
′
〈s′〉 = tM

′
〈s′〉.

2

Now the preservation of truth:

Proposition 2.24 If s and s′ are conjugate, then for all
formulas A:M |=s A if and only ifM′ |=s′ A.

Proof: Case 1: A is an equation t = t′.M |=s A implies

tM〈s〉 = t′
M〈s〉,

which implies

f(tM〈s〉) = f(t′
M〈s〉)

by ISO1, and this implies

tM
′
〈s′〉 = t′

M′〈s′〉

by the Lemma 2.23, which finally implies M′ |=s′ A.
Conversely,M′ |=s′ A implies

tM
′
〈s′〉 = t′

M′〈s′〉,

which implies

f(tM〈s〉) = f(t′
M〈s〉)

by the Lemma 2.23, and this implies

tM〈s〉 = t′
M〈s〉

by condition ISO2, which finally impliesM |=s A.
Case 2: A is ¬B and the claim has already been proved

for B and for all conjugate s and s′ (Induction Hypoth-
esis). As before: M |=s A implies M 6|=s B, which

implies M ′ 6|=s′ B, by Induction Hypothesis, and this fi-
nally gives M′ |=s′ A. Conversely, M′ |=s′ A implies
M′ 6|=s′ B, which implies M 6|=s B, by Induction Hy-
pothesis, and this finally givesM |=s A.

Case 3: Suppose the claim has already been proved for
B andC and for all conjugate s and s′ (Induction Hypoth-
esis). Then the claim holds for B ∧ C, B ∨ C, B → C
and for B ↔ C. (Exercise)

Case 4: A is ∃xB. Suppose the claim has already been
proved for B and for all conjugate s and s′ (Induction
Hypothesis).

As before: Suppose first M |=s A. This implies
M |=s(a/x) B for some a. Note that s(a/x) and
s′(f(a)/x) are conjugate! By Induction Hypothesis,
M′ |=s′(f(a)/x) B. Thus M′ |=s′(b/x) B for some b.
This impliesM′ |=s′ A.

Suppose then M′ |=s′ A. This implies M′ |=s′(b/x)

B for some b. By ISO2 there is a such that f(a) = b.
Note that s(a/x) and s′(b/x) are conjugate! By Induction
Hypothesis,M |=s(a/x) B. ThusM |=s(a/x) B for some
a. This impliesM |=s A.

Case 5: A is ∀xB. Suppose the claim has already been
proved for B and for all conjugate s and s′ (Induction
Hypothesis). Exercise.

2

We have proved thatM |=s A if and only ifM′ |=s′ A
whenM andM′ are isomorphic L-structures and s and
s′ are conjugate. When we assume that A is a sentence
we can drop the assignment and conclude M |= A if and
only ifM′ |= A.

In particular, one cannot separate isomorphic L-
structures by means of a sentence of predicate logic.

2.22.3 Example

We cannot say anything about the elements of L-
structures, L = {G}, except what their mutual relation-
ships are in terms of the one function. Consider the mod-
els:

M: Universe ofM is {0, 1, 2, 3, 4}, GM(a) = 0 for all
a.

M′: Universe ofM′ is {0, 1, 2, 3, 4} , GM
′
(a) = 1 for

all a.
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No sentence A can “say” that the constant functions
GM and GM′ are different, because the function f(0) =
1, f(1) = 0, f(a) = a if a ∈ {2, 3, 4}, is an isomorphism
M→M′.

2.22.4 Now the general case
All the above can be done in an arbitrary vocabulary - it
is not in any way restricted to graphs, unary predicates or
unary functions. The exact definition of isomorphism in
the general case is as follows:

Definition 2.25 LetL be an arbitrary vocabulary. LetM
andM′ be two L-structures. We say that a mapping f is
an isomorphism fromM toM′ if

ISO1 f maps elements of the universe ofM to elements
of the universe ofM′.

ISO2 Every element of the universe of M′ is the image
of exactly one element of the universe ofM.

ISO3 There are three cases:

1. If c is a constant symbol in L, then f(cM) =
cM

′
.

2. If Rn
i is in L, then (a1, . . . , an) ∈ (Rn

i )
M

iff (f(a1), . . . , f(an)) ∈ (Rn
i )
M′ for all

a1, . . . , an in the universe ofM.
3. If Fn

i is in L then f((Fn
i )
M(a1, . . . , an)) =

(Fn
i )
M′(f(a1), . . . , f(an)) for all a1, . . . , an

in the universe ofM.

2.22.5 Ordered sets
Let us consider the vocabulary L = {<}. L-structures
which satisfy the axioms of order are called ordered sets.
Finite ordered sets with the same number of elements are
isomorphic. One maps the first element of Infinite ordered
sets need not be isomorphic. The following four ordered
sets are all non-isomorphic to each other: Integers, posi-
tive integers, rationals, reals.

2.22.6 Solved problems
Problem 367 Which of the following structures with a
unary function are isomorphic? Which sentences sepa-
rates the non-isomorphic ones?

Solution: The two structures on the right are isomorphic:

Likewise, the two structures on the left are isomorphic:

Let us then think what would be a sentence that separates
the left-hand structures from the right-hand ones, mak-
ing it impossible for all the structures to be isomorphic.
The point is that on the left every element is the image of
one elements only while on the right there are elements
that are images of two different element. Thus a sentence
which is true in both structures on the right but in neither
structure on the left is:

∃x∃y(F (x) = F (y) ∧ ¬x = y).

2

Problem 368 Which of the following structures with a
unary function are isomorphic. Which sentences sepa-
rates the non-isomorphic ones?
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M: The natural numbers with the function g(a) = a, if
a even and g(a) = 1 otherwise.

M′: The natural numbers with the function g′(a) = 0, if
a even and g′(a) = a otherwise.

M′′: The natural numbers with the function g′′(a) = 0,
if a even and g′′(a) = 1 otherwise.

Solution: The first two models are isomorphic as the
function f(2n) = 2n+1, f(2n+1) = 2n, shows. Let us
check this: Suppose a is a natural number. Then a = 2n
or a = 2n+ 1 for some n. In the first case we obtain:

f(G(a)M) = f(G(2n)M) = f(g(2n)) =

= f(2n) = 2n+ 1

and

G(f(a))M
′
= G(f(2n))M

′
= G(2n+ 1)M

′
=

= g′(2n+ 1) = 2n+ 1.

On the other hand, if a = 2n+ 1 we obtain:

f(G(a)M) = f(G(2n+ 1)M) = f(g(2n+ 1)) =

= f(1) = 0

and

G(f(a))M
′
= G(f(2n+ 1))M

′
= G(2n)M

′
=

= g′(2n) = 0.

The modelM′′ is not isomorphic to the first two models.
An example of a sentence that separates them is

∃x∃y∀z(G(z) = x ∨G(z) = y).

This sentence is clearly true onM′′ but false in bothM
andM′. 2

2.22.7 Problems
Problem 369 Which of the below structures with a unary
function are isomorphic and which are not?

Problem 370 Which of the below structures with a unary
function are isomorphic and which are not?

Problem 371 Suppose M is a structure and s is an as-
signment forM. Suppose f is an isomorphism fromM
toM′. Show that there is one and only one assignment s′

forM′ such that s and s′ are conjugates with respect to
f .

Problem 372 Show that the following ordered sets are all
non-isomorphic to each other:

1. Integers.

2. Positive integers.

3. Rational numbers.

4. Real numbers.

Problem 373 Prove for an arbitrary vocabulary that iso-
morphic structures satisfy the same sentences.

Problem 374 Let the vocabulary L be {R}, where R is
a binary predicate symbol. Consider the L-structureM
whose universe is the set of all rational numbers (i.e. num-
bers of the form m/n, where m and n are integers (with-
out common divisors) and n 6= 0) and in which RM is
the set of pairs (a, b) such that a < b. LetM′ be the L-
structure whose universe is the set of all rational numbers
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except 0 and in which RM is again the set of pairs (a, b)
such that a < b. Are the structuresM andM′ isomor-
phic or not? (This problem is a bit harder than the other
problems.)
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