Introduction to Conformal Geometry and Quasiconformal Maps
 Department of Mathematics and Statistics
 Winter 2013 / Vuorinen

Exercise 12, 2013 File: icg1312.tex, 2012-12-19,18.15

1. Let $f: B^{2} \rightarrow B^{2} \backslash\{0\} \equiv G$ be the analytic function defined in h1001, $f(z)=\exp (g(z))$ when $g(z)=-(1+z) /(1-z), z \in B^{2}$. Estimate for $t \in(0,1)$

$$
\sup \left\{k_{G}(f(0), f(z)):|z|=t\right\} .
$$

Hint: Consider $k_{G}(|f(0)|,|f(z)|)$.
2. Let $G \subset \mathbf{R}^{n}$ be a domain, $x_{0} \in G, G_{1}=G \backslash\left\{x_{0}\right\}, t \in(0,1 / 2]$. Show that there is a constant $c \geq 1$ such that for all $x, y \in G \backslash B^{n}\left(x_{0}, t d\left(x_{0}\right)\right)$ $k_{G_{1}}(x, y) \leq c k_{G}(x, y)$.
3. Find a counterpart of the Schwarz lemma for
(a) K-qm mappings $f: Q(z, r) \rightarrow Q(w, s), f(z)=w$.
(b) K-qr mappings $f: \mathbf{H} \rightarrow \mathbf{H}, f\left(e_{n}\right)=e_{n}$.
4. Let $f: \mathbf{B} \rightarrow \mathbf{B}$ be $K-\mathrm{qr}$ and $u(x)=1-|f(x)|$. Show that the Harnack inequality holds for u.
5. Let $G \subset \mathbf{R}^{n}$ be a domain $x, y, z \in G$ with $|x-y|=d(x) / 2$ and $|x-z|>d(x)$. Find a lower bound for $\lambda_{G}(x, z)$ in terms of $\lambda_{G}(x, y)$ and $k_{G}(z, y)$. Hint: You may reduce the former case $\left(\lambda_{G}(x, z)\right)$ to the latter case $\left(\lambda_{G}(x, x)\right)$ by use of an auxiliary qc mapping as follows. It is well-known [GP] that for a domain $D \subset \mathbf{R}^{n}$ and $x, y \in D$ there is a K-quasiconformal mapping $f: D \rightarrow D$ with $f(z)=z$ for all $z \in \partial D$ with $f(x)=y, K \leq \exp \left(c_{1} k_{D}(x, y)\right)$ where $c_{1}>0$ is a constant.
6. Let $f: \mathbf{B} \rightarrow Z, Z=\left\{x \in \mathbf{R}^{n}: \sum_{j=1}^{n-1} x_{j}^{2}<1\right\}$ be $K-q r, f(0)=0$. Show that

$$
|f(x)| \leq A K\left(\log \frac{1+|x|}{1-|x|}+B\right)
$$

where A, B depend only on n. [Hint: $5.29[\mathrm{CGQM}]$ and μ-metric.]

