Introduction to Conformal Geometry and Quasiconformal Maps Department of Mathematics and Statistics Winter 2013 / Vuorinen

Exercise 7, 2013 File: icg1307.tex, 2013-2-25,13.55

1. Let t > r > s > 0, $E \subset \mathbf{B}^n(s)$ and $\Delta_a = \Delta(E, S^{n-1}(a))$. Show that $\mathsf{M}(\Delta_r) \leq c\mathsf{M}(\Delta_t)$, where c is only dependent on n, r, s and t.

- **2.** Prove Theorem 6.1 (3) [CGQM].
- **3.** Let $G = \mathbb{R}^n \setminus \{0\}$ and let s_G be defined as

$$s_G(x,y) = \frac{|x-y|^2}{2|x||y|}, \ x, y \in G.$$

Define ρ_G by ch $\rho_G(x, y) = 1 + s_G(x, y)$. Show that

$$j_G(x,y)/2 \le \rho_G(x,y) \le 4 j_G(x,y)$$

for $x, y \in G$. Hint: Use the inequality from h0405 to the effect that for $a \ge 0$

$$\log \left(1 + \max\left\{a, \sqrt{a}\right\}\right) \leq b \leq \log \left(1 + a + \sqrt{a}\right)$$
$$\leq 2 \log \left(1 + \max\left\{a, \sqrt{a}\right\}\right)$$

if $ch b = 1 + \frac{1}{2}a$.

4. Show that for 0 < r < 1 and M > 0, $m_h(\bigcup_{|x| \leq r} D(x, M)) \leq d_2(n, M)(1-r)^{1-n}$, where m_h is the hyperbolic measure of $(\mathbf{B}, \rho_{\mathbf{B}})$.

5. Show that for given $\varepsilon > 0$ there are numbers $r_1 > s_1 > r_2 > s_2 > \dots$ such that $\mathsf{M}(\Delta(E, F, \mathbf{R}^n)) < \varepsilon$, when $E = \cup S^{n-1}(r_j)$ and $F = \cup S^{n-1}(s_j)$.

6. Let $G, G' \subset \mathbf{R}^n$, $n \geq 2$, and let $f : G \to G'$ be a homeomorphism with the following property: There exists $c_1 \in (0, \infty)$ such that for every subdomain $D \subset G$ and for all $x, y \in D$,

$$(\star) \qquad \qquad j_{fD}(f(x), f(y)) \le c_1 j_D(x, y).$$

Show that for each $z \in G$,

$$H(f,z) = \limsup_{r \to 0} \left\{ \frac{|f(x) - f(z)|}{|f(y) - f(z)|} : |x - z| = |y - z| = r \right\} \le c_2,$$

where $c_2 \in (1, \infty)$. Show that this inequality holds (possibly with a different constant c_2) also if in $(\star) j_D$ and j_{fD} are replaced by k_D and k_{fD} .